Proposed Work

Wrap-Up

Differential Prediction Using Inductive Logic Programming

Houssam Nassif

Thesis Proposal 14 January 2011

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wrap-Up

Outline

Motivation

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction
- 3 Proposed Work
 - Differential Predictive Rules Definition
 - DP within the ILP Framework
 - Randomizing Recall
 - BI-RADS Terms Annotation

Wrap-Up

Proposed Work

Wrap-Up

Outline

Motivation

• Differential Prediction (DP)

- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction
- 3 Proposed Work
 - Differential Predictive Rules Definition
 - DP within the ILP Framework
 - Randomizing Recall
 - BI-RADS Terms Annotation

🕘 Wrap-Up

Motivation

Preliminary Results

Proposed Work

Wrap-Up

Breast-Cancer Stages

Figure: In-Situ Cancer Stage

Motivation

Preliminary Results

Proposed Work

Wrap-Up

Breast-Cancer Stages

Figure: Invasive Cancer Stage

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wrap-Up

Cancer Stage Features

- In Situ can develop into Invasive
 - Current practice: Always treat In Situ
- Time to spread may be very long
 - Over-diagnosis (unnecessary treatment)
 - Patient may die of other causes
- What features characterize In Situ in older patients?
- What features change between older and younger?

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wrap-Up

Cancer Stage Features

- In Situ can develop into Invasive
 - Current practice: Always treat In Situ
- Time to spread may be very long
 - Over-diagnosis (unnecessary treatment)
 - Patient may die of other causes
- What features characterize In Situ in older patients?
- What features change between older and younger?

Proposed Work

Wrap-Up

Differential Prediction

Definition

Proposed Work

Wrap-Up

Using Regression to Detect DP

- Validate educational and psychological tests
- Detect discrepancies related to race or gender

Proposed Work

Wrap-Up

Using Regression to Detect DP

- Validate educational and psychological tests
- Detect discrepancies related to race or gender

Proposed Work

Wrap-Up

Using Regression to Detect DP

- Validate educational and psychological tests
- Detect discrepancies related to race or gender

Proposed Work

Wrap-Up

DP in Machine Learning

- Byproduct of classification
- Detected by:
 - Comparing classifiers built on distinct data subgroups
 - Checking classifier performance on multiple subgroups
- Differential misclassification cost: incorporating different misclassification costs into a cost sensitive classifier

Aim

- Classifier to maximize DP over specific data subsets
- Insight into DP features

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wrap-Up

DP in Machine Learning

- Byproduct of classification
- Detected by:
 - Comparing classifiers built on distinct data subgroups
 - Checking classifier performance on multiple subgroups
- Differential misclassification cost: incorporating different misclassification costs into a cost sensitive classifier

Aim

- Classifier to maximize DP over specific data subsets
- Insight into DP features

Proposed Work

Wrap-Up

Outline

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction
- 3 Proposed Work
 - Differential Predictive Rules Definition
 - DP within the ILP Framework
 - Randomizing Recall
 - BI-RADS Terms Annotation

🕢 Wrap-Up

Proposed Work

Wrap-Up

Inductive Logic Programming

Definition

Inductive Logic Programming (ILP): Machine learning approach that learns a set of first-order logic rules that explain the data

- Generates easy to interpret if-then rules
- a Allows user interaction through background knowledge
- Operates on relational datasets
- Can investigate the performance of each rule, selecting for DP over given subsets

Proposed Work

Wrap-Up

Inductive Logic Programming

Definition

Inductive Logic Programming (ILP): Machine learning approach that learns a set of first-order logic rules that explain the data

- Generates easy to interpret if-then rules
- Allows user interaction through background knowledge
- Operates on relational datasets
- Can investigate the performance of each rule, selecting for DP over given subsets

Proposed Work

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Wrap-Up

Inductive Logic Programming

Definition

Inductive Logic Programming (ILP): Machine learning approach that learns a set of first-order logic rules that explain the data

- Generates easy to interpret if-then rules
- Allows user interaction through background knowledge
- Operates on relational datasets
- Can investigate the performance of each rule, selecting for DP over given subsets

Proposed Work

Wrap-Up

ILP Example

Example

P(A), red(A), big(A), round(A)sibling(A, B) • P(X) if square(X)

- P(X) if red(X) ∧ big(x)
 1 false positive
- P(X) if sibling $(X, Y) \land$ square(Y)

- 1 false negative
- Form theory

Proposed Work

Wrap-Up

ILP Example

Example

P(A), red(A), big(A), round(A)sibling(A, B)

- P(X) if square(X)
- P(X) if red(X) ∧ big(x)
 1 false positive
- P(X) if sibling $(X, Y) \land$ square(Y)

- 1 false negative
- Form theory

Preliminary Results

Proposed Work

Wrap-Up

Example

P(A), red(A), big(A), round(A)sibling(A, B) • P(X) if square(X)

- P(X) if red(X) ∧ big(x)
 1 false positive
- P(X) if sibling $(X, Y) \land$ square(Y)

- 1 false negative
- Form theory

Preliminary Results

Proposed Work

Wrap-Up

Example

P(A), red(A), big(A), round(A)sibling(A, B) • P(X) if square(X)

- P(X) if red(X) ∧ big(x)
 1 false positive
- P(X) if sibling $(X, Y) \land$ square(Y)

- 1 false negative
- Form theory

Preliminary Results

Proposed Work

Wrap-Up

Example

P(A), red(A), big(A), round(A)sibling(A, B) • P(X) if square(X)

• P(X) if $red(X) \land big(x)$

- 1 false positive
- P(X) if sibling(X, Y) ∧ square(Y)

- 1 false negative
- Form theory

Preliminary Results

Proposed Work

Wrap-Up

Example

P(A), red(A), big(A), round(A)sibling(A, B)

- P(X) if square(X)
- P(X) if $red(X) \land big(x)$
 - 1 false positive
- P(X) if sibling(X, Y) ∧ square(Y)

- 1 false negative
- Form theory

Preliminary Results

Proposed Work

Wrap-Up

Example

P(A), red(A), big(A), round(A)sibling(A, B)

- P(X) if square(X)
- P(X) if $red(X) \land big(x)$
 - 1 false positive
- P(X) if sibling(X, Y) ∧ square(Y)

- 1 false negative
- Form theory

Preliminary Results

Proposed Work

Wrap-Up

Example

P(A), red(A), big(A), round(A)sibling(A, B)

- P(X) if square(X)
- P(X) if $red(X) \land big(x)$
 - 1 false positive
- P(X) if sibling(X, Y) ∧ square(Y)

- 1 false negative
- Form theory

Preliminary Results

Proposed Work

Wrap-Up

Example

P(A), red(A), big(A), round(A)sibling(A, B)

- P(X) if square(X)
- P(X) if $red(X) \land big(x)$
 - 1 false positive
- P(X) if sibling(X, Y) ∧ square(Y)

- 1 false negative
- Form theory

Proposed Work

Wrap-Up

Outline

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction
- 3 Proposed Work
 - Differential Predictive Rules Definition
 - DP within the ILP Framework
 - Randomizing Recall
 - BI-RADS Terms Annotation

🕘 Wrap-Up

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Breast-Cancer Stage Modeling

- Identify patient subgroups that would benefit most from treatment
- Invasive and In Situ characteristics in older and younger women
- Data is mostly in free-text

Task<u>s</u>

- DP features for Invasive and In Situ
- Information extraction from free-text

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Breast-Cancer Stage Modeling

- Identify patient subgroups that would benefit most from treatment
- Invasive and In Situ characteristics in older and younger women
- Data is mostly in free-text

Tasks

- DP features for Invasive and In Situ
- Information extraction from free-text

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wrap-Up

Hexose-Binding Modeling

- Galactose, glucose, mannose
- High specificity to diverse protein families
- Interesting to uncover differential binding patterns

Tasks

- Glucose-binding model
- Data-driven empirical validation of biochemical findings

Proposed Work

Wrap-Up

Hexose-Binding Modeling

- Galactose, glucose, mannose
- High specificity to diverse protein families
- Interesting to uncover differential binding patterns

Tasks

- Glucose-binding model
- Data-driven empirical validation of biochemical findings

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなの

Proposed Work

Wrap-Up

Outline

Motivation

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction

3 Proposed Work

- Differential Predictive Rules Definition
- DP within the ILP Framework
- Randomizing Recall
- BI-RADS Terms Annotation

🕘 Wrap-Up

Motivation

Preliminary Results

Proposed Work

Wrap-Up

Hexose Binding-Site Representation

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wrap-Up

Hexose Binding-Site Features

- 1: procedure EXTRACTFEATURES(binding site center)
- 2: for all concentric layers do
- 3: for all PDB atoms do
- 4: get distance from center
- 5: get charge
- 6: get hydrophobicity
- 7: get hydrogen-bonding
- 8: get residue
- 9: end for
- 10: **end for**
- 11: end procedure

Proposed Work

Wrap-Up

Glucose Binding-Site Classifier (Proteins)

- Random Forests for feature selection
- Support Vector Machines for classification

Features	L1	L2	L3	L4	L5	L6	L7	L8
Negative Charge			Х				Х	Х
Neutral Charge	Х	Х						
Non H-Bonding	Х							
H-Bonding	Х		Х					Х
Hydrophilic	Х		Х					Х
Hydroneutral		Х	Х					
Hydrophobic					Х		Х	
Neutral Residue				Х	Х		Х	
Acidic Residue			Х		Х	Х	Х	Х

Validating Hexose-Binding Knowledge (*ILP'09*)

- Use ILP system Aleph
- Extract rules from data without prior biochemical knowledge
- Compare resulting rules with known biochemical rules
- Induce most of the known hexose-binding biochemical rules
- Find a previously unreported dependency between TRP and GLU

Validating Hexose-Binding Knowledge (*ILP'09*)

- Use ILP system Aleph
- Extract rules from data without prior biochemical knowledge
- Compare resulting rules with known biochemical rules
- Induce most of the known hexose-binding biochemical rules
- Find a previously unreported dependency between TRP and GLU

Preliminary Results

Proposed Work

Wrap-Up

Outline

Motivation

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications

2 Preliminary Results

- Predicting Hexose Binding Sites
- DP for Invasive/In-Situ
- BI-RADS Information Extraction

3 Proposed Work

- Differential Predictive Rules Definition
- DP within the ILP Framework
- Randomizing Recall
- BI-RADS Terms Annotation

🕘 Wrap-Up

Motivation

Preliminary Results

Proposed Work

Wrap-Up

Breast-Cancer Stages

Figure: In-Situ Cancer Stage

Motivation

Preliminary Results

Proposed Work

Wrap-Up

Breast-Cancer Stages

Figure: Invasive Cancer Stage

Age Matters

- Apply linear logistic regression
- Uncover a differential ability in predicting invasive and in-situ cancer in older vs. younger women
- Stratify our data:

founger: < 50 years, pre-menopausal Middle: [50, 65) years, peri-menopausal Older: >= 65 years, post-menopausal

Age Matters

- Apply linear logistic regression
- Uncover a differential ability in predicting invasive and in-situ cancer in older vs. younger women
- Stratify our data:

Younger: < 50 years, pre-menopausal Middle: [50, 65) years, peri-menopausal Older: >= 65 years, post-menopausal

Motivation

Preliminary Results

Proposed Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Wrap-Up

Generate-then-Test DP Method (IHI'10)

Proposed Work

Wrap-Up

Middle-Cohort Precision Comparison

Comparing Middle Cohort with:					
Rule	Older Cohort (p-value)	Younger Cohort (p-value)			
Invasive Older Prediction					
Rule 1	0.04*	0.50			
Rule 2	0.01*	0.32			
Rule 3	0.05	0.49			
Rule 4	0.26	0.00*			
Rule 5	0.48	0.00*			
In-Situ Older Prediction					
Rule 1	0.27	0.06			
Invasive Younger Prediction					
Rule 1	0.00*	0.12			
In-Situ Younger Prediction					
Rule 1	0.10	0.06			

Statistically significant at the 95% confidence level.

÷

Proposed Work

Wrap-Up

Mammography Features

Structured	Extracted using NLP
Family breast cancer history	Mass margin
Personal breast cancer history	Mass shape
Prior surgery	Calcification distribution
Palpable lump	Calcification morphology
Screening v/s diagnostic	Architectural distortion
Indication for exam	Associated findings
Breast Density	Mammary lymph node
BI-RADS code left	Asymmetric breast tissue
BI-RADS code right	Focal asymmetric density
BI-RADS code combined	Tubular density
Principal finding	Mass size

Proposed Work

Wrap-Up

Outline

Motivation

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications

2 Preliminary Results

- Predicting Hexose Binding Sites
- DP for Invasive/In-Situ

BI-RADS Information Extraction

Proposed Work

- Differential Predictive Rules Definition
- DP within the ILP Framework
- Randomizing Recall
- BI-RADS Terms Annotation

🕘 Wrap-Up

Proposed Work

Wrap-Up

Breast Imaging Reporting & Data System (BI-RADS)

Proposed Work

Wrap-Up

Information from Lexicon

Lexicon specifies synonyms

- E.g.: Equal density, Isodense
- Lexicon allows for ambiguous wording

Text	Concept
indistinct margin	indistinct margin
indistinct calcification	amorphous calcification
indistinct image	not a BI-RADS concept

Proposed Work

Wrap-Up

Algorithm Flowchart (*ICDM-W'09*)

- Context Free Grammar
- Straight-forward negation

▲□▶▲□▶▲□▶▲□▶ 三回▲ のの⊙

 Negation-deactivation triggers

Rule Generation Example

- Aim: Skin Thickening concept
- Lexicon specifies "skin thickening"
- Try "skin" and "thickening" in same sentence
 - thickening of the overlying skin
 - marker placed on the skin overlying a palpable focal area of thickening in the upper outer right breast
- Experts suggest "skin" and "thickening" in close proximity
- Start with a large scope
 - Assess number of true and false positives
- Move to smaller scopes
 - Assess number of false negatives
- Experts decide on the best distance

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rule Generation Example

- Aim: Skin Thickening concept
- Lexicon specifies "skin thickening"
- Try "skin" and "thickening" in same sentence
 - thickening of the overlying skin
 - marker placed on the skin overlying a palpable focal area of thickening in the upper outer right breast
- Experts suggest "skin" and "thickening" in close proximity
- Start with a large scope
 - Assess number of true and false positives
- Move to smaller scopes
 - Assess number of false negatives
- Experts decide on the best distance

Proposed Work

Wrap-Up

Outline

Motivation

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction

3 Proposed Work

- Differential Predictive Rules Definition
- DP within the ILP Framework
- Randomizing Recall
- BI-RADS Terms Annotation

🕢 Wrap-Up

Preliminary Results

Proposed Work

Wrap-Up

DP Rules Generation Paradigm

Aim

Formally define the differential predictive rules generation paradigm

Definition

DP Rule/Concept: Given a stratified dataset, a rule/concept whose performance is significantly better over one stratum as compared to the others

Preliminary Results

Proposed Work

Wrap-Up

DP Rules Generation Paradigm

Aim

Formally define the differential predictive rules generation paradigm

Definition

DP Rule/Concept: Given a stratified dataset, a rule/concept whose performance is significantly better over one stratum as compared to the others

Proposed Work

Wrap-Up

K-Stratified Dataset

Definition (Stratified Dataset)

Let *c* be a concept defined over the set of instances *X*, and let $D = \{\langle x, c(x) \rangle\}$ be a set of training examples labeled according to *c*. Let D_i be *Q* disjoint subsets of *D*, with $Q \ge 2$, and let D_i^l be the training examples of D_i that have class label *l*, such that:

$$(\forall (i,j) \in [1,Q], i \neq j) \ D_i \subset D, \ D_i \cap D_j = \emptyset, \ \forall I \ D_i^l \neq \emptyset.$$
 (1)

A *K*-stratified dataset \mathscr{D} over the set of instances *X* is the union of *K* such subsets D_i , with $2 \le K \le Q$, such that:

$$\mathscr{D} = \{ D_i \mid 1 \le i \le K \}.$$

Proposed Work

Differential Predictive Concept

Definition (Differential Predictive Concept)

Let *c* be a concept over the set of instances *X*, and let \mathscr{D} be a *K*-stratified dataset. Let $S(c, D_i)$ be the classification performance score for *c* over the subset D_i . A **stratum**-*j* **specific differential predictive concept** is a concept c_j such that:

$$S(c_j, D_j) \gg S(c_j, D_i), \ (\forall i \neq j). \tag{3}$$

• The score difference can be evaluated using statistical significance tests or by setting a threshold

Proposed Work

Wrap-Up

Outline

Motivation

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction

3 Proposed Work

- Differential Predictive Rules Definition
- DP within the ILP Framework
- Randomizing Recall
- BI-RADS Terms Annotation

🕢 Wrap-Up

Proposed Work

Wrap-Up

DP within the ILP Framework

Aim

Implement DP rules generation within ILP

- Generate-then-test approach
- Test-incorporation approach, more rigorous
- Alter the ILP search
- Alter evaluation function to score a clause according to its DP performance over stratified training set
- Return rules selected for their DP score

Motivation

Preliminary Results

Proposed Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Wrap-Up

Generate-then-Test DP Method (IHI'10)

Motivation

Preliminary Results

Proposed Work

Wrap-Up

Test-Incorporation DP Method

Proposed Work

Wrap-Up

DP-Sensitive Scoring Function

Definition (DP-Sensitive Scoring Function)

Let *R* be a clause over the set of instances *X*, and let \mathscr{D} be a 2-stratified dataset over *X*. Let $S(R, D_i)$ be the classification performance score for *R* over the subset D_i . We define the **differential-prediction-sensitive scoring function** *Q* as

$$Q(R, D_1, D_2) = S(R, D_1) - S(R, D_2).$$
(4)

Advantages

- Any classification scoring function S can be used
- Generates a set of rules as a consistent theory

Proposed Work

Wrap-Up

DP-Sensitive Scoring Function

Definition (**DP-Sensitive Scoring Function**)

Let *R* be a clause over the set of instances *X*, and let \mathscr{D} be a 2-stratified dataset over *X*. Let $S(R, D_i)$ be the classification performance score for *R* over the subset D_i . We define the **differential-prediction-sensitive scoring function** *Q* as

$$Q(R, D_1, D_2) = S(R, D_1) - S(R, D_2).$$
(4)

Advantages

- Any classification scoring function *S* can be used
- Generates a set of rules as a consistent theory

Proposed Work

Wrap-Up

Coverage Scoring Function

• Rule coverage score: Cover(P) - Cover(N)

• DP: (Cover(P1) - Cover(N1)) - (Cover(P2) - Cover(N2))

Proposed Work

Wrap-Up

Coverage Scoring Function

- Rule coverage score: *Cover*(*P*) *Cover*(*N*)
- DP: (Cover(P1) Cover(N1)) (Cover(P2) Cover(N2))

Proposed Work

Wrap-Up

Instance Relabeling DP Method

• Relabel Pos = P1 + N2

- Relabel Neg = P2 + N1
- Run standard ILP
- Cover(Pos) Cover(Neg)
- Cover(P1+N2)-Cover(P2+N1)
- (Cover(P1) + Cover(N2)) (Cover(P2) + Cover(N1))
- (Cover(P1) Cover(N1)) (Cover(P2) - Cover(N2))

Proposed Work

Wrap-Up

Instance Relabeling DP Method

- Relabel Pos = P1 + N2
- Relabel Neg = P2 + N1
- Run standard ILP
- Cover(Pos) Cover(Neg)
- Cover(P1+N2)-Cover(P2+N1)
- (Cover(P1) + Cover(N2)) (Cover(P2) + Cover(N1))
- (Cover(P1) Cover(N1)) (Cover(P2) - Cover(N2))

Proposed Work

Wrap-Up

Instance Relabeling DP Method

- Relabel Pos = P1 + N2
- Relabel Neg = P2 + N1
- Run standard ILP
- Cover(Pos) Cover(Neg)
- Cover(P1+N2)-Cover(P2+N1)
- (Cover(P1) + Cover(N2)) (Cover(P2) + Cover(N1))
- (Cover(P1) Cover(N1)) (Cover(P2) - Cover(N2))

Proposed Work

Wrap-Up

Baseline DP Method

- Include stratifying attribute as a predicate *p*
- Run ILP over whole dataset
- Select rules containing the predicate *p*
- Rules specific to the stratum the predicate *p* refers to

Example

P(X) if $red(X) \land big(X)$

Proposed Work

Wrap-Up

Baseline DP Method

- Include stratifying attribute as a predicate p
- Run ILP over whole dataset
- Select rules containing the predicate *p*
- Rules specific to the stratum the predicate *p* refers to

Example

 $\mathsf{P}(X)$ if $\mathsf{red}(X) \land \mathsf{big}(X)$
Proposed Work

Wrap-Up

Baseline DP Method

- Include stratifying attribute as a predicate p
- Run ILP over whole dataset
- Select rules containing the predicate *p*
- Rules specific to the stratum the predicate *p* refers to

Example

P(X) if $red(X) \wedge big(X)$

Proposed Work

Wrap-Up

Implementing K-Stratified DP

- Reduce a K-strata problem to K 2-strata problems
- Keep stratum *i*, collapse others together
- Extract stratum *i* DP rules
- Multi-strata DP-sensitive scoring function
- f-divergence functions?

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wrap-Up

Implementing K-Stratified DP

- Reduce a K-strata problem to K 2-strata problems
- Keep stratum *i*, collapse others together
- Extract stratum *i* DP rules
- Multi-strata DP-sensitive scoring function
- f-divergence functions?

Proposed Work

Wrap-Up

Outline

Motivation

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction

3 Proposed Work

- Differential Predictive Rules Definition
- DP within the ILP Framework

Randomizing Recall

- BI-RADS Terms Annotation
- 🗿 Wrap-Up

Ŵ

Aleph (Top-Down)

Require: Examples E, mode declarations M, background knowledge B, Scoring function S	
1:	
2: Learned rules \leftarrow {}	
3: $Pos \leftarrow all positive examples in E$	
4: while Pos do	
5: Select example $e \in Pos$	
6: Construct bottom clause \perp_e from e , M and B \triangleright Saturation step	
7: Candidate_literals \leftarrow Literals(\perp_e)	
8: New_rule $\leftarrow pos(\mathbf{X})$ \triangleright Most general rule	
9: repeat ▷ Top-down reduction step	
10: $Best_literal \leftarrow \underset{L \in Candidate \ literals}{argmax} S(New_rule \ with \ precondition \ L)$	
11: Add <i>Best_literal</i> to preconditions of <i>New_rule</i>	
12: until No more <i>S</i> (<i>New_rule</i>) score improvement	
13: Learned_rules \leftarrow Learned_rules $+$ New_rule	
14: $Pos \leftarrow Pos - \{members of Pos covered by New_rule\}$	
15: end while	
16: return Learned_rules	W
<□> <舂> <芎> <芎> <芎> <芎> <芎> <芎> <芎> <	100

ProGolem (Bottom-Up)

Require: Examples E, mode declarations M, background knowledge B, Scoring function S

- 1:
- 2: Learned_rules \leftarrow {}
- 3: Pos \leftarrow all positive examples in E
- 4: while Pos do
- 5: Select example $e \in Pos$
- 6: Construct bottom clause \perp_e from e, M and B
- 7: New rule $\leftarrow \perp_e$
- 8: repeat

Saturation stepMost specific rule

- Bottom-up reduction step
- 9: Select a different example $e' \in Pos$
- 10: $Blocking_literals \leftarrow ARMG(New_rule, e')$
- 11: Remove *Blocking_literals* from preconditions of *New_rule*
- 12: **until** No more S(New_rule) score improvement
- 13: Learned_rules \leftarrow Learned_rules + New_rule
- 14: $Pos \leftarrow Pos \{members of Pos covered by New_rule\}$
- 15: end while
- 16: return Learned_rules

Proposed Work

Wrap-Up

Bottom-Up Search Advantages

Omitted Variable Problem

- Not considering a DP variable
- Bottom-up starts with all attributes

Myopia Effect

- Top-down search assumes literals conditionally independent given target class
- If features highly correlated, searches very similar hypotheses

Proposed Work

Wrap-Up

Bottom-Up Search Advantages

Omitted Variable Problem

- Not considering a DP variable
- Bottom-up starts with all attributes

Myopia Effect

- Top-down search assumes literals conditionally independent given target class
- If features highly correlated, searches very similar hypotheses

Proposed Work

Wrap-Up

Non-Determinacy and Recall

Example

legalName(Joe, X); parent(Joe, Y); sibling(Joe, Z)

Definition

Predicate Non-Determinacy: The number of possible solutions of a given predicate Determinate Predicate: At most one solution

Definition

Recall: Imposed bound on predicate non-determinacy

Proposed Work

Wrap-Up

Non-Determinacy and Recall

Example

legalName(Joe, X); parent(Joe, Y); sibling(Joe, Z)

Definition

Predicate Non-Determinacy: The number of possible solutions of a given predicate Determinate Predicate: At most one solution

Definition

Recall: Imposed bound on predicate non-determinacy

Proposed Work

Wrap-Up

Randomized ProGolem

Example (Bottom Clause (A))

red(A), big(A), round(A), sibling(A, B), red(B), big(B), round(B)

- Highly non-determinate data
- Exponential learning time for bottom-up learner
- ProGolem: limit bottom clause to first *recall* instantiations

Aim

• Randomize ProGolem recall

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Use it for DF

Proposed Work

Wrap-Up

Randomized ProGolem

Example (Bottom Clause (A))

red(A), big(A), round(A), sibling(A, B), red(B), big(B), round(B)

- Highly non-determinate data
- Exponential learning time for bottom-up learner
- ProGolem: limit bottom clause to first *recall* instantiations

Aim

• Randomize ProGolem recall

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Use it for DF

Proposed Work

Wrap-Up

Randomized ProGolem

Example (Bottom Clause (A))

red(A), big(A), round(A), sibling(A, B), red(B), big(B), round(B)

- Highly non-determinate data
- Exponential learning time for bottom-up learner
- ProGolem: limit bottom clause to first *recall* instantiations

Aim

Randomize ProGolem recall

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Use it for DF

Proposed Work

Wrap-Up

Randomized ProGolem

Example (Bottom Clause (A))

red(A), big(A), round(A), sibling(A, B), red(B), big(B), round(B)

- Highly non-determinate data
- Exponential learning time for bottom-up learner
- ProGolem: limit bottom clause to first *recall* instantiations

Aim

Randomize ProGolem recall

Use it for DP

Proposed Work

Wrap-Up

Outline

Motivation

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction

3 Proposed Work

- Differential Predictive Rules Definition
- DP within the ILP Framework
- Randomizing Recall
- BI-RADS Terms Annotation

🕢 Wrap-Up

Preliminary Results

Proposed Work

Wrap-Up

BI-RADS Terms Annotation

Aim

Improve BI-RADS extraction from free-text

Current method maps words to concepts

Extend to term annotation

- Create first BI-RADS annotation tool
- Attempt new term/concept discovery
- Transfer method to other languages (Portuguese)

Preliminary Results

Proposed Work

Wrap-Up

BI-RADS Terms Annotation

Aim

Improve BI-RADS extraction from free-text

- Current method maps words to concepts
- Extend to term annotation
 - Create first BI-RADS annotation tool
 - Attempt new term/concept discovery
- Transfer method to other languages (Portuguese)

Preliminary Results

Proposed Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wrap-Up

BI-RADS Terms Annotation

Aim

Improve BI-RADS extraction from free-text

- Current method maps words to concepts
- Extend to term annotation
 - Create first BI-RADS annotation tool
 - Attempt new term/concept discovery
- Transfer method to other languages (Portuguese)

Proposed Work

Wrap-Up

BI-RADS Annotator Template

Proposed Work

Wrap-Up ●000

Outline

Motivation

- Differential Prediction (DP)
- Inductive Logic Programming (ILP)
- Applications
- 2 Preliminary Results
 - Predicting Hexose Binding Sites
 - DP for Invasive/In-Situ
 - BI-RADS Information Extraction

3 Proposed Work

- Differential Predictive Rules Definition
- DP within the ILP Framework
- Randomizing Recall
- BI-RADS Terms Annotation

🗿 Wrap-Up

Timeline

Fall 2010	Formally define DP rules Translate rules into Portuguese
Spring 2011	Randomize and test ProGolem recall Implement BI-RADS annotator
Fall 2011	Implement and test ILP-based DP methods Extract breast cancer DP rules
Spring 2012	Wrap-up work Write and defend thesis

Preliminary Results

Bibliography

H. Nassif, H. Al-Ali, S. Khuri, and W. Keyrouz.

Prediction of Protein-Glucose Binding Sites Using SVMs. *Proteins*, 77(1):121-132, 2009.

H. Nassif, D. Page, M. Ayvaci, J. Shavlik, and E.S. Burnside. Uncovering Age-Specific Invasive and DCIS Breast Cancer Rules Using ILP.

IHI'10, Arlington, VA, pp. 76-82, 2010.

- H. Nassif, H. Al-Ali, S. Khuri, W. Keyrouz and D. Page.
 An ILP Approach to Validate Hexose Binding Biochemical Knowledge. *ILP'09*, Leuven, Belgium, pp. 149-165, 2009.
- H. Nassif, R. Wood, E.S. Burnside, M. Ayvaci, J. Shavlik and D. Page. Information Extraction for Clinical Data Mining: A Mammography Case Study

ICDM-Workshop'09, Miami, pp. 37-42, 2009.

Summary

- First glucose-binding model
- Validate hexose-binding knowledge
- BI-RADS extractor
- First DP rules generation
- Formally define DP rules generation paradigm
- Implement DP rules within ILP
- Randomize ProGolem recall
- Improve BI-RADS extraction from free-text

Hexose Features

Atomic Feature	Values
Charge	Negative, Neutral, Positive
Hydrogen-bonding	Non-hydrogen bonding, Hydrogen-bonding
Hydrophobicity	Hydrophilic, Hydroneutral, Hydrophobic

AromaticHIS, PHE, TRP, TYRAliphaticALA, ILE, LEU, MET, VAL	Residue Grouping	Amino Acids
NeutralAsn, Cys, Gln, Gly, Pro, Ser, ThrAcidicAsp, GluBasicArg, Lys	Aromatic Aliphatic Neutral Acidic Basic	His, Phe, Trp, Tyr Ala, Ile, Leu, Met, Val Asn, Cys, Gln, Gly, Pro, Ser, Thr Asp, Glu Arg, Lys

Appendix B: Mammography

Atomic Chemical Properties I

PDB atom symbol	Residues	Partial Charge	Hydro- phobicity	Hydrogen Bonding
Amino acid oxygen atoms				
O OXT OE1, OE2, OD1, OD2 OE1, OD1 OG, OG1, OH	All amino acids All amino acids GLU, ASP GLN, ASN SER, THR, TYR	0 -ve -ve 0 0	HPHIL HPHIL HPHIL HPHIL HPHIL	HB HB HB HB HB
Amino acid carbon atoms				
C CA CB, CG, CD, CE	All amino acids All amino acids ALA, SER, THR, CYS, ASP, ASN, GLU, GLN, ARG, LYS, PRO	0 0 0	HNEUT HNEUT HNEUT	NHB NHB NHB
CB, CG, CD, CE CG1, CG2, CD1, CD2, CD1 CG, CD1, CD2, CE1, CE2, CZ, CG,CD1, CD2, CE2, CE3, CZ2, CZ3, CH2	LEÜ, VAL, ILE, MET LEU, VAL, ILE PHE, TYR, TRP	0 0 0	HPHOB HPHOB HPHOB	NHB NHB NHB
CG, CD2, CE1	HIS	0	HPHOB	NHB

Appendix B: Mammography

Atomic Chemical Properties II

PDB atom symbol	Residues	Partial Charge	Hydro- phobicity	Hydrogen Bonding
Amino acid nitrogen atoms				
N NE2, ND2 NZ NE1 NH1, NH2 ND1, NE2 NE1	All amino acids except PRO PRO GLN, ASN LYS ARG ARG HIS TRP	0 0 +ve +ve +ve 0 0	HPHIL HPHIL HPHIL HPHIL HPHIL HPHIL HPHIL HNEUT	HB NHB HB HB NHB HB NHB
Amino acid sulfur atoms				
SG SD	CYS MET	0 0	HPHIL HNEUT	HB NHB
Water and ions atoms				
O O1, O2, O3, O4 CA, MG, ZN	HOH SO4, 2HP CA, MG, ZN	0 -ve +ve	HPHIL HPHIL HPHIL	HB HB HB

SVM and RF Results

Property	RF	Feature Number	Error (%)	Sensitivity (%)	Specificity (%)	Support Vectors (%)
Charge	false	24	24.32	79.31	73.33	77.03
	true	5	14.86	86.21	84.44	44.59
Hydrogen	false	16	17.57	82.76	82.22	41.89
Bonding	true	3	14.86	82.76	86.67	47.30
Hydro-	false	24	16.22	72.41	91.11	65.57
phobicity	true	15	12.16	82.76	91.11	40.54
Residue	false	48	21.62	48.28	97.78	100.0
Grouping	true	19	09.46	93.10	88.89	41.89
Features	false	112	18.92	75.86	84.44	79.73
Combined	true	24	08.11	89.66	93.33	40.54

Age Cohorts

Subset	Invasive	In-Situ	Subset Total
Younger1	132	55	187
Younger2	132	55	187
Younger Total	264	110	374
Middle1	199	85	284
Middle2	199	85	284
Middle Total	398	170	568
Older1	200	66	266
Older2	201	66	267
Older Total	401	132	533
Grand Total	1063	412	1475

W

Comparing Automated and Manual Extraction

- Automated method superior to manual method (p = 0.024)
- Probabilistic interpretation of *F*-score with Laplace prior

		Actual	
Method	Predicted	Feature Present	Absent
Automated	Feature Present	211	5
	Feature Absent	10	4074
Manual	Feature Present	198	5
	Feature Absent	23	4074