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ABSTRACT
We propose a domain-adapted reward model that works alongside
an Offline A/B testing system for evaluating ranking models. This
approach effectively measures reward for ranking model changes in
large-scale Ads recommender systems, where model-free methods
like IPS are not feasible. Our experiments demonstrate that the
proposed technique outperforms both the vanilla IPS method and
approaches using non-generalized reward models.
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1 INTRODUCTION
Over the past decade, online advertising has undergone significant
transformations, particularly with the integration of Artificial In-
telligence and Deep Learning technologies. Leveraging the vast
amount of traffic managed by popular recommender services, even
minor adjustments to such recommendation models can signifi-
cantly affect business objectives. Understanding and predicting the
impact of such model changes in advance highlights the importance
of Offline Evaluation in large scale recommender systems [8].
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While offline evaluation of ranking models can be a trivial task
in traditional machine learning setups, it is a challenge in the con-
text of large-scale ad recommendation systems. In such setups
multiple models and various system components such as auction
mechanisms [7], content selection for organic feed and ads [2], pub-
lisher logic, and client-side app logic work together to determine
which ads are shown to users. The complexity of these systems
significantly affects model-free approaches like Inverse Propen-
sity Scoring (IPS) [3], as the propensity computation must account
not only for the model’s output, but also for all other factors that
contribute to ad display decisions.

Selection bias is another challenge for offline evaluation of large-
scale recommender systems [4, 6]. Offline evaluation uses labeled
historical data from the current production model to estimate the
performance of a new model that does not have any labeled data
from online activity. However, with a large inventory of ads, the new
offline model will often rank the ads differently than the current
online production model. The distribution difference between the
ads presented to users by the current production model and the
the ads that the new model would have presented can result in
biased offline reward estimates, making it challenging to accurately
predict online performance for a new model [5, 9].

Motivated by the challenges outlined above, we propose a new
domain-adapted reward model that works on top of an offline A/B
testing system to facilitate more accurate ranking model evaluation.
Unlike IPS, our approach eliminates the need to account for the
complexity of the ads system since the Offline A/B Testing simula-
tion layer handles this aspect. Our experiments demonstrate that
the proposed technique outperforms both the vanilla IPS method
and basic direct-method reward models.

2 METHODOLOGY
2.1 Overview
The high level setup for an offline counterfactual evaluation sys-
tem is shown in Figure 1 . It employs an offline serving simulator
that operates a separate instance for each target domain (i.e ads
recommended by a given ranking model). The simulator runs rec-
ommendation request under each domain. Following simulation,
the recommended ads for each corresponding target domain are
collected. Subsequently, we leverage the reward model to estimate
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Figure 1: Counterfactual evaluation setup

the expected reward for each domain. In the following sections, we
detail how to train such a generalized reward model to effectively
handle multiple domains.

2.2 Notation and set-up
Let 𝑋 ⊂ R𝑑 be a 𝑑-dimensional context space of user and request
features, 𝐴 ⊂ R𝑞 be a 𝑞-dimensional ad space, and 𝑌 ⊂ R be
a one-dimensional reward space (which may be a discrete set or
continuous interval depending on the use case).

Each recommendation model defines a policy which induces
a domain in the 𝑋 × 𝐴 space. We use 𝑆 and 𝑇𝑘 ∈ {𝑇1, . . . ,𝑇𝐾 }
to refer to source and target policies. Finally, we let 𝑝 (𝑦 | 𝑥, 𝑎)
be the conditional distribution of the reward given a particular
context and ad combination, which is assumed to be independent
of the choice of 𝑇𝑘 . The objective is to evaluate a set of K target
recommendation models denoted by 𝑇1, ..., 𝑇𝐾 in an offline setting,
using data generated by source policy 𝑆 .

2.3 Metric
Our goal is to correctly rank target policies, and therefore we need
the reward model to perform fairly across different domains. To
achieve this, we choose the coefficient of variance of recovery
(𝑅𝑒𝑐𝑐𝑣 ) as the main performance indicator for the reward model:

𝑅𝑒𝑐𝑐𝑣 =
𝑅𝑒𝑐𝑑𝑒𝑣

𝑅𝑒𝑐𝑎𝑣𝑔
, 𝑅𝑒𝑐 (𝑇𝑘 , 𝑆) =

�Lift(𝑇𝑘 , 𝑆)
Lift(𝑇𝑘 , 𝑆)

, (1)

where𝑅𝑒𝑐𝑑𝑒𝑣 is the average absolute deviation of𝑅𝑒𝑐 (.), and𝑅𝑒𝑐𝑎𝑣𝑔
is the average of 𝑅𝑒𝑐 (.) across all target domains. See appendix A
for lift definition and additional details.

2.4 Estimating Lifts Between Domains
We introduce a model based approach to estimate the lift between
two domains. Our approach focuses onmodeling the non-overlapping
regions between source and target domains and then using the
trained reward model to calculate the expected lift of the target
domain 𝑇𝑘 over the source domain 𝑆 (for each target domain 𝑘).
Related domain adaptation methods were explored in [1, 10] within
the context of the auction optimization problem. The details of the
reward model training are discussed in section 2.5.

We use 𝐷𝑆 = {(𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )}𝑛𝑖=1, a set of 𝑛 labeled source domain
samples, and 𝐷𝑇𝑘 = {(𝑥𝑖 , 𝑎𝑘𝑖 )}

𝑛
𝑖=1, unlabeled target domain data for

Figure 2: 𝑅𝑒𝑐𝐶𝑉 of each method used with synthetic data

the same 𝑛 samples, to estimate the lift as�𝐿𝑖 𝑓 𝑡 (𝑇𝑘 , 𝑆) =
1
𝑛

©«
∑︁

(𝑥𝑖 ,𝑎𝑖 ) ∈𝐷𝑇𝑘 ,𝑛
ℎ(𝑥𝑖 , 𝑎𝑖 ) −

∑︁
(𝑥𝑖 ,𝑎𝑖 ) ∈𝐷𝑆,𝑛

ℎ(𝑥𝑖 , 𝑎𝑖 )ª®¬ ,
(2)

where ℎ(.) is the reward model discussed in the preceding para-
graph. Because our offline evaluation setup sends the same requests
to all domains, as mentioned in section 2.1 and shown in Figure 1,
these datasets have the same sample size and sample contexts 𝑥𝑖 .
However, they differ in the ads they recommend, 𝑎𝑖 , and we only
have labels, 𝑦𝑖 , for the online source recommend model 𝑆 .

2.5 Reward Model Training
Let 𝑝𝑐 (𝑎 | 𝑥) be the probability of observing ad 𝑎 under context 𝑥
with policy 𝑐 . We define a weight

𝑤𝑘𝑎 =
𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) . (3)

𝑤𝑘𝑎 is used in the per sample weights for training a reward model
for all 𝐾 target domains by minimizing the following loss function
on the labeled 𝐷𝑆 :∑︁

(𝑥𝑖 ,𝑎𝑖 ,𝑦𝑖 ) ∈𝐷𝑆
𝐿[ℎ(𝑥𝑖 , 𝑎𝑖 , 𝜃 ), 𝑦𝑖 ]

×

𝐾∑︁
𝑘=1

|𝑤𝑘𝑎𝑖 − 1| + 𝛽
𝐾∑︁
𝑘=1
𝑘 ′>𝑘

|𝑤𝑘𝑎𝑖 −𝑤
𝑘 ′
𝑎𝑖
|
 ,

(4)

where 𝜃 is the model parameters and 𝛽 is a hyper-parameter con-
trolling the contribution of the term |𝑤𝑘

𝑖
−𝑤𝑘 ′

𝑖
|. This term controls

the deviation term of Recovery CV by ensuring that the reward
model performs equally across all domains, as detailed in Appen-
dix B. The |𝑤𝑘

𝑖
− 1| term emphasizes the non-overlapping regions

between target and source domains.

3 EXPERIMENTAL RESULTS
We report our findings on both synthetic and online experiment
results for a CTR prediction model. For the synthetic environment,
we generated domain policies, where each target domain or test
variant represents an incremental improvement over the source
domain or control variant. The reward function is a linear model
of the context and ad covariates, where the coefficients are drawn
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from a normal distribution based on the ad context vector values.
We train the baseline solely on the source domain data. We train our
proposed reward model using Section 2.5 weighted target domain
information. Figure 2 plots results from three target domains, and
shows that our proposed reward outperforms Baseline and IPS.

To evaluate reward models on real experiments, we explored
the utilization of a completed A/B test for a CTR prediction model.
The test included seven suggested variants that improved upon the
control. We used the actual lifts reported per variant as ground
truth for evaluating the reward models. Given the intractability of
propensity score weight in a complex recommendation systems,
we train an impression probability estimator per target domain
to estimate Eq 3 weights. The estimated weights are then used to
weight the source data 𝐷𝑆 , as in Eq 4, to train the proposed reward
model. Baseline is trained on 𝐷𝑆 without any weighting similar to
the synthetic experiment. Our proposed reward model showed a
17.6% improvement on the Recovery CV metric.
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Appendix A METRIC DETAILS
The metric of interest in our off policy evaluation for ad recommen-
dation models is the performance difference of the offline model
with respect to the online source model. We define a lift metric for
a target policy 𝑇𝑘 :

𝐿𝑖 𝑓 𝑡 (𝑇𝑘 , 𝑆) = 𝐸𝑝𝑇𝑘 [𝑦] − 𝐸𝑝𝑆 [𝑦] . (5)

The expected reward for target policies cannot be directly estimated
from the logged data, which brings us to the core problem: for off-
policy evaluation, we want to accurately estimate the lift of a target
policy in an offline setting. To reflect this use case, we define a
recovery metric to compare the performance of the reward model

for each target policy 𝐾 , 𝑅𝑒𝑐 (𝑇,𝑇𝑆 ) =
�Lift(𝑇𝑘 ,𝑆 )

Lift(𝑇𝑘 ,𝑆 ) , where
�Lift(𝑇𝑘 , 𝑆)

is the reward lift estimated by the reward model, and Lift(𝑇𝑘 , 𝑆)
is the realised lift . The recovery metric for a domain where the
reward model estimates the lift perfectly is 1.

Moreover, for accurate estimation of policy ranks, we need a
metric to perform fairly across all target domains. Therefore, we
define an aggregate metric across all target domains using the
coefficient of variance:

𝑅𝑒𝑐𝑐𝑣 =
𝑅𝑒𝑐𝑑𝑒𝑣

𝑅𝑒𝑐𝑎𝑣𝑔
, (6)

where

𝑅𝑒𝑐𝑎𝑣𝑔 (𝑇 1,𝑇 2, ..,𝑇𝐾 , 𝑆) =
1
𝐾

∑︁
𝑇 ∈[𝑇1,...,𝑇𝐾 ]

𝑅𝑒𝑐 (𝑇, 𝑆), (7)

𝑅𝑒𝑐𝑑𝑒𝑣 =
1
𝐾

∑︁
𝑇 ∈[𝑇1,...,𝑇𝐾 ]

|𝑅𝑒𝑐 (𝑇, 𝑆) − 𝑅𝑒𝑐𝑎𝑣𝑔 |. (8)

Here, 𝑅𝑒𝑐𝑑𝑒𝑣 and 𝑅𝑒𝑐𝑎𝑣𝑔 are the standard deviation and average of
𝑅𝑒𝑐 across all target domains.

Appendix B DERIVATION OF RECOVERY LOSS
B.1 Single-Domain Recovery Optimization
Let us look at the Recovery metric when there is one target domain
𝑇𝑘 . Using the definition of recovery from Eq 1 and the definition
for lift from Eq 5, we have 𝑅𝑒𝑐 (𝑇𝑘 , 𝑆) = 1 − 𝑟𝑑𝑖𝑓 𝑓 − �𝑟𝑑𝑖𝑓 𝑓

𝑟𝑑𝑖𝑓 𝑓
, where

𝑟𝑑𝑖 𝑓 𝑓 and �𝑟𝑑𝑖 𝑓 𝑓 are the true and estimated difference in rewards
between the target and source domains, respectively. Hence the
optimization goal is equivalent to minimizing |𝑟𝑑𝑖 𝑓 𝑓 − �𝑟𝑑𝑖 𝑓 𝑓 |. With
domain distributions, the distance can be further expanded as:

𝑟𝑑𝑖 𝑓 𝑓 − �𝑟𝑑𝑖 𝑓 𝑓 = (𝐸𝑝𝑇𝑘 [𝑦] − 𝐸𝑝𝑆 [𝑦]) − (�𝐸𝑝𝑇𝑘 [𝑦] − �𝐸𝑝𝑆 [𝑦])
= 𝐸𝑝𝑇𝑘

[𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥)] − 𝐸𝑝𝑆 [𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥)]
= 𝐸𝑝𝑆

[(
𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 1

)
(𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥)]

≈ 1
𝑁

×
∑︁

(𝑥𝑖 ,𝑎𝑖 ,𝑦𝑖 ) ∈𝐷𝑆
(
𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 1) (𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥).

(9)

It now becomes obvious that the prediction error | 𝑦 (𝑎𝑖 , 𝑥𝑖 ) −�𝑦 (𝑎𝑖 , 𝑥𝑖 ) | is weighted by (
𝑝𝑇𝑘 (𝑎 |𝑥 )
𝑝𝑆 (𝑎 |𝑥 ) − 1

)
, contributing to the overall

distance. In otherwords, samples (𝑎𝑖 , 𝑥𝑖 )with higher
(
𝑝𝑇𝑘 (𝑎 |𝑥 )
𝑝𝑆 (𝑎 |𝑥 ) − 1

)
are more important for optimizing 𝑅𝑒𝑐 (.).

B.2 Multi-Domain Optimization
For themulti-domain use-case, themetric to be optimized is𝑅𝑒𝑐𝑐𝑣 (.)
defined in Eq 6. The 𝑅𝑒𝑐𝑑𝑒𝑣 defined in Eq 8 can be minimized by
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minimizing 𝑅𝑒𝑐 between two target domains 𝑇𝑘 and 𝑇𝑘 ′ :

𝑅𝑒𝑐𝑑𝑒𝑣 =
1
𝐾

𝐾∑︁
𝑘

�����𝑅𝑒𝑐𝑇𝑘 −
𝐾∑︁
𝑘 ′

𝑅𝑒𝑐𝑇𝑘′

𝐾

�����
=

1
𝐾

𝐾∑︁
𝑘

����� 𝐾∑︁
𝑘 ′

𝑅𝑒𝑐𝑇𝑘 − 𝑅𝑒𝑐𝑇𝑘′
𝐾

�����
≤ 1
𝐾2

𝐾∑︁
𝑘

𝐾∑︁
𝑘 ′

��𝑅𝑒𝑐𝑇𝑘 − 𝑅𝑒𝑐𝑇𝑘′
�� .

(10)

Furthermore,

|𝑅𝑒𝑐𝑇𝑘 − 𝑅𝑒𝑐𝑇𝑘′ | =

������𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘 − �𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘

−
𝑟𝑑𝑖 𝑓 𝑓𝑡 ′

𝑘

− �𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘′
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘′

������
≈

������ 1𝑁 𝑁∑︁
(𝑥𝑖 ,𝑎𝑖 ,𝑦𝑖 ) ∈𝐷𝑆

[
1

𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘

(
𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 1

)
− 1
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘′

(
𝑝𝑇𝑘′ (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 1

)]
(𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥)�����

=

���� 1𝑁 𝑁∑︁
(𝑥𝑖 ,𝑎𝑖 ,𝑦𝑖 ) ∈𝐷𝑆

[
1
2

(
𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 1 +

𝑝𝑇𝑘′ (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 1

) (
1

𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘

− 1
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘′

)
+ 1
2

(
𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) −

𝑝𝑇𝑘′ (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥)

) (
1

𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘

+ 1
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘′

)
]
· (𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥)����

(11)

≤
���� 1𝑁 𝑁∑︁

(𝑥𝑖 ,𝑎𝑖 ,𝑦𝑖 ) ∈𝐷𝑆

1
2

[
����(𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) +

𝑝𝑇𝑘′ (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 2

) (
1

𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘

− 1
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘′

)
(𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥)����

+
����(𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) −

𝑝𝑇𝑘′ (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥)

) (
1

𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘

+ 1
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘′

)
(𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥)����] ����

(12)
Eq 12 follows from the triangle inequality. From it we can deduce

that
��𝑅𝑒𝑐𝑇𝑘 − 𝑅𝑒𝑐𝑇𝑘′

�� can be minimized by minimizing two separate
terms. The first is:

1
𝑁

𝑁∑︁
(𝑥𝑖 ,𝑎𝑖 ,𝑦𝑖 ) ∈𝐷𝑆

1
2

(
𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 1 +

𝑝𝑇𝑘′ (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 1

)
(

1
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘

− 1
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘′

)
(𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥), (13)

which is similar to reducing the recovery term for each domain
as discussed in Appendix B.1. The second term,

1
𝑁

𝑁∑︁
(𝑥𝑖 ,𝑎𝑖 ,𝑦𝑖 ) ∈𝐷𝑆

1
2

(
𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) −

𝑝𝑇𝑘′ (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥)

)
(

1
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘

+ 1
𝑟𝑑𝑖 𝑓 𝑓𝑡𝑘′

)
(𝑦 (𝑎, 𝑥) − �𝑦 (𝑎, 𝑥), (14)

emphasizes the influence of the error from samples whose ad
impression probability is different between target domains. We use
these two weights to derive the sample weights for our Eq 4 loss
function:∑︁

(𝑥𝑖 ,𝑎𝑖 ,𝑦𝑖 ) ∈𝐷𝑆
𝐿[ℎ(𝑥𝑖 , 𝑎𝑖 , 𝜃 ), 𝑦𝑖 ] ×

[ 𝐾∑︁
𝑘=1

����𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) − 1

����+
𝛽

𝐾∑︁
𝑘=1
𝑘 ′>𝑘

����𝑝𝑇𝑘 (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥) −

𝑝𝑇𝑘′ (𝑎 | 𝑥)
𝑝𝑆 (𝑎 | 𝑥)

���� ] . (15)
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