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Abstract

Statistical models for manifold-valued data per-
mit capturing the intrinsic nature of the curved
spaces in which the data lie and have been a topic
of research for several decades. Typically, these
formulations use geodesic curves and distances
defined locally for most cases — this makes it
hard to design parametric models globally on
smooth manifolds. Thus, most (manifold spe-
cific) parametric models available today assume
that the data lie in a small neighborhood on the
manifold. To address this ‘locality’ problem, we
propose a novel nonparametric model which uni-
fies multivariate general linear models (MGLMs)
using multiple tangent spaces. Our framework
generalizes existing work on (both Euclidean
and non-Euclidean) general linear models pro-
viding a recipe to globally extend the locally-
defined parametric models (using a mixture of
local models). By grouping observations into
sub-populations at multiple tangent spaces, our
method provides insights into the hidden struc-
ture (geodesic relationships) in the data. This
yields a framework to group observations and
discover geodesic relationships between covari-
ates X and manifold-valued responses Y, which
we call Dirichlet process mixtures of multivari-
ate general linear models (DP-MGLM) on Rie-
mannian manifolds. Finally, we present proof of
concept experiments to validate our model.

1. Introduction

The regression problem is amongst the most fundamental
statistical tools in data analysis. If z € X is a set of
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covariates and y € Y is a measured response variable,
the inference task is to identify the function ¢(-) such that
y = £(x) + €, where € is the noise term. Linear regres-
sion corresponds to the setting where £(+) is a linear func-
tion. Depending on other forms of ¢(-) and/or distributional
assumptions on the response variables, we obtain progres-
sively richer formulations such as logistic and Poisson re-
gression. Often, one wants to determine non-linear rela-
tionships between the response variable and the covariates.
While occasionally, applying a non-linearity to the output
of a linear function is sufficient, such models fall short of
characterizing arbitrarily shaped response functions — for
instance, a mixture of simple (e.g., linear) models which
pertain to clusters of the covariates which have similar re-
lationships to the response variable, y. One solution is to
impose a non-parametric Bayesian prior on a set of linear
models. A constructive example of this idea is the Dirich-
let Process Mixtures of Generalized Linear Models (DP-
GLM) (Hannah et al., 2011).

While the family of linear regression models is very well
studied, they are not directly applicable when the response
variables y do not live in a vector space. Various scien-
tific disciplines routinely acquire measurements where ¥ is
manifold-valued. For instance, the response variable may
be a probability distribution function, a parametric fam-
ily such as a multinomial, a covariance matrix or sam-
ples drawn from a high dimensional unit sphere. Such
data arise routinely in machine learning (Lebanon, 2005;
Ho et al., 2013b; Cherian & Sra, 2011; Sra & Hosseini,
2013), medical imaging (Cetingul & Vidal, 2011; Lenglet
et al., 2006) and computer vision (Srivastava et al., 2007;
Porikli et al., 2006; Cherian & Sra, 2014). Even when per-
forming a basic statistical analysis on such datasets, we
cannot apply vector-space operations (such as addition and
multiplication) because the manifold is not a vector space.
Forcibly assuming a Euclidean structure on such response
variables may yield poor goodness of fit and/or weak statis-
tical power for a fixed sample size. Driven by these motiva-
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tions, there is a rapidly developing body of theoretical and
applied work which generalizes classical tools from multi-
variate statistics to the Riemannian manifold setting.

Various statistical constructs have been successfully ex-
tended to Riemannian manifolds: these include regression
(Zhu et al., 2009), classification (Xie et al., 2010), margin-
based and boosting classifiers (Lebanon, 2005), interpola-
tion, convolution, filtering (Goh et al., 2009), dictionary
learning (Ho et al., 2013b; Cherian & Sra, 2011), and
sparse coding (Cherian & Sra, 2014). Further, projective
dimensionality reduction has also been studied in depth.
For instance, the generalization of Principal Components
analysis (PCA) via the so-called Principal Geodesic Anal-
ysis (PGA) (Fletcher et al., 2004), Geodesic PCA (Huck-
emann et al., 2010), Exact PGA (Sommer et al., 2013),
Horizontal Dimension Reduction (Sommer, 2013), CCA
on manifolds (Kim et al., 2014a), and an extension of PGA
to tensor fields, a Riemannian manifold with product space
structure (Xie et al., 2010). While these set of results sig-
nificantly expand the operating range of multivariate statis-
tics to the Riemannian manifold setting, methods that can
reliably identify non-linear relationships between covari-
ates and manifold valued response variables have not been
as well studied. Many of these constructions fit a single
model to the data, which is problematic if all of the data
are not within the injectivity radius (Do Carmo, 1992). By
allowing our formulation to characterize the samples as a
mixture of simpler (e.g., linear) models, we resolve this
limitation for complete, simply connected non-positively
curved Riemannian manifolds. Our nonparametric exten-
sion is however still valid (within the injectivity radius) for
other Riemannian manifolds, see (Afsari, 2011) for bounds
on injectivity radius.

Specifically, we propose a new Bayesian model to ex-
tend the mixture of GLMs on the manifold of symmet-
ric positive-definite (SPD) matrices using a Dirichlet prior.
The clustering effect of the DP mixture leads to an infi-
nite mixture of GLMs which effectively identifies proper
local regions (tangent spaces) in which covariates exhibit
geodesic relationship with manifold-valued responses. The
goal here is to provide a comprehensive statistical frame-
work for Dirichlet Process Mixtures Models where z lives
in Euclidean space but y is manifold-valued. Specifically,
to make our presentation concrete, we will study the setting
for the SPD(n) manifolds (Bhatia, 2009) while noting that
our techniques, carry through to other related Riemannian
manifolds which share similar geometric properties (i.e.,
complete, simply connected and non-positively curved).

Related Work. There are several research results in lit-
erature that are related to and/or motivate this work. Sepa-
rate from algorithms for multivariate statistics on manifolds
(Lenglet et al., 2006), a distinct body of literature corre-

sponds to statistical machine learning papers on nonpara-
metric Bayesian techniques. Particularly, DP mixture mod-
els for prediction are closely related to some of our results
and include the generalized linear models (Mukhopad-
hyay & Gelfand, 1997; Hannah et al., 2011), infinite SVM
(ISVM) via DP priors (Zhu et al., 2011) and DP multino-
mial logit model (dpMNL) (Shahbaba & Neal, 2009). Our
development is also loosely related to some old and new
work in statistics on matrix-variate distributions. We use
various basic concepts from the seminal book on this topic
(Gupta & Nagar, 1999), as well as more recent work in-
cluding distributions specifically related to medical imag-
ing (Schwartzman, 2006), matrix-stick breaking process
(MSBP) (Dunson et al., 2008), Dirichlet process mixture
models (DPMM) on the unit sphere (Straub et al., 2015),
SPD using Wishart distribution (Cherian et al., 2011) and
matrix-variate Dirichlet priors (Zhang et al., 2014). Fi-
nally, our work is inspired by the DP mixtures estima-
tion schemes in (Neal, 2000), which are related to Hybrid
Monte Carlo or Hamiltonian Monte Carlo (HMC) algo-
rithms (Duane et al., 1987; Neal, 2011). The reader will
shortly recognize that the heart of our algorithm is a new
HMC method for manifold-valued parameters, which may
be of independent interest. Note that the Riemann man-
ifold Langevin and Hamiltonian Monte Carlo (RMHMC)
and Stochastic gradient Riemannian Langevin dynamics
(SGRLD) methods have been proposed via a Riemannian
metric on the probability space (Girolami & Calderhead,
2011), but they are not directly applicable for parameters
on Riemannian manifolds — the setting considered here.

The main contributions of this work are: a) First, we
present a new class of non-parameteric Bayesian mixture
models which seamlessly combine both manifold-valued
data and Euclidean representations. b) We investigate dis-
tributions on the SPD manifold and propose a special-
ized HMC algorithm which efficiently estimates manifold-
valued parameters. ¢) We propose a new distribution to ob-
tain a pair of parameters for models on the SPD manifold
and its tangent space.

2. Preliminaries

General Linear Model. We start with the well-known
multivariate general linear model (MGLM). Given pairs
of covariates zz; € R? and response variables Y; € Rd/,
we solve, y, = 3° + ﬂlx% + ...+ ,def + €, where
(B’ Yy C R? are regression coefficients. It is known
that the MGLM model assumes that x; the covariates re-
late to y; the responses via a linear function. If desired,
one may apply non-linearity to the output but this cannot
be a direct function of the covariates. To address this lim-
itation and allow the response to be non-linearly related to
the covariates, we may write a modified version as,

y, =B+ Bixi + Bl +... + Bz +e (1)
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where {[)’Z }?:0 c R? are the unknown regression coef-
ficients for each . In this formulation, we allow each in-
stance to have its own regression parameters, which offers
advantages but creates an overfitting problem. The main
flexibility offered by (1) is that the nonlinearity can be
achieved by a mixture of an infinite number of linear mod-
els. On the other hand, fitting this model is ill-posed unless
the regression parameters are constrained. Fortunately, the
latter issue can be addressed by imposing a Dirichlet pro-
cess (DP) prior as in (Hannah et al., 2011; Zhang et al.,
2014). The DP mixture model is given by

where G is a base distribution and v is a concentration pa-
rameter. Using (2), a DP mixture of multivariate general
linear models (DP-MGLM) is simply obtained by plugging
in a d’-dimensional response Y into a DP mixture of gener-
alized linear models (DP-GLM) studied in (Hannah et al.,
2011; Mukhopadhyay & Gelfand, 1997). Specifically, we
assume that the covariates X are modeled by a mixture of
normal distributions, and that the responses Y are modeled
by MGLM:s conditioned on the covariates. The models are
connected by associating a set of MGLM coefficients 6,
with each mixture component 6,.. Let 6 = (6,,6,) be the
set of parameters over X and Y| X, and let G be a base
distribution on §. Then the DP-MGLM model, a special
case of (Hannah et al., 2011), is given by,
y;lei, 0y, ~ N(f/z? 0'12/)7 where §; = MGLM (x;,0y,)
|0z, ~ /\/’(p,zi,a'ii), where 0, = (uzi,aii)
0;|G ~ G, G ~ DP(Go,v), where 0; = (0x,,0y,).
3)
What if Y is manifold-valued? Observe that the MGLM
in (3) assumes that the response variable Y is in a vector
space. The main goal of this paper is to study the statisti-
cal inference task when Y are samples from a curved Rie-
mannian manifold. Here, even the most basic fitting (and
error distribution) assumptions are violated. For instance,
symmetric positive-definite (SPD) matrix-valued response
variables do not live in a vector space, and a linear combi-
nation in general may not yield an SPD matrix. The second
issue is that the likelihood function of MGLM, critical in
designing a sampling strategy for (3) is defined by a dis-
tance metric in the ambient (Euclidean) space. It ignores
the underlying intrinsic geometry of the manifold-valued
data. We will provide a solution to this problem shortly.

Basic Differential Geometry Notations. First, we intro-
duce some concepts and notations of differential geom-
etry (Do Carmo, 1992). On Riemannian manifolds, the
geodesic curve (shortest path) from y; to y; can be parame-
terized by a tangent vector in the tangent space at y; with an
exponential map Exp(y;, -) : Ty, M — M (mapping from
the tangent space to the manifold). The inverse of the expo-
nential map is the logarithm map, Log(y;, -) : M — T,,, M

(i.e., manifold to tangent space). Note that we will assume
that the key conditions needed for these maps to exist (Pen-
nec, 2006) are satisfied. The geodesic distance is measured
by the length of tangent vector. Also, in this paper we use
exp(-) and log(-) to denote matrix exponential and loga-
rithm respectively.

Let B € M be an anchor (base) point and let {V7 ?:1 C

T'p M denote tangent vectors. They correspond to 3° and
{B’}9_, resp. in (3). A model for MGLM on Riemannian
manifolds (Kim et al., 2014b) is,

d
y= Exp(Exp(B,X:Vjacj),e)7 4)
j=1

As briefly described above, DP-MGLM on Riemannian
manifolds will allow each example 7 to have its own regres-
sion parameters. That is, each example (x;,y,) € R? x M
has parameters (B;,V;). To reduce notational clutter,
we will use the short-hand Vi := Z?Zl VIixi, where

x € RY.

Geometry of SPD(n). We will present our ideas in
the context of DP-MGLM on the space of n X n sym-
metric positive definite matrices SPD(n). To do so,
we briefly describe some basic geometric concepts re-
lated to this manifold, see (Moakher, 2005; Bhatia,
2009) for more details. The tangent space of SPD(n)
is the space of m X n symmetric matrices, Sym(n).
When the manifold is equipped with a GL-invariant
metric, the geodesic distance between two SPD matri-
ces B and Y is d(B,Y)? = tr(log?(B~'/2Y B~1/?)).
The exponential map and logarithm map are given
by Exp(B,V) = BY?exp(B~Y?VB~Y/2)BY? and
Log(B,Y) = BY?log(B~Y2YB~'/2)B'/? (Moakher,
2005; Cheng & Vemuri, 2013).

3. DP-MGLM on Riemannian manifolds

In this section, we specify an end to end model for DP-
MGLM on the SPD manifold. To do this, we need a few
key technical ingredients:

Step (a). First, we need to model the cluster of covariates,
X which follows from an adaptation of existing work on
DP-GLM (Hannah et al., 2011).

Step (b). Next, we need to characterize the conditional
distribution P(y|z) specifically for the case where y €
SPD(n). This requires two key steps. i) We need to
specify the parameters for DP-MGLM for the SPD man-
ifold setting. In particular, we should identify which space
(i.e., the manifold) each parameter corresponds to when
y € SPD(n). ii) Then, we must make appropriate distri-
butional assumptions for the respective spaces so that the
follow-up inference scheme is both statistically sound and
computationally feasible.
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We first discuss Step (a). To model the relationship be-
tween x and y, we non-parametrically model the joint dis-
tribution P(z, y|0) = P(y|z, #)P(x|0), using a Dirichlet pro-
cess mixture (@ is a cluster model parameter). Within each
cluster, the relationship between y and x is expressed using
an MGLM. Note that the covariates X live in a Euclidean
space R?. The parameters for X are 6, = (u,,02), same
as in (3). So, we can model a cluster of covariates X by a
Gaussian distribution with parameters (p,, o2). The prior
for these parameters is given by a DP-prior.

We now describe Step (b). For the Riemannian setting, we
first give the corresponding expression for (3) for parame-
ters of the MGLM, i.e., §, = (B, V'), where B € SPD(n)
and V' € Sym(n)?. Here, Sym(n) denotes the space of
symmetric matrices of size n X n and we have d separate
V’s in V. Recall that in a GLM, noise is modeled as a
Normal distribution so that the Maximum Likelihood esti-
mate (MLE) minimizes the least squares error. In the cur-
rent setting, ideally, the MLE must minimize the geodesic
distance-based error. So, we need an analogous form (for
the Normal distribution) for manifold-valued y’s. The solu-
tion to this is to use the “generalized Normal” distribution
on the manifold (Cheng & Vemuri, 2013). Then, the max-
imum likelihood estimator of the MGLM turns out to be
equivalent to the minimization of a least squares geodesic-
distance error, given the covariance parameter 05. In the
next section, we will discuss explicit forms of the den-
sity function of the generalized Normal distribution and
the equivalence between the log likelihood function and
squared geodesic error. So, the joint distribution in one
cluster, i.e., F'(6;) in (2), is given by,

Y;'|a:i7 le ~ /\/51)])(%,0’2), where YAVZ = EXp(Bi7 Vlwz)

5
177,'0;51 NN(I“’117O’-’2EZ)7 Where 03’1 = (N:El?a-?h) ( )

where, N is a Normal distribution for z € R%, and Nspp
is the “generalized Normal” distribution for Y € SPD(n).
The next step is to define the base distribution G over
0 = (u,,02,B,V) where o, is assumed to be given (or
empirically estimated). To make it analytically feasible, we
use a Normal (or log normal) distribution.

/l/ac‘y/m ago ~ N(MOv 0(2))7 10g(0’i)|Mg—, EO‘ ~ N(M0'7 Eg)
B ~ Nseo(pig,05), V ~ Nsym(pv, o)?,
(6)
where Ngyp is a symmetric matrix-variate Normal distribu-
tion over V' € Sym(n) defined later in (8).

Remark. For a SPD matrix-valued variable B, other dis-
tributions such as log normal, Wishart or inverse Wishart
distribution can also be used within GGy. However, these
distributions do not necessarily yield a sample B around
mean or mode of the distribution with respect to a GL-
invariant metric. So, if one has knowledge of a highly
probable B (e.g., the Fréchet mean) and its neighbors w.r.t.

the geodesic distance, then a log Normal or the generalized
Normal distribution in (9) is more suitable. Using a log
Normal distribution is useful because it is easier to sample
(compared to generalized Normal). However, the Jacobian
of the matrix exponential varies as a function of the sample
location, which makes it harder to deal with the derivative
of its log likelihood. We provide candidate distributions for
the base distribution over Sym(n) and SPD(n) and the cor-
responding density functions and their log likelihood in the
extended version of this paper, which are useful in deriving
the final HMC algorithm.

4. Posterior Sampling

In this section, we describe our proposed method for pos-
terior inference. To place our contribution in context, we
first summarize the conventional approach and then the key
modifications needed.

If the base measure Gy is conjugate, then it yields an effi-
cient sampling procedure called the “collapsed Gibbs sam-
pling” (Neal, 2000). Unfortunately, the distributions in (6)
are not known to be conjugate. To address the above prob-
lem, we instead use Gibbs sampling with auxiliary parame-
ters by adapting Algorithm 8 in (Neal, 2000). This requires
sampling cluster parameters for each cluster such that the
distribution remains invariant — in our setting, this is sim-
pler for 6, = (u,, o2) but more involved for 6, = (B, V).
For 60,., we use a simple slice sampling for updating the pa-
rameters (Neal, 2000). Updating the regression parameters,
6, is more challenging. This is because while slice sam-
pling can be performed for each dimension independently,
this is not true for the manifold-valued B. So, for a more
effective sampling, we generalize the HMC method, used
in Dirichlet process mixtures of multinomial logit model
(dpMNL), a special case of DP-GLM (Hannah et al., 2011;
Shahbaba & Neal, 2009).

The HMC algorithm needs to be generalized for the
MGLM on Riemannian manifolds. Note that our formula-
tion here is distinct from the Riemann manifold Langevin
and Hamiltonian Monte Carlo (RMHMC) technique in
(Girolami & Calderhead, 2011), which is Riemannian in
the sense that it treats the joint probability space of the
data as a Riemannian manifold. This is done by defining
a Riemmanian metric (e.g., the Fisher-Rao metric) and the
negative Hessian of the log-prior. However, the data itself
are not assumed to lie on a manifold.

When the parameters lie in Euclidean space. Recall
that conventional rejection sampling (such as Metropolis-
Hastings) suffers from a low acceptance rate. However,
HMC provides an ergodic Markov chain capable of achiev-
ing both large transitions and high acceptance rate. The
underlying theory of HMC relies on Hamiltonian dynam-
ics. Hamiltonian dynamics operates on a d-dimensional
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position vector ¢ and a d-dimensional momentum vector
p, so that the full state space has 2d-dimensions. For
HMC, we usually use Hamiltonian functions written as
H(q,p) = U(q)+K(p). Here, U(q) is the potential energy
and K (p) is the kinetic energy. Generally, the posterior
distribution for the model parameters is the usual object of
interest and hence these parameters take the role of the po-
sition, ¢. The potential energy is U(q) = log[n(¢)L(¢|D)],
where 7(q) is the prior density, and L(g|D) is the likeli-
hood function, given the data D. The kinetic energy is de-
fined by K(p) = p’ M~1p/2, where, p is the auxiliary
variable which can be interpreted as momentum and M is
the “mass matrix”. HMC proposes transitions § — 6%,
which are then accepted with probability based on Hamil-
tonian functions min{1, exp(H (¢, p) — H(¢*, p*)}, where
q* and p* are proposed parameters and their momentum
respectively (Neal, 2011).

Manifold setting. Defining the potential energy function
for the HMC algorithm is simple — we can use the negative
log of the joint probability. To define the kinetic energy, we
must account for manifold-valued parameters; B € M for
the intercept and a set of tangent vectors V' for the slope.
To this end, the following description provides solutions
to the main questions, (a) How to define the change of
parameters B and V'? (b) How to update the parameters?
(c) How to transport objects (such as momentum) to the
appropriate tangent space? (d) How to sample the initial
momentum?

First, we define the potential energy. To do so, we intro-
duce the explicit form of probability density functions. The
density function of the Normal distribution as a prior over
Sym(n) (definition 3.1.3 in (Schwartzman, 2006)) is

(Vi B) = exp (=3ul((V = w)B)) @)

where Z = (271)%/2| B|("*1)/2 | B| is the determinant of B
and ¢ = n(n + 1)/2. Also, the simpler version (definition
3.1.4) in (Schwartzman, 2006)) is

foym(V pv, 0%) =

®)
Next, to define the likelihood of y € SPD, we introduce an
explicit form of the generalized Normal distribution.

1 d(y7 My)2)
Z(phy, 0y) oxp <_ 202 ©)

= [y exp (—%) dy. Here, it
turns out that Z(y,,0,) is constant w.rt. g when M is
a symmetric space (Fletcher, 2013). So, the negative log-
likelihood of each cluster c takes the form,

+ 5 QZd (i, 9i)°

Ty i€c
(10)

fSPD(y;,uyvO';) =

where Z (1, 0y)

—log L(67|D.) = n.log Z(oy)

mexp< % 2tr[(v wy) }),

where §; = Exp(B, Vx;), ¢ is a cluster, n. is the number
of its elements. Interestingly, because the normalization
factor is constant, maximizing the log likelihood reduces
to minimizing the least squares error. We can now define
our potential function as

U(B,V):= log fsep(B) — 10g foym(V)
1D
where E(B,V) := >, d(y:,9:)*. We must now account
for the change of parameters. Notice that the change of
manifold valued B € M is represented by a tangent vec-
tor B € TpM. However, the change of tangent vectors,
V, live in Ty (T’ M) (a tangent space of a tangent space).
Fortunately, the natural isomorphism Ty (Tp M) = T M
allows us to let V be in TpM (Fletcher, 2013). By con-
struction, the priors for B and V' are Gaussian and so the
log of the prior density functions are quadratic forms whose
derivatives can be obtained analytically. As described in

the extended version, these are given by,

1
—FE(B,V)—
S E(B,V)

N
VU ~ —— Z Iy, —Log(i,y:) — Vi log fsep(B)
y i=1
N .
ViU = _7 ylﬁ‘BLOg (9i,yi) — Vi log fsym(V7)
y i=1

where I is the parallel transport operation.

Remarks. The least squares loss function is defined on
a SPD manifold. If one uses the prior distribution over
B which is defined in a Euclidean space instead of the
generalized Normal distribution we use, then the gradi-
ent with respect to B needs to be separated into the
derivative, V g E/, along the curved surface (called covari-
ant derivative) and the derivative along the ambient space
V g log fspp. Technically, these are not in the same space,
which can be verified by comparing their respective up-
date schemes. For instance, the next iterate B via Vg FE
is Exp(B, €V g E) whereas the next iterate B suggested by
Vglog fspp is B = B + Vplog fspp. Fortunately, for
V', the update schemes are identical. Both use the simple
addition operation since Vy; E and Vy/; log f/; lie in vec-
tor spaces. A minor issue here is that their metrics might
be different since Vy,; F lies in T M with a locally de-
fined inner product (U,V)p = tw(UB~'V B~1) whereas
Vi log fsym(V7) € Sym(n) with the natural inner prod-
uct (U, V) = tr(UV) in Euclidean space (and is indepen-
dent of B) where a symmetric matrix-variate normal distri-
bution is defined as (8). So, their scales might be different.
In addition, there is no reason to expect that the samples
drawn from this distribution in (8) are normally distributed
in an arbitrary tangent space at B with respect to the GL-
invariant metric. We provide a cleaner solution next.
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Algorithm 1 HMC algorithm for DP-MGLM on Riemannian
manifolds

1: Input: (Beur, Veur) € M X T M™, Leapfrog parameters

€ c R++, L S Z++

2: Output: (Brext, Vnest) € M X TgM™

3: Sample (BCM, ch«) € Tp M x Tg M™ from independent

normal distribution w.r.t. Riemannian metric.

4: Initialize (B, V, B, V) < (Bcur, Vcur, Beur, V cur)

5 B+ B-£5VpUB,V)andV + V — £VyU(B,V)
6: forie {1,---,L} do
7.
8

B' « B, B < Exp(B,eB),V « V + €V

(V,B,V) <+ (I'p'gV,I'p.gB,I'p,5V)

/* Parallel transport '#/
9: ifi!=L then ) )
10: B+ B—eVeU(B,V)andV «+ V —-eVyU(B,V)
11:  endif
12: end for ) )
13: B+ B—-5VU(B,V)andV <V — 5VvU(B,V)
14: Accept (B, V') with probability

min[l, EXP(H(BC'LLT, ch'r, Bcu'r, ch'r) - H(Ba Va Ba V))}

4.1. Defining an alternative distribution for both the
base point B and a set of tangent vectors V'

As a solution, we propose a new distribution for (B, V) €
M x T M by conditionally combining two distributions.

Blup, 0% ~ Nseo(Blus,08), V|pv, B ~ Nsym(V|pv, B)
(12)

This is more of a “Normal like” distribution for both B
and V' w.r.t a GL-invariant metric. Lemma 4.1 (proof in the
extended version) shows,

Lemma 4.1. Let (B, V) € SPD(n) x Sym(n) be a sample
drawn using (12), then V' is Normally distributed w.r.t. a
GL-invariant metric at the tangent space TgM at B. For
each B, the probability density function of V is propor-
tional to exp(—3 ||V ||%)) at Tg M, when py = 0.

Note that it is not exactly a Normal distribution because of
the dependence on |B|. More details of these distributions
are provided in the extended version. With these compo-
nents, our final HMC algorithm is given by Algorithm 1.

Some additional details. We use the exponential map
for parameter updates for B € SPD(n). For all pa-
rameters in the vector space (1T M), the vector addition
operation suffices. However, once the base point B,;q
changes to a new B, then the objects B, V, V' do not be-

"Parallel transport: Let M be a differentiable manifold with
an affine connection V and [ be an open interval. Letc: I — M
be a differentiable curve in M and let V; be a tangent vector in
Te(ty)M, where to € I. Then, there exists a unique parallel vec-
tor field V along ¢, such that V' (¢o) = Vj. Here, V (¢) is called the
parallel transport of V (to) along c. We denote the parallel trans-
port from y to y’ of V as T',_,,/V. Intuitively, parallel transport
of Vp along curve c can be interpreted as the parallel translation
of V on manifolds preserving the angle between V (¢) and c.

long to the tangent space of B anymore. So, they need
to be parallel transported from the old anchor point B4
to the new anchor point B. Then, the kinetic energy at
each time point can be properly measured by the sum of
squared norms of the tangent vectors in the new tangent
space at B. Finally, we point out that the initial momen-
tum is set by finding a random direction in the tangent
space at B; its magnitude is given by the length w.r.t.
the Riemannian inner product. Let D denote the mea-
surements (or data). For the prediction of response Y,
the conditional distribution of Y| X = z,D is f(Y|X =
2,D) ~ £ 3°% | f(Y|X = z,6)). Thus, the prediction
EY|X = z, D] = E[E[Y|X = z,0]|D] is approximated
by the posterior samples {9(5) le. Since Y is on M, the
expectation is the Fréchet mean. This can be updated in an
online manner for the SPD manifold (Ho et al., 2013a).

5. Experiments

To evaluate the proposed model, we conduct a set of exper-
iments on synthetic and real-world data.

5.1. Experiments on synthetic data

DP mixtures of MGLM on SPD. We first evaluate
whether our algorithm can simultaneously find a set of
geodesic relationships between the covariates and the
manifold-valued response variables. We follow the ex-
perimental protocol from (Hannah et al., 2011) which is
broadly used in the literature, but with the distinction that
now we have Y € SPD(n). To do this, we simulate data
from multiple geodesic curves which are parameterized by
the covariates — this gives heteroscedasticity properties
where DP-GLM approaches are known to be effective. The
number of “local” models in this synthetic data varies be-
tween 2 to 5. Our sample size is 300. We perform a few
hundred realizations where the number of MCMC samples
in each realization is 1000. We set the burn-in period to
100 epochs. When the data is sampled from a single local
model, one should expect both a manifold-valued MGLM
and our model to perform well and estimate the parame-
ters correctly. However, when the samples are drawn from
a mixture of multiple local models, the flexibility offered
by our framework must yield improvements. Since visu-
alizing the model fit on the SPD manifold is not possible,
we perform a Principal Geodesic analysis (PGA) to pick
a prominent direction of variance and project the original
data onto this axis for evaluation. As shown in Fig. 1
(multiple datasets), in nearly all cases, the model provides
a good fit and is able to identify a very good estimate of the
real local relationships in the data, exactly as desired.

For quantitative evaluations, we compute the mean squared
error (MSE) as well as the R-squared statistic, which are
standard measures to evaluate goodness of fit. As shown
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Figure 1. The figure shows the models fitted in the PGA axes space versus the covariates. The prediction of DP-MGLM is shown using
a single sample from the posterior, 6. To visualize the response variable Y € SPD(3), we project the variables onto the axis obtained
by PGA (y-axis). The z-axis is the covariate € R. Red and blue correspond to our predictions and the measurements respectively.

in Table 1, at least in part due to the locality problem we
described to motivate the paper, our DP-MGLM achieves
much smaller MSE while consistently obtaining better R?
statistic, compared with a manifold-valued MGLM (and a
slightly improved variant which centers the covariate). Our
framework does not require centering the covariates.

Estimating Models for Spatially-based Covariates. A
number of applications motivating the need for statistics
on manifold-valued responses come from image analysis.
To evaluate our model in this setup, we synthesized an ex-
periment where the responses form a distribution on SPD
whereas the corresponding covariates are grid points on an
image lattice. The ability to estimate such models faith-
fully offers numerous advantages including clustering and
the ability to draw samples from the estimated model, e.g.,
for performing downstream hypothesis tests. We test these
scenarios next in the context of estimating E(y|x).

Our generating function is a mixture of models with spa-
tially localized support. Each voxel is a manifold-valued
measurement ¥ € SPD(3) (such as in diffusion tensor
imaging) whose grid locations are the covariates. For ease
of visual assessment, each perceptual region in Fig. 2
(left column) is generated by a single function. The top-
left patch has two regions (the circle at the center and the
background). Within the background region the measure-
ments change gradually depending on horizontal coordi-
nate. The vertical coordinate is a nuisance variable. The
center left patch also has two functions and simulates di-
verging flow streams. That is, the orientations across the
two local models are the same at the bottom and as the ver-
tical coordinate increases, the orientations of the ellipses

Table 1. Mean squared errors and R-squared (R?) statistic w.r.t
the intrinsic metric on SPD(3) for eight synthetic datasets.
MGLMc denotes MGLM with centered covariate .

Mean Squared Error R?
Model Train Test Train Test
DP-MGLM | 1.18 £0.99 | 1.19 +1.04 | 0.80 +0.06 | 0.79 + 0.08
MGLMc 3.40 £2.43 3.28+£2.14 | 0.39+0.16 | 0.38+0.16
MGLM 4.94 + 3.40 4.80+3.09 | 0.10+£0.04 | 0.10£0.04
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Fzgure 2. (Rows 1-2, co] 1) Each voxel is a SPD(3) matrix; the
covariates are the grid positions (horizonal, Vertlcal coordlnates).
(Rows 1-2, col 2) shows a clustering result. (Row 3) is a glyph
figure where the global mixtures of local models is “ICML”. (Row
4) A clustering based on the posterior samples 6.

change (conditioned on which of the two models they came
from). For both these examples, our estimated model ac-
curately uncovers the local geodesic relationships and we
obtain a clustering as a result. The assignment (from a
single sample of the posterior distribution) is shown in the
right column (first two rows). Note that since the two mod-
els move apart slowly (bottom to top), a simpler clustering
scheme based on the product space of covariate « and the
responses, e.g., k-means, and DPMM does not capture the
structure without significant parameter adjustment though
we acknowledge more specialized clustering methods can
be used (Medvedovic & Sivaganesan, 2002). Finally, we
ran a qualitative experiment where the measurements to-
gether with the covariates corresponds to a visual concept,
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Figure 3. The top two rows show 6 sample faces with ages rang-
ing from 20 ~ 80. The bottom row (left image) shows 40 land-
marks (indexed by numbers) on an example image . The second
image of the bottom row shows correlation magnitude of the land-
mark’s variation with age as a heat map. Best viewed in color.

see Fig. 2 (third row). The goal here was to assess whether
additional samples from the posterior distribution visually
correspond to the same concept. We noticed that while the
samples are smoothed, the clustering indices on these sam-
ples shown in Fig. 2 (fourth row) suggest that our estimated
model generalizes well.

5.2. Experiments on real-world data

Next, we conduct an experiment on facial datasets which
are derived from the important biometric task of face recog-
nition and age estimation. In particular, we attempt to as-
sess: how do facial landmark appearances evolve with age?
Which age ranges/periods are most correlated with which
face regions? This problem is important for facial age esti-
mation (Guo et al., 2013). Since we expect that changes in
different face regions will likely correspond to different age
periods, it exhibits nice heteroscedasticity properties. We
used the Lifespan database (Minear & Park, 2004), which
contains 580 subjects with ages ranging from 18-93. To
avoid the influence of facial expressions, we focus only on
the “Neutral” subset which contains images without facial
expressions and human labeled landmark points are pro-
vided (Guo et al., 2013). These include 40 points over-
all, see Fig. 3. We used the covariance descriptors com-
mon in image processing, computed from the feature vec-
tor [r, ¢, Ryc, Gre, Bre, I, 1], where r (and ¢) is row (and
column) index, R, G, B are colors and I,., I. are intensity
derivatives. The covariance matrix for an image patch (size
20 x 20) centered at each landmark is a 7 x 7 SPD, the re-

sponse variable, Y € M. The age of the person associated
with each image is the covariate, x.

We run Algorithm 1 on each landmark. The algorithm pro-
vides a set of local models for each landmark; here, these
local models correspond to age ranges. In the manifold set-
ting, each ‘local’ cluster (or model) can be interpreted as
a geodesic explaining the relationship between the covari-
ates (age range) and evolution in the covariance descriptor
in that period. For each landmark, there are multiple clus-
ters — we simply measure the length of the corresponding
tangent vectors and pick the median as the representative.
After normalization to [0, 1], we show it as a color coded
heat map in Fig. 3 shown in the bottom right of the fig-
ure. We see that our algorithm found that regions around
the center of the eye (numbered as 2 ~ 5, 7 ~ 10) and
nose (27 ~ 29) exhibit no meaningful relationship with
age (shown in blue). On the other hand, regions around the
brow (12 ~ 18), cheeks (34 ~ 40) and forehead (21 ~ 23)
exhibit a much stronger relationship (e.g., wrinkles) shown
in red. This is consistent with prior findings (Montillo &
Ling, 2009), which identified similar landmarks as the most
distinguishing identifiers for age.

6. Conclusion

We have presented a novel algorithm for Dirichlet pro-
cess mixtures of multivariate general linear models on Rie-
mannian manifolds. The formulation globally extends the
locally-defined parametric models on Riemannian mani-
folds using a mixture of local models, thereby solving the
“locality” problem pervasive in various parametric formu-
lations for a class of Riemannian manifolds. We derive spe-
cific sampling schemes for the SPD manifold but the ideas
should apply to other manifolds with similar geometries
(e.g., non-positively curved). We also studied and proposed
a new distribution to get a pair of parameters for models on
the SPD manifold and its tangent space. On the algorithm
side, we derived a specialized HMC algorithm which effi-
ciently estimates manifold-valued parameters, which may
be of independent interest. While our development here
is primarily on the theoretical side, we believe that the pro-
posal will lead to practical sampling and inference schemes
for various problems in medical imaging, machine learn-
ing and computer vision that involve statistical tasks on the
SPD manifold.
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(Supplementary Material )

1. Introduction

We provide the proof of Lemma 4.1. in the main paper. Additional discussion with specific forms of candidate distributions
for priors and their derivatives are given. We also present more details of the implementation.

2. Proof of Lemma 4.1

Lemma 4.1. Let (B,V) € SPD(n) x Sym(n) be a sample drawn using the expression in Eq. (12), then V is Normally
distributed with respect to a GL-invariant metric at the tangent space TgM at B. In that, for each B, the probability
density function of V. is proportional to exp(—3||V[|%)) at Tg M, when iy = 0.

Proof. We will derive an expression for the density. By inspection, we have

/ / F(Bipp.0%) f(Vi oy, BYAVdB = / (B s o) [ / f(V;uv,B)dV] dB =1 )

Let ¢ = n(n+1)/2. Given the density functions Eq. (7) and (8) in the main paper, the density of the proposed distribution
fspp,sym((B, V)| 18, 0%, y) is the product of density functions given by

FBY w,ahov) = gty ow (= gz d(Bons)* ) Gegarangrars o0 (5l = m)B))
= Gy 0 (5 (B.19)* ) e o0 (—51V — vl ) )
= 1(Bs15,0%) Gsarprre o (5 IVI ) when oy =0 € Sym(n)
where the inner product of U,V € Tg M is (U, V)p = tr(B~Y/2UB~1V B~1/2), O

3. Distributions and their derivatives for DP-MGLM on SPD manifolds

3.1. Prior distributions for SPD matrix

Wishart distribution over n x n SPD X with V a (fixed) positive definite matrix and df degrees of freedom.

1 df —m—1 1
XV, df) = —ar— X772 exp (—tr V—1X)>
A= 2"
df —n—1 1 1 (3)
log f(X|V,df) = —log Z(V,df) + — log det(X) — itr(V X)
0 df-n—1__; 1__,;
g f(X|Vdf) = T - oy

Since X is a symmetric positive definite matrix, we have 8% logdet(X) = X!, see A.4.1 in (Boyd & Vandenberghe,
2004). Also we know that a%tr(AX Ty = A (Petersen & Pedersen, 2012). So we can ensure that the derivative is a
symmetric matrix.
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Generalized normal distribution over n x n SPD X with (fixed) mean positive definite matrix M and o € R.
f(X|M, o) ! ! d(X, M)?
0)=———exp|—=—
)T 7, 0) TP\ T 202

log f(X|M,0) = —log Z (o) — 2}7d(X, M)? “)

Log(X, M
Vi log f(X|V,n) = 208X M)

g

The second equality holds since Z is constant w.r.t M on SPD manifolds. Note that this derivative is in 7, M.

3.2. Prior distributions for symmetric matrix

Normal distribution 1. (definition 3.1.2 in (Schwartzman, 2006)) over X € Sym(n) with mean matrix 0 and covariance
matrix I with respect to Lebesque measure on R? is given by

) =

)= Gy @bl 5 (X%) )

2

where ¢ = n(n + 1)/2. This is equivalent to multivariate normal distribution with the appropriate reshaping function. For
example, for p = 3, Z is constructed as
N(0,1) N(0,1/2) N(0,1/2)
7= * N(0,1) N(0,1/2) (6)
* * N(0,1)

Normal distribution 2. (definition 3.1.3 in (Schwartzman, 2006)) over X € Sym(p) with mean matrix M and covariance
matrix X

1 1 —1\2
) A2 exp (—Ztr((X - M)X7) )

log f(X|M, %) = —log Z(%) — %tr[((X — M)Y™H?]

f(X; M%) =

9 10 _ _ 7
a—Xlogf(X|M7Z) = —53x" (X = M)ZHX — M)E1] @
= _%aix [(XE' XS —20(S7 ' METIX) + a(METMETY)]

=Y M-x)x!
The last equality is obtained by ;% tr(AXT) = A and - tr(AXBX) = ATXTBT + BTXTAT.

We showed above few candidates for prior distributions over B and V. In our implementation, we used the (8) and (9) in
our main paper. As we mentioned in the main paper, (12) can be used for Algorithm 1 in the main paper.

The derivative of (11) in the main paper is obtained by the derivative of MGLM (Kim et al., 2014) and the derivatives of
distributions fspp and fsym.

4. Intrinsic mean and prediction

For prediction, we average the Monte Carlo samples of the expectation conditioned on 6. In general, there is no notion
of addition on manifolds. So instead of arithmetic mean, by computing the intrinsic mean of MCMC realizations on
manifolds, the prediction can be obtained as we discussed in section 4. in our main paper. In the main paper, we call the
intrinsic mean “Fréchet mean”. Also, it is the same as the Karcher mean for a geodesically complete manifold SPD(n).
For more discussion about intrinsic means, we refer (Afsari, 2011). The Karcher mean is given by

N
i—a . 'd2 i),
] rg;relﬂ;wz (v, vi)
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where the w; is weight of data y; € M.

Karcher mean is obtained by Algorithm 1, where « denotes the step size (o = 1 was used).

Algorithm 1 Karcher mean

Input: y1,...,ynvn € M, «

Output: g € M

Yo = Y1

while || Zi\; Log(Jk, yi)|| > € do
Ay =& 57 Log(Fk, vi)
Ur+1 = Exp(Uk, AY)

end while

5. Comparison with RMHMC

In our main paper, we briefly discussed RMHMC. We compare our algorithm with RMHMC. First, we revisit some detail
of HMC algorithm. HMC algorithm can be implemented by Leapfrog (or Stromer-Verlet) integrator (Duane et al., 1987).

p(t+¢€/2) = p(t) — (€/2)V4U(q(t))
q(t +€) = q(t) +eM'p(t +¢/2) (8)
p(t+e€) =p(t+e€/2) —(e/2)V4U(q(t +¢€))

HMC algorithm requires a prefixed number of step (L) and predetermined step size e for leapfrog integrator. In the special
case where only one deterministic step is used, it is called the Langevin algorithm, which is a discrete time approximation
to the Langevin diffusion process (Ishwaran, 1999). The performance of HMC is dependent on L and e. It is known that
when L is reasonably large, the benefits of hybrid Monte Carlo can be fully exploited (Neal, 1995). RMHMC elegantly
addresses this by providing automated adaptation mechanisms.

RMHMC uses the sum of expected Fisher information matrix and the negative Hessian of the log-prior as the metrlc tensor
G(6) instead of M in equation 7 in our main paper. In other words, RMHMC uses ||0]|3 = §7G(# (0 )8 = pT G(0) ' p, where
p = M. So the kinetic energy is naturally defined by the half of the square norm of each # (Girolami & Calderhead,
2011). It adopts to the local geometry of joint probability. It allows position-specific distance metric which may yield more
effective transitions within MCMC scheme. However that algorithm is not specifically designed for the manifold-valued
parameters. It updates parameters by the vector-space operations which is not directly applicable for manifold values. For
more details, we refer the reader to (Girolami & Calderhead, 2011).

6. Hamiltonian function for DP-MGLM

For our DP-MGLM, the Hamiltonian function is written as
H(B,V,B,V)=U(B,V)+ K(B,V) ©)

The potential function is given as

1
U(B,V):= ;E(B, V) —log fsep(B) — 10g foym(V) (10)

where E(B, V) := 13 d(yi,9:)*. The Kinetic energy of DP-MGLM is defined by

. 1&
K(B,V):= *||B||B+ ZHV |5 an

j 1

where the covariate is in R%.
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