Latent Variable Graphical Model Selection using Harmonic Analysis: Applications to the Human Connectome Project (HCP)

OBJECTIVE

Identify conditional dependencies between random variables represented as an undirected graphical model despite unknown number of (possibly many) latent variables.

MAIN IDEA

- Problem: Dense sample precision matrix (inverse covariance matrix), especially with high dimensional data with small sample sizes.
- Challenges: Must account for the effect from a large number of latent (unobserved) variables.
- Solution: Perform multi-resolution analysis of the sample precision matrix to decompose it into dense component (low-frequency) and sparse component (high-frequency).

Figure : Left: effect of latent variables causing dense precision matrix, Right: removing the effect of latent varibles returning sparse precision matrix.

PRELIMINARY: WAVELET TRANSFORM

- Transformation using wavelet bases localized oscillating bases in both time and frequency.
- ► Wavelets behave as *band-pass* filters in the frequency domain.
- A mother wavelet $\psi_{s,a}$ is a function of scale s and translation a as

$$\psi_{s,a}(x) = \frac{1}{s}\psi(\frac{x-a}{s})$$
(1)

Forward wavelet transform using ψ yields wavelet coefficient $W_f(s, a)$:

$$W_f(s,a) = \langle f, \psi_s \rangle = \frac{1}{s} \int f(x) \psi^*(\frac{x-a}{s}) dx$$
(2)

• Inverse wavelet transform (with $C_{\psi} = \int \frac{|\Psi(j\omega)|^2}{|\omega|} d\omega < \infty$):

$$f(x) = rac{1}{C_{\psi}} \iint W_f(s, a) \psi_{s,a}(x) \mathrm{d}a \mathrm{d}s$$

CONSTRUCTION OF WAVELET IN NON-EUCLIDEAN SPACE

- Ambiguity of scale and translation of ψ in the non-Euclidean space, (represented as a graph with vertices and edges).

Computer Vision and Pattern Recognition (CVPR) 2016

CONSTRUCTION OF WAVELET IN NON-EUCLIDEAN SPACE

- Define scale in the frequency domain and translate by δ_n (Hammond 2012).
- From spectral graph theory: the eigenvector χ_l and eigenvalue λ_l pairs of
- graph Laplacian $\mathcal{L} = D A$ provide an analogue of frequency domain.
- Graph Fourier Transform

$$\hat{f}(I) = \langle \chi_I, f \rangle = \sum_{n=1}^{N} \chi_I^*(n) f(n) \text{ and } f(n) = \sum_{l=0}^{N-1} \hat{f}(l) \chi_l(n)$$

Spectral graph wavelet is constructed by applying a band-pass filter g at various scales *s* and localing it at *n* with a impulse function δ_n as,

$$\psi_{s,n}(m) = \sum_{l=0}^{N-1} g(s\lambda_l) \chi_l^*(n) \chi_l(m)$$
(4)

Wavelet transform on graph is defined as

$$W_f(s,n) = \langle f, \psi_s \rangle = \sum_{l=0}^{N-1} g(s\lambda_l) \hat{f}(l) \chi_l(n)$$
(5)

yields wavelet coefficients $W_f(s, p)$, where $\hat{f}(I) = \langle f, \chi_I \rangle$.

HARMONIC ANALYSIS OF GRAPHICAL MODEL

A covariance Σ / precision matrix Θ given as

$$\Xi = V \wedge V^{T} = \sum_{\ell=1}^{n} \lambda_{\ell} V_{\ell} V_{\ell}^{T} \text{ and } \Theta = \sum_{\ell=1}^{n} \frac{1}{\lambda_{\ell}} V_{\ell} V_{\ell}^{T} = \sum_{\ell=1}^{n} \sigma_{\ell} V_{\ell} V_{\ell}^{T}$$

where $\sigma = \frac{1}{2}$.

 \blacktriangleright Using the eigenvectors V, we define a basis analoguous to wavelets as

$$\psi_{\ell,s}(i,j) = g(s\sigma_{\ell})V_{\ell}^{*}(i)V_{\ell}(j), \forall \ell \in \{1,\ldots,n\}$$
(6)

where g() is a kernel function (band-pass filter) as in (4).

A transform of the precision matrix using our basis yields coefficients as

$$egin{aligned} & m{V}_{\Theta,m{s}}(\ell) = \langle \Theta, \psi_{\ell,m{s}}
angle \ &= \sigma_\ell m{g}(m{s}\sigma_\ell). \end{aligned}$$

• Multi-resolution reconstruction with a non-constant weight ds/s

$$ilde{\varTheta}(i,j) = rac{1}{C_g} \int_0^\infty rac{1}{s} \sum_{\ell=1}^n W_{\Theta,s}(\ell) \psi_{\ell,s}(i,j) ds.$$

which is a multi-resolution reconstruction using different scales.

LEMMA (PERFECT RECONSTRUCTION OF \Theta)

If $\Theta \succ 0, \Theta = \Theta^T$ and kernel g satisfies the admissibility condition

$$\int_0^\infty \frac{g^2(s\sigma)}{s} ds =: C_g < \infty$$

then,

$$\frac{1}{C_g}\int_0^\infty \frac{1}{s}\sum_{\ell=1}^n W_{\Theta,s}(\ell)\psi_{\ell,s}(i,j)ds = \Theta(i,j)$$

▶ Different number of latent variables $n_h = 5, 10$ to see the effect of latent variables in different methods.

Figure : Comparison of statistical dependency estimations between observed variables (when there are at least a few latent components) using synthetic brain network data.

- Top/bottom rows show estimated dependencies in the data (correct estimation in blue and false positive in red) and their corresponding precision matrices.
- First col: sample precision matrix, Second col: result using GLasso, Third col: result using Chandrasekaran et al, Fourth col: our result.

Won Hwa Kim* Hyunwoo J. Kim* Nagesh Adluru Vikas Singh http://cs.wisc.edu/~wonhwa http://cs.wisc.edu/~hwkim

University of Wisconsin-Madison

Figure : Estimated precision matrix on HCP dataset.

- Analysis. A parsimonious set of relations identified among the non-imaging covariates (in blue) / among the brain pathways (in red) / across these two groups of variables (in orange)
- Major associations identified between 1) cingulum bundle and processing speed, 2) longitudinal fasciculus and cognitive/verbal ability, 3) forceps major and gender, 4) uncinate fasciculus and spatial working memory and etc.
- The identified relationships are corroborated by results from independent literature.

ACKNOWLEDGMENT

This research was supported by NIH grants AG040396, NSF CAREER award 1252725, UW ADRC AG033514, UW ICTR 1UL1RR025011, UW CPCP AI117924 and Waisman Core Grant P30 HD003352-45. Visit http://cs.wisc.edu/\$\sim\$wonhwa/project or http://cs.wisc.edu/hwkim for code and supplements.