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OBJECTIVE

Identify conditional dependencies between random variables
represented as an undirected graphical model despite unknown number
of (possibly many) latent variables.

MAIN IDEA

I Problem: Dense sample precision matrix (inverse covariance matrix),
especially with high dimensional data with small sample sizes.

I Challenges: Must account for the effect from a large number of latent
(unobserved) variables.

I Solution: Perform multi-resolution analysis of the sample precision
matrix to decompose it into dense component (low-frequency) and
sparse component (high-frequency).

Figure : Left: effect of latent variables causing dense precision matrix, Right: removing the effect of latent
varibles returning sparse precision matrix.

PRELIMINARY: WAVELET TRANSFORM

I Transformation using wavelet bases — localized oscillating bases in both
time and frequency.

I Wavelets behave as band-pass filters in the frequency domain.
I A mother wavelet ψs,a is a function of scale s and translation a as

ψs,a(x) =
1
s
ψ(

x − a
s

) (1)

I The forward wavelet transform using ψ yields wavelet coefficient Wf (s,a):

Wf (s,a) = 〈f , ψs〉 =
1
s

∫
f (x)ψ∗(

x − a
s

)dx (2)

I Inverse wavelet transform (with Cψ =
∫ |Ψ(jω)|2

|ω| dω <∞):

f (x) =
1

Cψ

∫∫
Wf (s,a)ψs,a(x)da ds (3)

Figure : Left: true signal, Middle: signal with noise, Right: signal in the frequency space.

CONSTRUCTION OF WAVELET IN NON-EUCLIDEAN SPACE

I Ambiguity of scale and translation of ψ in the non-Euclidean space,
(represented as a graph with vertices and edges).

CONSTRUCTION OF WAVELET IN NON-EUCLIDEAN SPACE

I Define scale in the frequency domain and translate by δn (Hammond 2012).
I From spectral graph theory: the eigenvector χl and eigenvalue λl pairs of

graph Laplacian L = D − A provide an analogue of frequency domain.
I Graph Fourier Transform

f̂ (l) = 〈χl, f 〉 =
N∑

n=1

χ∗l (n)f (n) and f (n) =
N−1∑
l=0

f̂ (l)χl(n)

I Spectral graph wavelet is constructed by applying a band-pass filter g at
various scales s and localzing it at n with a impulse function δn as,

ψs,n(m) =
N−1∑
l=0

g(sλl)χ
∗
l (n)χl(m) (4)

I Wavelet transform on graph is defined as

Wf (s,n) = 〈f , ψs〉 =
N−1∑
l=0

g(sλl)f̂ (l)χl(n) (5)

yields wavelet coefficients Wf (s,p), where f̂ (l) = 〈f , χl〉.

HARMONIC ANALYSIS OF GRAPHICAL MODEL

I A covariance Σ / precision matrix Θ given as

Σ = V ΛV T =
n∑
`=1

λ`V`V T
` and Θ =

n∑
`=1

1
λ`

V`V T
` =

n∑
`=1

σ`V`V T
`

where σ = 1
λ.

I Using the eigenvectors V , we define a basis analoguous to wavelets as

ψ`,s(i , j) = g(sσ`)V ∗` (i)V`(j),∀` ∈ {1, . . . ,n} (6)

where g() is a kernel function (band-pass filter) as in (4).
I A transform of the precision matrix using our basis yields coefficients as

WΘ,s(`) = 〈Θ, ψ`,s〉
= σ`g(sσ`).

I Multi-resolution reconstruction with a non-constant weight ds/s

Θ̃(i , j) =
1

Cg

∫ ∞
0

1
s

n∑
`=1

WΘ,s(`)ψ`,s(i , j)ds.

which is a multi-resolution reconstruction using different scales.

LEMMA (PERFECT RECONSTRUCTION OF Θ)

If Θ � 0,Θ = ΘT and kernel g satisfies the admissibility condition∫ ∞
0

g2(sσ)

s
ds =: Cg <∞

then,
1

Cg

∫ ∞
0

1
s

n∑
`=1

WΘ,s(`)ψ`,s(i , j)ds = Θ(i , j)

ESTIMATING THE OPTIMAL SCALE FOR Θ̃

I The reconstruction of Θ at scale s is given as

Θ̃ =
n∑
`=1

σ`g2(sσ`)V`V T
` (7)

I Θ̃: must be similar to the empirical Θ and satisfy sparsity property
I Similarity measured by KL divergence / Sparsity controlled by |Θ̃|1.
I Using the two properties, we formulate our problem as

max
s≥0

tr(Θ̃Θ−1)− logdet(Θ̃Θ−1)− n + γ|Θ̃|1

I Substituting Θ̃ =
∑n

`=1 σ`g
2(sσ`)V`V T

` yields

max
s≥0

n∑
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λ`K (s, σ`)−
n∑
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log(λ`K (s, σ`))− n + γ
n∑

i=1

n∑
j=1

∣∣∣∣∣
n∑
`=1

K (s, σ`)X`(i , j)

∣∣∣∣∣ (8)

I We solve eq. (8) using gradient descent to obtain the optimal scale s for Θ̃
that yields sparsity and similarity to Θ at the same time.

(a) (b) (c) (d)
Figure : Precision matrix in different scales. a) estimation with s = 0, b) estimation with
s = 0.5, c) estimation with s = 0.7, d) estimation with optimal scale s = 0.2089.

LATENT VARIABLE GRAPHICAL MODEL SELECTION

I Graphical model estimation on a population of synthetic brain pathways.
I Pathways np = 50, covariates nc = 10 (total observed no = np + nc = 60).
I Generate data based on a true precision matrix with 5% density.
I Kernel function g(σ) = σe−sσ

I Different number of latent variables nh = 5,10 to see the effect of latent
variables in different methods.

nh = 5 nh = 10

Figure : Comparison of statistical dependency estimations between observed variables (when there are at least
a few latent components) using synthetic brain network data.

I Top/bottom rows show estimated dependencies in the data (correct
estimation in blue and false positive in red) and their corresponding
precision matrices.

I First col: sample precision matrix, Second col: result using GLasso, Third
col: result using Chandrasekaran et al, Fourth col: our result.

EXPERIMENTS ON HUMAN CONNECTOME PROJECT DATA

I Imaging Data. Tractography (structural brain connectivity) derived from
Diffusion Tensor Image (DTI) from HCP over 489 participants and 17 major
white-matter connectivities selected

I Non-imaging Data. 22 non-imaging covariates (out of ∼350) related to
demographics, physical health, memory, sleep and etc.

Figure : The 17 connections that are statistically associated to non-imaging covariates.

I Goal. Recover a sparse (and interpretable) precision matrix explaining the
conditional dependencies among the variables despite latent variables

Figure : Estimated precision matrix on HCP dataset.

I Analysis. A parsimonious set of relations identified among the
non-imaging covariates (in blue) / among the brain pathways (in red) /
across these two groups of variables (in orange)

I Major associations identified between 1) cingulum bundle and
processing speed, 2) longitudinal fasciculus and cognitive/verbal
ability, 3) forceps major and gender, 4) uncinate fasciculus and spatial
working memory and etc.

I The identified relationships are corroborated by results from independent
literature.
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