Lecture 0

Introduction

Course Information

- Your instructor:
 - Hyunseung (pronounced Hun-Sung)
 - Or HK (not Hong Kong 🙂)
 - <u>E-mail</u>: khyuns@wharton.upenn.edu
- Lecture:
 - Time: Mon/Tues/Wed/Thur at 10:45AM-12:15PM
 - Location: F45 JMHH
- Office Hours:
 - 434 JMHH
 - Mon/Tues/Wed/Thur: 12:15PM-1:30PM (after lec.)
- <u>Course website</u>: <u>stat.wharton.upenn.edu/~khyuns/stat431/</u>

- Textbook:
 - None required
 - Recommended textbooks are on reserve at Van Pelt (2nd floor)
- R
 - Free and widely used software (in academia) for data analysis
 - Download it from www.r-project.org
- Grading:
 - 25% assignments, 35% weekly quizzes, and 40% final project
 - Assignments handed out every Monday. Due following Monday BEFORE CLASS!!! Collaboration highly encouraged, but final write-up must be prepared individually
 - Weekly quizzes given every Monday at the beginning of class.
 Quizzes based on the assignment and the prior week's lectures

Final Project

- Goal
 - Analyze a real-world data set of your choosing
 - Provide numerical and theoretical justification of your analysis
- Details
 - May work in groups up to three people
 - Turn in (1) a one-page executive summary of your analysis and (2) a technical report containing all your analysis

Prerequisite

- "Fluency" with basic probability and analysis
 - Random variables
 - Probability distributions, Joint distributions, conditional probability
 - Independence/Correlation/Covariance
 - Law of Large Numbers
 - Central Limit Theorem
 - Moment generating functions
- Multivariable calculus is required.
- Linear algebra and R are not required, but useful

Statistical Inference in a Nutshell

Topics Covered

- <u>Gather Data</u>: Population/Sample, Sampling Procedures
- <u>Summarize Data</u>:
 - Mean, variance, risk, bias-variance trade-off
 - Histograms, Quantile-Quantile Plots, Scatterplots
- <u>Inference</u>: Sampling distributions (e.g Chi-square, t, and F distributions)
- Inference: One-Sample and Two-Sample Hypothesis Testing
 - Derivation of confidence intervals
 - Type I and II Error, Statistical power
 - Factorial Design (Chi-square Test for Independence)
- Inference: Regression
 - Simple linear regression
 - <u>Multiple linear regression</u>: ANOVA, MANOVA, ANCOVA, polynomial regression, weighted least squares regression
 - <u>Generalized linear models (GLMs)</u>: Logistic regression, logit regression, Poisson regression, probit regression
 - <u>Time Series Models</u>: AR and ARMA models
 - <u>Model Diagnostics</u>: Stepwise, Lasso, Ridge, AIC/BIC/Mallow's Cp

Additional Topics (if we have time)

- Nonparametric Regression:
 - Moving average estimators
 - Kernel methods
 - B-splines
- Nonparametric Inference
 - Permutation Test
 - Welch's Test, Signed-Rank Test, Kolmogorov-Smirnov Test
- Bootstrap, Bayesian Inference, and Computation-based Inference
- Multivariate Methods:
 - PCA and CCA
 - SVD
- Likelihood-based Inference
 - Maximum Likelihood Estimators (MLE), Inference on MLEs

Questions?