Lecture 2

Summarizing the Sample

WARNING: Today's lecture may bore some of you...

It's (sort of) not my fault...I'm required to teach you about what we're going to cover today.

I'll try to make it as exciting as possible...

But you're more than welcome to fall asleep if you feel like this stuff is too easy

Lecture Summary

- Once we obtained our sample, we would like to <u>summarize</u> it.
- Depending on the <u>type</u> of the data (<u>numerical</u> or <u>categorical</u>) and the <u>dimension</u> (univariate, paired, etc.), there are different methods of summarizing the data.
 - <u>Numerical</u> data have two subtypes: <u>discrete</u> or <u>continuous</u>
 - Categorical data have two subtypes: nominal or ordinal
- Graphical summaries:
 - Histograms: Visual summary of the sample distribution
 - Quantile-Quantile Plot: Compare the sample to a known distribution
 - **Scatterplot**: Compare two pairs of points in X/Y axis.

Three Steps to Summarize Data

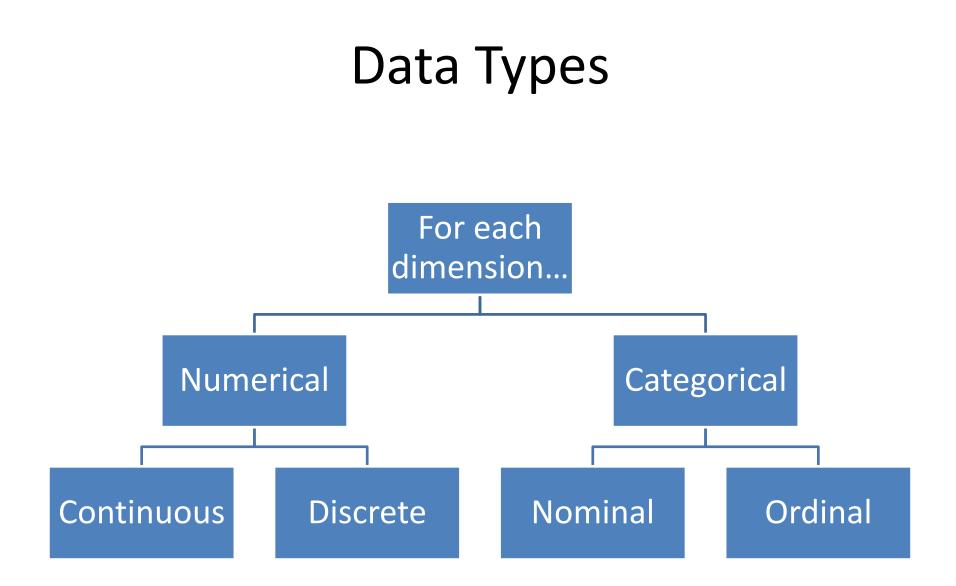
1. Classify sample into different type

2. Depending on the type, use appropriate numerical summaries

3. Depending on the type, use appropriate visual summaries

Data Classification

- Data/Sample: (X_1, \dots, X_n)
- Dimension of X_i (i.e. the number of measurements per unit i)
 - Univariate: one measurement for unit *i* (height)
 - Multivariate: multiple measurements for unit *i* (height, weight, sex)
- For each dimension, X_i can be <u>numerical</u> or <u>categorical</u>
- Numerical variables
 - <u>Discrete</u>: human population, natural numbers, (0,5,10,15,20,25,etc..)
 - Continuous: height, weight
- Categorical variables
 - <u>Nominal</u>: categories have no ordering (sex: male/female)
 - <u>Ordinal</u>: categories are ordered (grade: A/B/C/D/F, rating: high/low)



Summaries for numerical data

- <u>Center/location</u>: measures the "center" of the data
 - Examples: sample mean and sample median
- <u>Spread/Dispersion</u>: measures the "spread" or "fatness" of the data
 - Examples: sample variance, interquartile range
- <u>Order/Rank</u>: measures the ordering/ranking of the data
 - Examples: order statistics and sample quantiles

Summary	Type of Sample	Formula	Notes
Sample mean, $\hat{\mu}, \overline{X}$	Continuous	$\frac{1}{n}\sum_{i=1}^{n}X_{i}$	 Summarizes the "center" of the data Sensitive to outliers
Sample variance, $\widehat{\sigma^2}$, S^2	Continuous	$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$	 Summarizes the "spread" of the data Outliers may inflate this value
Order statistic, $X_{(i)}$	Continuous	i th largest value of the sample	• Summarizes the order/rank of the data
Sample median, $X_{0.5}$	Continuous	If n is even: $\frac{\left(X\left(\frac{n}{2}\right)^{+}X\left(\frac{n}{2}+1\right)\right)}{2}$ If n is odd: $X_{\left(\frac{n}{2}+0.5\right)}$	 Summarizes the "center" of the data Robust to outliers
Sample α quartiles, X_{α} $0 \le \alpha \le 1$	Continuous	If $\alpha = \frac{i}{n+1}$ for $i = 1,, n$: $X_{\alpha} = X_{(i)}$ Otherwise, do linear interpolation	 Summarizes the order/rank of the data Robust to outliers
Sample Interquartile Range (Sample IQR)	Continuous	$X_{0.75} - X_{0.25}$	 Summarizes the "spread" of the data Robust to outliers

Multivariate numerical data

- Each dimension in multivariate data is <u>univariate</u> and hence, we can use the numerical summaries from univariate data (e.g. sample mean, sample variance)
- However, to study two measurements and their relationship, there are numerical summaries to analyze it
- Sample Correlation and Sample Covariance

Sample Correlation and Covariance

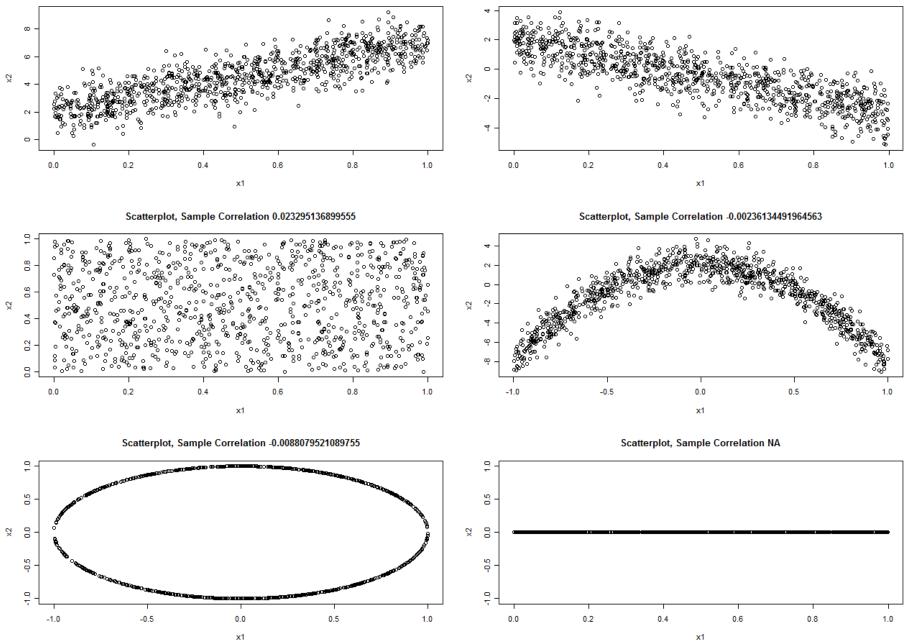
• Measures linear relationship between two measurements, X_{i1} and X_{i2} , where $X_i = (X_{i1}, X_{i2})$

•
$$\hat{\rho} = \frac{\sum_{i=1}^{n} (X_{i1} - \bar{X}_1) (X_{i2} - \bar{X}_2)}{(n-1)\hat{\sigma}_{X_1}\hat{\sigma}_{X_2}}$$

- $\ -1 \leq \hat{\rho} \leq 1$
- Sign indicates proportional (positive) or inversely proportional (negative) relationship
- If X_{i1} and X_{i2} have a perfect linear relationship, $\hat{
 ho} = 1$ or -1
- Sample covariance = $\hat{\rho}\hat{\sigma}_{X_1}\hat{\sigma}_{X_2} = \frac{1}{n-1}\sum_{i=1}^n (X_{i1} - \overline{X}_1)(X_{i2} - \overline{X}_2)$

Scatterplot, Sample Correlation 0.82856982976473

Scatterplot, Sample Correlation -0.82675532134749



How about categorical data?

Summaries for categorical data

• <u>Frequency/Counts</u>: how frequent is one category

 Generally use tables to count the frequency or proportions from the total

• Example: Stat 431 class composition

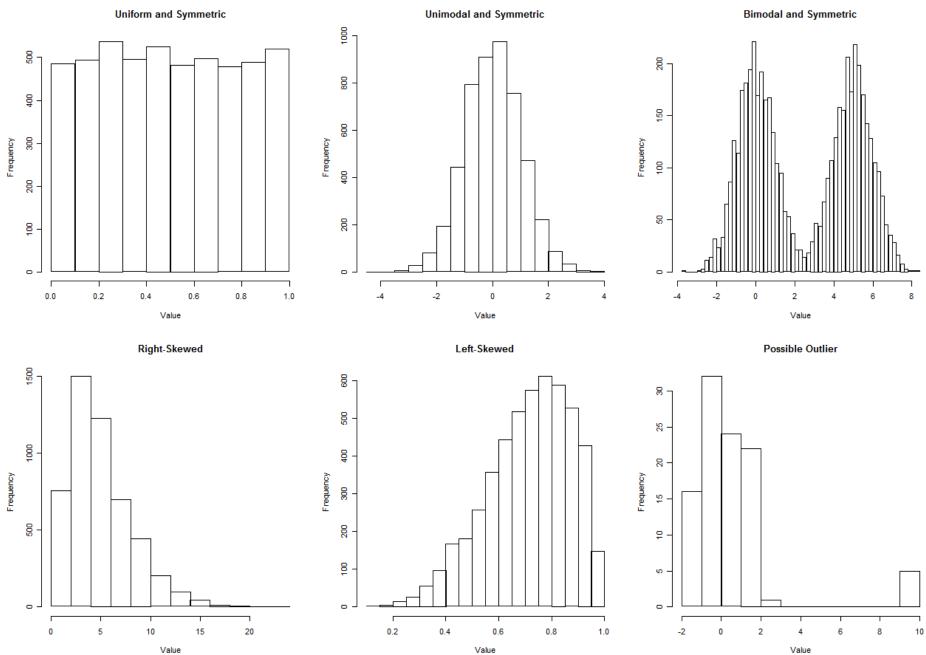
	Undergrad	Graduate	Staff
Counts	17	1	2
Proportions	0.85	0.05	0.1

Are there visual summaries of the data?

Histograms, boxplots, scatterplots, and QQ plots

Histograms

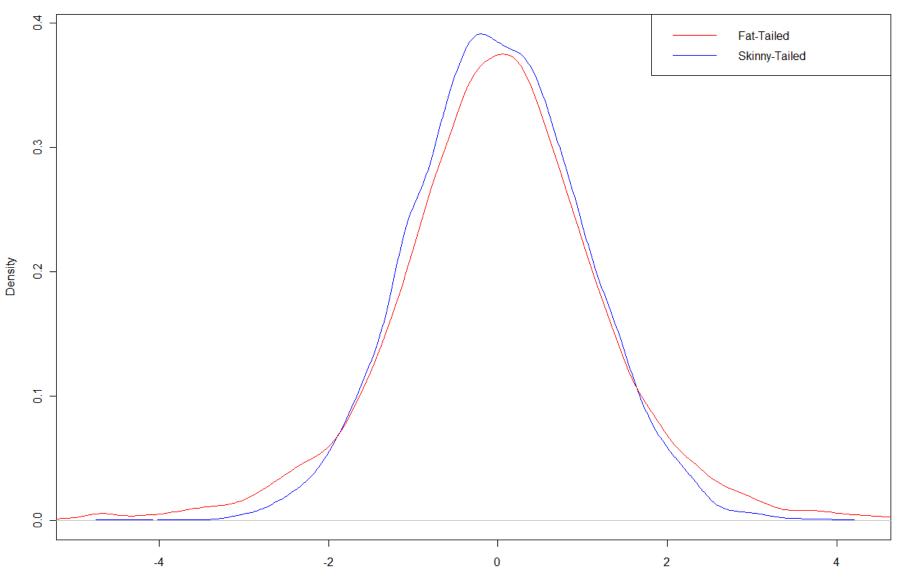
- For numerical data
- A method to show the "shape" of the data by tallying frequencies of the measurements in the sample
- Characteristics to look for:
 - <u>Modality</u>: Uniform, unimodal, bimodal, etc.
 - <u>Skew</u>: Symmetric (no skew), right/positive-skewed, left/negative-skewed distributions
 - <u>Quantiles</u>: Fat tails/skinny tails
 - Outliers



Value

Value

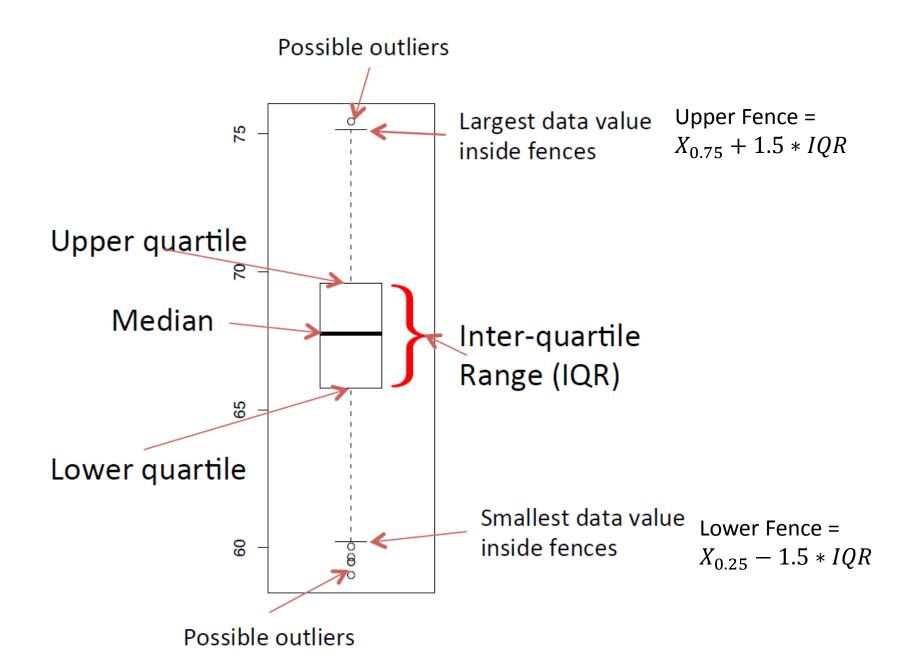
Skinny and Fat Tailed Distributions

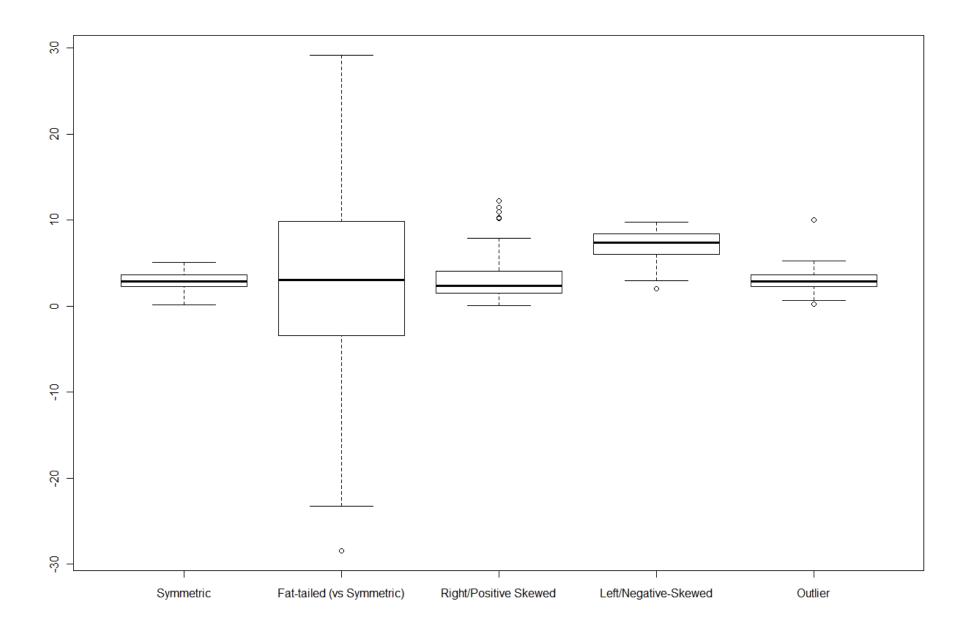


Value

Boxplots

- For numerical data
- Another way to visualize the "shape" of the data. Can identify...
 - Symmetric, right/positive-skewed, and left/negativeskewed distributions
 - Fat tails/skinny tails
 - Outliers
- However, boxplots cannot identify modes (e.g. unimodal, bimodal, etc.)

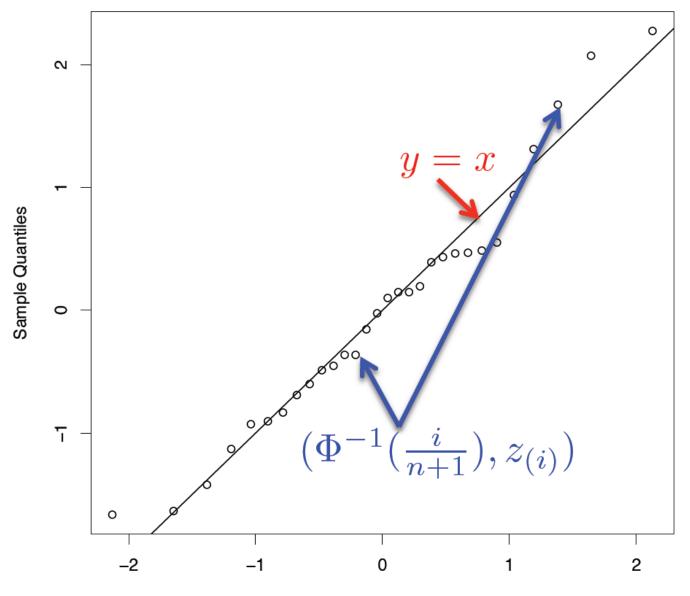




Quantile-Quantile Plots (QQ Plots)

- For numerical data: visually compare collected data with a known distribution
- Most common one is the Normal QQ plots
 - We check to see whether the sample follows a normal distribution
 - This is a common assumption in statistical inference that your sample comes from a normal distribution
- <u>Summary</u>: If your scatterplot "hugs" the line, there is good reason to believe that your data follows the said distribution.

Normal Q–Q Plot



Theoretical Quantiles

Making a Normal QQ plot

1. Compute z-scores: $Z_i = \frac{X_i - X}{\widehat{\sigma}}$

2. Plot $\frac{i}{n+1}$ th theoretical normal quantile against *i*th ordered z-scores (i.e. $\left(\Phi\left(\frac{i}{n+1}\right)^{-1}, Z_{(i)}\right)$

- Remember, $Z_{(i)}$ is the $\frac{i}{n+1}$ sample quantile (see numerical summary table)
- 3. Plot Y = X line to compare the sample to the theoretical normal quantile

If your data is not normal...

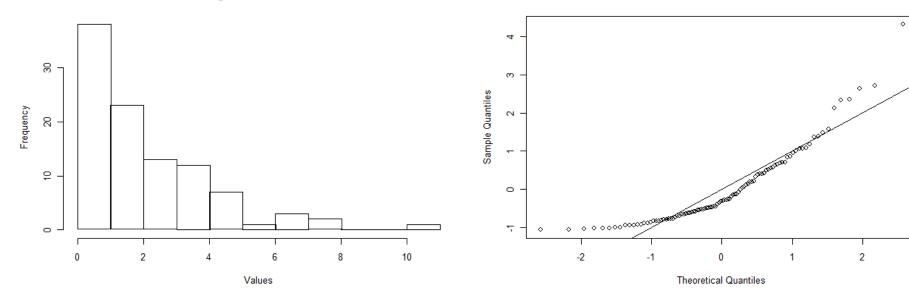
 You can perform transformations to make it look normal

For <u>right/positively-skewed data</u>: Log/square root

 For <u>left/negatively-skewed data</u>: exponential/square

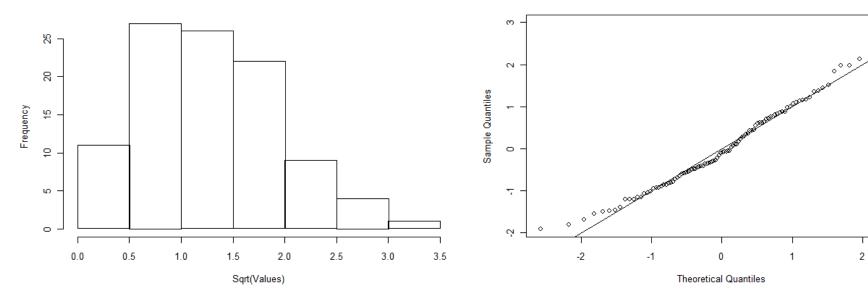
Right-Skewed Data

Normal QQ Plot



Square Root Transformed Data

0



Comparing the three visual techniques

Histograms

- <u>Advantages</u>:
 - With properly-sized bins, histograms can summarize any shape of the data (modes, skew, quantiles, outliers)
- <u>Disadvantages</u>:
 - Difficult to compare sideby-side (takes up too much space in a plot)
 - Depending on the size of the bins, interpretation may be different

Boxplots

- Advantages:
 - Don't have to tweak with "graphical" parameters (i.e. bin size in histograms)
 - Summarize skew, quantiles, and outliers
 - Can compare several measurements side-byside
 - Disadvantages:
 - Cannot distinguish modes!

QQ Plots

- Advantages:
 - Can identify whether the data came from a certain distribution
 - Don't have to tweak with "graphical" parameters (i.e. bin size in histograms)
 - Summarize quantiles
- <u>Disadvantages</u>:
 - Difficult to compare side-by-side
 - Difficult to distinguish skews, modes, and outliers

Scatterplots

- For multidimensional, numerical data: $X_i = (X_{i1}, X_{i2}, ..., X_{ip})$
- Plot points on a *p* dimensional axis
- Characteristics to look for:
 - Clusters
 - General patterns
- See previous slide on sample correlation for examples. See R code for cool 3D animation of the scatterplot

Lecture Summary

- Once we obtain a sample, we want to summarize it.
- There are numerical and visual summaries
 - Numerical summaries depend on the data type (numerical or categorical)
 - Graphical summaries discussed here are mostly designed for numerical data
- We can also look at multidimensional data and examine the relationship between two measurement

E.g. sample correlation and scatterplots

Extra Slides

Why does the QQ plot work?

- You will prove it in a homework assignment 🙂
- Basically, it has to do with the fact that if your sample came from a normal distribution (i.e. $X_i \sim N(\mu, \sigma^2)$), then $Z_i = \frac{X_i \overline{X}}{\widehat{\sigma}} \sim t_{n-1}$ where t_{n-1} is a t-distribution.
- With large samples $(n \ge 30)$, $t_{n-1} \approx N(0,1)$. Thus, if your sample is truly normal, then it should follow the theoretical quantiles.
- If this is confusing to you, wait till lecture on sampling distribution

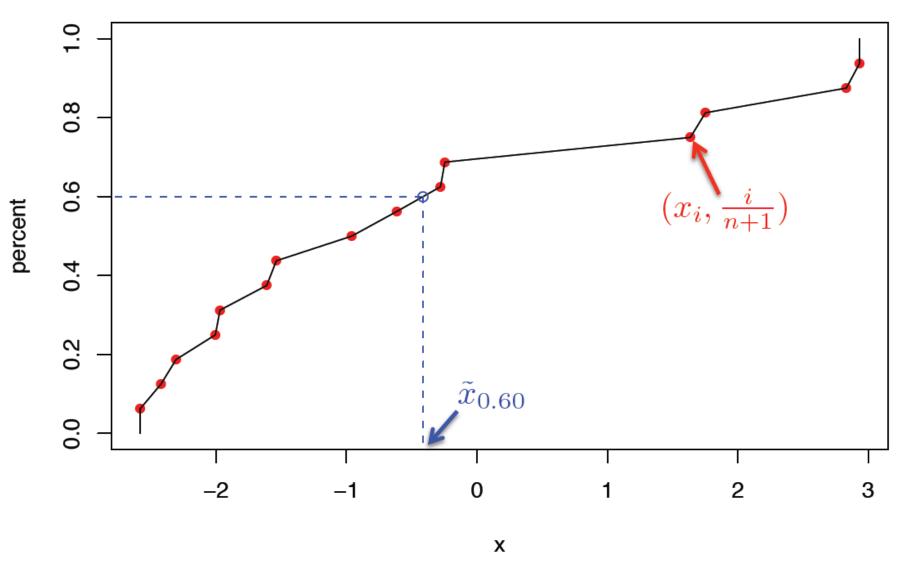
Linear Interpolation in Sample Quantiles

If you want an estimate of the sample quantile that is not $\frac{l}{n+1}$, then you do a linear interpolation

1. For a given
$$\alpha$$
, find $i = 1, ..., n$ such that $\frac{i}{n+1} \le \alpha \le \frac{i+1}{n+1}$

2. Fit a line,
$$y = a * x + b$$
, with two points $\left(X_{(i)}, \frac{i}{n+1}\right)$ and $\left(X_{(i+1)}, \frac{i+1}{n+1}\right)$.

3. Plug in y as your α and solve for x. This x will be your X_{α} quantile.



Schematic plot of sample quantile definition