Lecture 3

Properties of Summary Statistics:
Sampling Distribution



Main Theme

How can we use math to justify that our
numerical summaries from the sample are good
summaries of the population?




Lecture Summary

Today, we focus on two summary statistics of the sample and study
its theoretical properties

v _ 1 n
— Sample mean: X = —di=1Xi
1

— Sample variance: S? = —

They are aimed to get an idea about the population mean and the
population variance (i.e. parameters)

First, we'll study, on average, how well our statistics do in
estimating the parameters

Second, we’ll study the distribution of the summary statistics,
known as sampling distributions.



Setup

Let X4, ..., X,, € RP be i.i.d. samples from the population Fy

Fy: distribution of the population (e.g. normal) with
features/parameters 6

— Often the distribution AND the parameters are unknown.
— That’s why we sample from it to get an idea of them!

i.i.d.: independent and identically distributed

— Every time we sample, we redraw n members from the population and
obtain (X4, ..., X;;). This provides a representative sample of the
population.

RP: dimension of X;
— For simplicity, we’ll consider univariate cases (i.e.p = 1)



Loss Function

How “good” are our numerical summaries (i.e. statistics) in
capturing features of the population (i.e. parameters)?

Loss Function: Measures how good the statistic is in
estimating the parameter

— O loss: the statistic is the perfect estimator for the parameter
— oo |oss: the statistic is a terrible estimator for the parameter

Example: [(T,0) = (T — 6)? where T is the statistic and A
is the parameter. Called square-error loss



Sadly...

e |tisimpossible to compute the values for the loss
function

* Why? We don’t know what the parameter is!
(since it’s an unknown feature of the population

and we’re trying to study it!)

* More importantly, the statistic is random! It
changes every time we take a different sample
from the population. Thus, the value of our loss
function changes per sample



A Remedy

A more manageable question: On average, how good is
our statistic in estimating the parameter?

Risk (i.e. expected loss): The average loss incurred after
repeated sampling

R(0) = E[U(T, 6)]
Risk is a function of the parameter

For the square-error loss, we have
R(6) = E[(T — 6)?]



Bias-Variance Trade-Off: Square Error
Risk

e After some algebra, we obtain another expression for
square error Risk

R(6) = E[(T —6)?] = (E[T] — 0)* + E[(T — E[T])"]
= Biasg(T)?* + Var(T)
e Bias: On average, how far is the statistic away from the
parameter (i.e. accuracy)

Biasg(T) = E|T] — 6
e Variance: How variable is the statistic (i.e. precision)
* |n estimation, there is always a bias-variance tradeoff!



Sample I\/Iean, Bias, Variance, and Risk

Let T(Xq, ..., Xn) = = Xi=1 X;. We want to see how well the sample mean
estimates the populatlon mean. We’ll use square error loss.

BiaSM(T) = 0, i.e. the sample mean is unbiased for the population mean
— Interpretation: On average, the sample mean will be close to the population

mean, U
0.2
VClT'(T) = 7
: : . 1 .

— Interpretation: The sample mean is precise up to an order N That is, we
dlecrease the variability of our estimate for the population mean by a factor of
vn

0.2
Thus, R(u) = —

— Interpretatlon On average, the sample mean will be close to the population
mean by— This holds for all population mean u




Sample Variance and Bias

1 —
e LetT(Xq,...,X,) = EZ?=1(XL' — X)? . We want to
see how well the sample variance estimates the
population variance. We’ll use square error loss.

* Bias, 2(T) = 0, i.e. the sample variance is unbiased
for the population mean

— Interpretation: On average, the sample variance will be
close to the population variance, g2

e Var(T) =?, R(c?) =?

— Depends on assumption about fourth moments.



In Summary...

 We studied how good, on average, our
statistic is in estimating the parameter

e Sample mean, X, and sample variance,5?, are
both unbiased for the population mean,u, and
the population variance, o2



But...

 But, what about the distribution of our
summary statistics?

e So far, we only studied the statistics “average”
behavior.

 Sampling distribution!



Sampling Distribution when F is Normal

Case 1 (Sample Mean): Suppose F is a normal
distribution with mean u and variance ¢

(denoted as N (u, 2)) Then X is dlstrlbuted as

EX - N(u,—)

Proof: Use the fact that X; ~ N(u,02).
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Sampling Distribution Example

e Suppose you want to know the probability that

your sample mean, X, is € > 0 away from the
population mean.

e We assume o is known and X; ~ N(u, ¢2),1i.1. d.

P(IX — ul sE)=p<|X;“| < §>=P(|Z|gﬂ)

2 = 7]
Voo n
where Z ~ N(0,1).
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Sampling Distribution when F is Normal

Case 1 (Sample Variance): Suppose F is a normal
distribution with mean u and varlance a

(denoted as N (i, d%)). Then (n — 1) — s
distributed as

<n—1>———Z<X - 0% ~ 22,

where yZ%_, is the Chi- square distribution with
n — 1 degrees of freedom.
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Some Preliminaries from Stat 430

e Fact0: (X,X; — X, ..., X,, — X) is jointly normal
Proof: Because X and X; — X are linear combinations of
normal random variables, they must be jointly normal.

e Factl:Foranyi =1, ...,n, we have
Cov(X,X; —X) =0

Proof:

1 o2
E(X(X; — X))——u +— (u +02%) — (u2+7)=0

EXEWX; —X) = u(u u) = 0.
Thus, Cov(X,X; —X) = E(X(X; — X)) —E(X)EX; — X) =0



e Since X and X; — X are jointly normal, the
zero covariance between them implies that X
and X; — X are independent

e Furthermore, because

R 1 —\ 5 .
G2 = — " . (X; — X)?is a function of

X; — X, 6% is independent of X



e Fact2:fW =U+Vand W "’Xc21+b2rV ~ x%,and U
and V are independent, then U ~ x;
Proof: Use moment generating functions

* Now, we can prove this fact. (see blackboard)

W =i (Xi_#)z = i1 (Xi_)?+)?_“)2 =U+V ~ x;

(0) (0)
_ (n—-1)s?
==
Neam%
V= (") ~

Thus, U ~ y%_,4



Sampling Distribution when F is not
Normal

Case 2: Suppose F is an arbitrary distribution
with mean u and variance g (denoted as
F(u,04)). Thenasn — o,

im YPE =) N(0,1)

Nn—00 0}
Proof: Use the fact that X; ~ F(u, 0%) and use the
central limit theorem




Properties

 As sample size increases, X is unbiased
— Asymptotically unbiased

 As sample size increases, X approaches the

L 1
normal distribution at a rate —
N

— Even if we don’t have infinite sample size, using
2

N (,u, %) as an approximation to X is meaningful for
large samples
— How large? General rule of thumb: n = 30



Example

Sampling Distribution of the Sample Mean from Exponential Distribution (Lambda = 4)

* Suppose X; ~ Exp(/l)
ini.i.d.

— Remember, E(X;) =1 ° i

and Var(X;) = %2 ‘| i

—  (Theory-Based) Sampling Distribution

. Then for Iarge enough%% I \
~ NG,

2’ /12 I

VVVVV
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An Experiment



Lecture Summary

* Risk: Average loss/mistakes that the statistics make in
estimating the population parameters
— Bias-variance tradeoff for squared error loss.

— X and 2 are unbiased for the population mean and the
population variance

* Sampling distribution: the distribution of the statistics
used for estimating the population parameters.

— If the population is normally distributed:

— 2 _1\~a2
* X ~N (M%) and BT 2

— |If the population is not normally distributed

g2

. YnX-p 5 o?
S N or X ~ N(u, n)



