Lecture 3

Properties of Summary Statistics: Sampling Distribution

Main Theme

How can we use <u>math</u> to justify that our numerical summaries from the sample are good summaries of the population?

Lecture Summary

- Today, we focus on two summary statistics of the sample and study its theoretical properties
 - Sample mean: $\overline{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$
- They are aimed to get an idea about the population mean and the population variance (i.e. parameters)
- First, we'll study, <u>on average</u>, how well our statistics do in estimating the parameters
- Second, we'll study the distribution of the summary statistics, known as sampling distributions.

Setup

- Let $X_1, ..., X_n \in \mathbb{R}^p$ be i.i.d. samples from the population F_{θ}
- F_{θ} : distribution of the population (e.g. normal) with features/parameters θ
 - Often the distribution AND the parameters are unknown.
 - That's why we sample from it to get an idea of them!
- i.i.d.: independent and identically distributed
 - Every time we sample, we redraw n members from the population and obtain (X_1, \ldots, X_n) . This provides a representative sample of the population.
- R^p : dimension of X_i
 - For simplicity, we'll consider univariate cases (i.e. p = 1)

Loss Function

- How "good" are our numerical summaries (i.e. statistics) in capturing features of the population (i.e. parameters)?
- Loss Function: Measures how good the statistic is in estimating the parameter
 - 0 loss: the statistic is the perfect estimator for the parameter
 - $-\infty$ loss: the statistic is a terrible estimator for the parameter
- Example: $l(T, \theta) = (T \theta)^2$ where T is the statistic and Λ is the parameter. Called square-error loss

Sadly...

- It is impossible to compute the values for the loss function
- Why? We don't know what the parameter is! (since it's an unknown feature of the population and we're trying to study it!)
- More importantly, the statistic is random! It changes every time we take a different sample from the population. Thus, the value of our loss function changes per sample

A Remedy

- <u>A more manageable question</u>: On average, how good is our statistic in estimating the parameter?
- **Risk** (i.e. expected loss): The average loss incurred after repeated sampling $R(\theta) = E[l(T, \theta)]$
- Risk is a function of the parameter
- For the square-error loss, we have $R(\theta) = E[(T \theta)^2]$

Bias-Variance Trade-Off: Square Error Risk

• After some algebra, we obtain another expression for square error **Risk** $R(\theta) = E[(T - \theta)^2] = (E[T] - \theta)^2 + E[(T - E[T])^2]$

 $(\theta) = E[(I - \theta)^{-}] = (E[I] - \theta)^{-} + E[(I - E[I])^{-}]$ = $Bias_{\theta}(T)^{2} + Var(T)$

• **Bias**: On average, how far is the statistic away from the parameter (i.e. accuracy)

 $Bias_{\theta}(T) = E[T] - \theta$

- Variance: How variable is the statistic (i.e. precision)
- In estimation, there is always a bias-variance tradeoff!

Sample Mean, Bias, Variance, and Risk

- Let $T(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^n X_i$. We want to see how well the sample mean estimates the population mean. We'll use square error loss.
- Bias_μ(T) = 0, i.e. the sample mean is unbiased for the population mean

 <u>Interpretation</u>: On average, the sample mean will be close to the population mean, μ
- $Var(T) = \frac{\sigma^2}{n}$
 - <u>Interpretation</u>: The sample mean is precise up to an order $\frac{1}{\sqrt{n}}$. That is, we decrease the variability of our estimate for the population mean by a factor of $\frac{1}{\sqrt{n}}$
- Thus, $R(\mu) = \frac{\sigma^2}{n}$
 - Interpretation: On average, the sample mean will be close to the population mean by $\frac{\sigma^2}{n}$. This holds for all population mean μ

Sample Variance and Bias

- Let $T(X_1, ..., X_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$. We want to see how well the sample variance estimates the population variance. We'll use square error loss.
- $Bias_{\sigma^2}(T) = 0$, i.e. the sample variance is unbiased for the population mean
 - Interpretation: On average, the sample variance will be close to the population variance, σ^2
- $Var(T) =?, R(\sigma^2) =?$

Depends on assumption about fourth moments.

In Summary...

- We studied how good, on average, our statistic is in estimating the parameter
- Sample mean, \overline{X} , and sample variance, $\hat{\sigma}^2$, are both unbiased for the population mean, μ , and the population variance, σ^2

But...

But, what about the distribution of our summary statistics?

 So far, we only studied the statistics "average" behavior.

• Sampling distribution!

Sampling Distribution when F is Normal

<u>Case 1 (Sample Mean</u>): Suppose F is a normal distribution with mean μ and variance σ^2 (denoted as $N(\mu, \sigma^2)$). Then \overline{X} is distributed as

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \frac{\sigma^2}{n})$$

Proof: Use the fact that $X_i \sim N(\mu, \sigma^2)$.

Effect on the sampling distribution as n changes after 5000 experiments

Sample mean values

Sampling Distribution Example

- Suppose you want to know the probability that your sample mean, \overline{X} , is $\epsilon > 0$ away from the population mean.
- We assume σ is known and $X_i \sim N(\mu, \sigma^2)$, i. i. d.

$$P(|\overline{X} - \mu| \le \epsilon) = P\left(\frac{|\overline{X} - \mu|}{\frac{\sigma}{\sqrt{n}}} \le \frac{\epsilon}{\frac{\sigma}{\sqrt{n}}}\right) = P\left(|Z| \le \frac{\epsilon\sqrt{n}}{\sigma}\right)$$

where $Z \sim N(0, 1)$.

Prob. that sample mean is within 1 of the pop. mean

Sampling Distribution when F is Normal

<u>Case 1 (Sample Variance)</u>: Suppose *F* is a normal distribution with mean μ and variance σ^2 (denoted as $N(\mu, \sigma^2)$). Then $(n - 1)\frac{\hat{\sigma}^2}{\sigma^2}$ is distributed as

$$(n-1)\frac{\hat{\sigma}^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi_{n-1}^2$$

where χ^2_{n-1} is the Chi-square distribution with n-1 degrees of freedom.

Sampling Distribution of (n-1)S^2/sigma^2

Some Preliminaries from Stat 430

- <u>Fact 0</u>: $(\overline{X}, X_1 \overline{X}, ..., X_n \overline{X})$ is jointly normal Proof: Because \overline{X} and $X_i - \overline{X}$ are linear combinations of normal random variables, they must be jointly normal.
- <u>Fact 1</u>: For any i = 1, ..., n, we have $Cov(\overline{X}, X_i - \overline{X}) = 0$ Proof: $E(\overline{X}(X_i - \overline{X})) = \frac{n-1}{n}\mu^2 + \frac{1}{n}(\mu^2 + \sigma^2) - (\mu^2 + \frac{\sigma^2}{n}) = 0$ $E(\overline{X})E(X_i - \overline{X}) = \mu(\mu - \mu) = 0.$
 - Thus, $Cov(\overline{X}, X_i \overline{X}) = E(\overline{X}(X_i \overline{X})) E(\overline{X})E(X_i \overline{X}) = 0$

• Since \overline{X} and $X_i - \overline{X}$ are jointly normal, the zero covariance between them implies that \overline{X} and $X_i - \overline{X}$ are independent

• Furthermore, because

 $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is a function of $X_i - \bar{X}, \hat{\sigma}^2$ is independent of \bar{X}

- <u>Fact 2</u>: If W = U + V and $W \sim \chi^2_{a+b}$, $V \sim \chi^2_b$, and Uand V are independent, then $U \sim \chi^2_a$ Proof: Use moment generating functions
- Now, we can prove this fact. (see blackboard)

$$W = \sum_{i=1}^{n} \left(\frac{X_{i}-\mu}{\sigma}\right)^{2} = \sum_{i=1}^{n} \left(\frac{X_{i}-\bar{X}+\bar{X}-\mu}{\sigma}\right)^{2} = U + V \sim \chi_{n}^{2}$$
$$U = \frac{(n-1)S^{2}}{\sigma^{2}}$$
$$V = \left(\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\right)^{2} \sim \chi_{1}^{2}$$
$$Thus, U \sim \chi_{n-1}^{2}$$

Sampling Distribution when F is not Normal

<u>Case 2</u>: Suppose *F* is an arbitrary distribution with mean μ and variance σ^2 (denoted as $F(\mu, \sigma^2)$). Then as $n \to \infty$, $\lim_{n \to \infty} \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \to N(0, 1)$ Proof: Use the fact that $X_i \sim F(\mu, \sigma^2)$ and use the

central limit theorem

Properties

• As sample size increases, \overline{X} is unbiased

Asymptotically unbiased

- As sample size increases, \overline{X} approaches the normal distribution at a rate $\frac{1}{\sqrt{n}}$
 - Even if we don't have infinite sample size, using $N\left(\mu, \frac{\sigma^2}{n}\right)$ as an approximation to \overline{X} is meaningful for <u>large</u> samples
 - How large? General rule of thumb: $n \ge 30$

Example

- Suppose $X_i \sim Exp(\lambda)$ in i.i.d.
 - Remember, $E(X_i) = \lambda$ and $Var(X_i) = \frac{1}{\lambda^2}$
- Then, for large enough $\frac{M}{2}$ $n, \overline{X} \approx N(\frac{1}{\lambda}, \frac{1}{\lambda^2 n})$

Effect on the sampling distribution as n changes after 5000 experiments from Exp(4)

Sample mean values

An Experiment

Lecture Summary

- **Risk**: Average loss/mistakes that the statistics make in estimating the population parameters
 - Bias-variance tradeoff for squared error loss.
 - \bar{X} and $\hat{\sigma}^2$ are unbiased for the population mean and the population variance
- **Sampling distribution**: the distribution of the statistics used for estimating the population parameters.
 - If the population is normally distributed:

•
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 and $\frac{(n-1)\widehat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-1}$

If the population is not normally distributed

•
$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \rightarrow N(0,1) \text{ or } \bar{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$