
Lecture 3 

Properties of Summary Statistics: 
Sampling Distribution 



Main Theme  
 

How can we use math to justify that our 
numerical summaries from the sample are good 

summaries of the population? 



Lecture Summary 

• Today, we focus on two summary statistics of the sample and study 
its theoretical properties 

– Sample mean: X =
1

𝑛
 𝑋𝑖
𝑛
𝑖=1  

– Sample variance: S2 =
1

𝑛−1
 𝑋𝑖 − 𝑋 2𝑛
𝑖=1  

 
• They are aimed to get an idea about the population mean and the 

population variance (i.e. parameters) 
 

• First, we’ll study, on average, how well our statistics do in 
estimating the parameters 
 

• Second, we’ll study the distribution of the summary statistics, 
known as sampling distributions. 



Setup 

• Let 𝑋1, … , 𝑋𝑛 ∈ 𝑅𝑝 be i.i.d. samples from the population 𝐹𝜃 
 
• 𝐹𝜃: distribution of the population (e.g. normal) with 

features/parameters 𝜃 
– Often the distribution AND the parameters are unknown. 
– That’s why we sample from it to get an idea of them! 

 
• i.i.d.: independent and identically distributed 

– Every time we sample, we redraw 𝑛 members from the population and 
obtain (𝑋1, … , 𝑋𝑛). This provides a representative sample of the 
population. 

 
• 𝑅𝑝: dimension of 𝑋𝑖   

– For simplicity, we’ll consider univariate cases (i.e. 𝑝 = 1) 



Loss Function 

• How “good” are our numerical summaries (i.e. statistics) in 
capturing features of the population (i.e. parameters)? 

 
• Loss Function: Measures how good the statistic is in 

estimating the parameter 
– 0 loss: the statistic is the perfect estimator for the parameter 
– ∞ loss: the statistic is a terrible estimator for the parameter 

 
• Example: 𝑙 𝑇, 𝜃 = 𝑇 − 𝜃 2  where 𝑇 is the statistic and Λ 

is the parameter. Called square-error loss 



Sadly… 

• It is impossible to compute the values for the loss 
function 

 
• Why? We don’t know what the parameter is! 

(since it’s an unknown feature of the population 
and we’re trying to study it!) 
 

• More importantly, the statistic is random! It 
changes every time we take a different sample 
from the population. Thus, the value of our loss 
function changes per sample 



A Remedy 

• A more manageable question: On average, how good is 
our statistic in estimating the parameter? 
 

• Risk (i.e. expected loss): The average loss incurred after 
repeated sampling 

𝑅 𝜃 = 𝐸 𝑙 𝑇, 𝜃  
 

• Risk is a function of the parameter 
 

• For the square-error loss, we have 
𝑅 𝜃 = 𝐸 𝑇 − 𝜃 2  

 



Bias-Variance Trade-Off: Square Error 
Risk 

• After some algebra, we obtain another expression for 
square error Risk 
𝑅 𝜃 = 𝐸 𝑇 − 𝜃 2 = 𝐸 𝑇 − 𝜃 2 + 𝐸[(𝑇 − 𝐸 𝑇 )2]

= 𝐵𝑖𝑎𝑠𝜃 𝑇 2 + 𝑉𝑎𝑟 𝑇  

• Bias: On average, how far is the statistic away from the 
parameter (i.e. accuracy) 

𝐵𝑖𝑎𝑠𝜃 𝑇 = 𝐸 𝑇 − 𝜃 

• Variance: How variable is the statistic (i.e. precision) 

• In estimation, there is always a bias-variance tradeoff! 

 



Sample Mean, Bias, Variance, and Risk 
• Let 𝑇 𝑋1, … , 𝑋𝑛 =

1

𝑛
 𝑋𝑖
𝑛
𝑖=1 . We want to see how well the sample mean 

estimates the population mean. We’ll use square error loss. 
 

• 𝐵𝑖𝑎𝑠𝜇 𝑇 = 0, i.e. the sample mean is unbiased for the population mean 
– Interpretation: On average, the sample mean will be close to the population 

mean, 𝜇 

 

• 𝑉𝑎𝑟 𝑇 =
𝜎2

𝑛
 

– Interpretation: The sample mean is precise up to an order 
1

𝑛
. That is, we 

decrease the variability of our estimate for the population mean by a factor of 
1

𝑛
 

 

• Thus, 𝑅 𝜇 =
𝜎2

𝑛
 

– Interpretation: On average, the sample mean will be close to the population 

mean by 
𝜎2

𝑛
. This holds for all population mean 𝜇 



Sample Variance and Bias 

• Let 𝑇 𝑋1, … , 𝑋𝑛 =
1

𝑛−1
 𝑋𝑖 − 𝑋 2 𝑛
𝑖=1 . We want to 

see how well the sample variance estimates the 
population variance. We’ll use square error loss. 

 

• 𝐵𝑖𝑎𝑠𝜎2 𝑇 = 0, i.e. the sample variance is unbiased 
for the population mean 
– Interpretation: On average, the sample variance will be 

close to the population variance, 𝜎2 

 

• 𝑉𝑎𝑟 𝑇 =?, 𝑅 𝜎2 =? 
– Depends on assumption about fourth moments. 



In Summary… 

• We studied how good, on average, our 
statistic is in estimating the parameter 

 

• Sample mean, 𝑋 , and sample variance,𝜎 2, are 
both unbiased for the population mean,𝜇, and 
the population variance, 𝜎2 



But… 

• But, what about the distribution of our 
summary statistics?  

 

• So far, we only studied the statistics “average” 
behavior. 

 

• Sampling distribution! 



Sampling Distribution when 𝐹 is Normal 

Case 1 (Sample Mean): Suppose 𝐹 is a normal 
distribution with mean 𝜇 and variance 𝜎2 
(denoted as 𝑁(𝜇, 𝜎2)). Then 𝑋  is distributed as 

𝑋 =
1

𝑛
 𝑋𝑖

𝑛

𝑖=1

∼ 𝑁(𝜇,
𝜎2

𝑛
) 

Proof: Use the fact that 𝑋𝑖 ∼ 𝑁 𝜇, 𝜎2 .  

 







Sampling Distribution Example 

• Suppose you want to know the probability that 
your sample mean, 𝑋 , is 𝜖 > 0 away from the 
population mean. 

 

• We assume 𝜎 is known and 𝑋𝑖 ∼ 𝑁 𝜇, 𝜎2 , i. i. d. 

 

𝑃 𝑋 − 𝜇 ≤ 𝜖 = P
X − 𝜇
𝜎
𝑛

≤
𝜖
𝜎
𝑛

= 𝑃 𝑍 ≤
𝜖 𝑛

𝜎
 

where 𝑍 ∼ 𝑁(0,1). 





Sampling Distribution when 𝐹 is Normal 

Case 1 (Sample Variance): Suppose 𝐹 is a normal 
distribution with mean 𝜇 and variance 𝜎2 

(denoted as 𝑁(𝜇, 𝜎2)). Then n − 1
𝜎 2

𝜎2
 is 

distributed as 

n − 1
𝜎 2

𝜎2
=

1

𝜎2
 𝑋𝑖 − 𝑋 2 ∼ 𝜒𝑛−1

2

𝑛

𝑖=1

 

where 𝜒𝑛−1
2  is the Chi-square distribution with 

𝑛 − 1 degrees of freedom. 





Some Preliminaries from Stat 430 

• Fact 0: (𝑋 , 𝑋1 − 𝑋 ,… , 𝑋𝑛 − 𝑋 ) is jointly normal 
Proof: Because 𝑋  and 𝑋𝑖 − 𝑋  are linear combinations of 
normal random variables, they must be jointly normal. 

 

• Fact 1: For any 𝑖 = 1,… , 𝑛, we have 
𝐶𝑜𝑣 𝑋 , 𝑋𝑖 − 𝑋 = 0 
Proof:  

𝐸 𝑋 𝑋𝑖 − 𝑋 =
𝑛 − 1

𝑛
𝜇2 +

1

𝑛
𝜇2 + 𝜎2 − (𝜇2+

𝜎2

𝑛
) = 0 

𝐸 𝑋 𝐸 𝑋𝑖 − 𝑋 = 𝜇 𝜇 − 𝜇 = 0.  

Thus, 𝐶𝑜𝑣 𝑋 , 𝑋𝑖 − 𝑋 = 𝐸 𝑋 𝑋𝑖 − 𝑋 − 𝐸 𝑋 𝐸 𝑋𝑖 − 𝑋 = 0 



• Since 𝑋  and 𝑋𝑖 − 𝑋  are jointly normal, the 
zero covariance between them implies that 𝑋  
and 𝑋𝑖 − 𝑋  are independent 

 

• Furthermore, because 

𝜎 2 =
1

𝑛−1
 𝑋𝑖 − 𝑋 2𝑛
𝑖=1  is a function of 

𝑋𝑖 − 𝑋 , 𝜎 2 is independent of 𝑋  

 



• Fact 2: If 𝑊 = 𝑈 + 𝑉 and 𝑊 ∼ 𝜒𝑎+𝑏
2 , 𝑉 ∼ 𝜒𝑏

2, and 𝑈 
and 𝑉 are independent, then 𝑈 ∼ 𝜒𝑎

2 
Proof: Use moment generating functions 

 
• Now, we can prove this fact. (see blackboard) 

𝑊 =  
𝑋𝑖−𝜇

𝜎

2
=  

𝑋𝑖−𝑋 +𝑋 −𝜇

𝜎

2

=𝑛
𝑖=1

𝑛
𝑖=1 𝑈 + 𝑉 ∼ 𝜒𝑛

2  

𝑈 =
𝑛−1 𝑆2

𝜎2
  

𝑉 =
𝑛 𝑋 −𝜇

𝜎

2

∼ 𝜒1
2  

Thus, 𝑈 ∼ 𝜒𝑛−1
2  

 



Sampling Distribution when 𝐹 is not 
Normal 

Case 2: Suppose 𝐹 is an arbitrary distribution 
with mean 𝜇 and variance 𝜎2 (denoted as 
F(𝜇, 𝜎2)). Then as 𝑛 → ∞,  

lim
𝑛→∞

𝑛 𝑋 − 𝜇

𝜎
→ 𝑁 0,1  

Proof: Use the fact that 𝑋𝑖 ∼ 𝐹 𝜇, 𝜎2  and use the 
central limit theorem 



Properties 

• As sample size increases, 𝑋  is unbiased 
– Asymptotically unbiased 

 

• As sample size increases, 𝑋  approaches the 

normal distribution at a rate 
1

𝑛
 

– Even if we don’t have infinite sample size, using 

𝑁 𝜇,
𝜎2

𝑛
 as an approximation to 𝑋  is meaningful for 

large samples 

– How large? General rule of thumb: 𝑛 ≥ 30 



Example 

• Suppose 𝑋𝑖 ∼ 𝐸𝑥𝑝 𝜆  
in i.i.d. 

– Remember, 𝐸 𝑋𝑖 = 𝜆 

and 𝑉𝑎𝑟 𝑋𝑖 =
1

𝜆2
 

• Then, for large enough 

𝑛, 𝑋 ≈ 𝑁(
1

𝜆
,
1

𝜆2𝑛
) 

 





An Experiment 



Lecture Summary 
• Risk: Average loss/mistakes that the statistics make in 

estimating the population parameters 
– Bias-variance tradeoff for squared error loss. 

– 𝑋  and 𝜎 2 are unbiased for the population mean and the 
population variance  

 

• Sampling distribution: the distribution of the statistics 
used for estimating the population parameters. 
– If the population is normally distributed: 

• 𝑋 ∼ 𝑁 𝜇,
𝜎2

𝑛
 and 

𝑛−1 𝜎 2

𝜎2
∼ 𝜒𝑛−1

2  

– If the population is not normally distributed 

•
𝑛 𝑋 −𝜇

𝜎
→ 𝑁(0,1) or 𝑋 ≈ 𝑁 𝜇,

𝜎2

𝑛
 


