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1 Introduction

Multiple regression is an extension to simple regression in several ways. First, instead of examining a linear
relationship bewteen two measurements, Xi and Yi, multiple regression aims to explain relationships between p
measurements of an object i, denoted as (Xi,1, ..., Xi,p) and Yi. Based on a sample of n points, with each point
having measurements (Yi, Xi,1, ..., Xi,p), multiple regression aims to estimate the true underlying relationship of
this type

Y = β0 + β1X,1 + ...+ βpX,p (1)

Here, each βj represents a partial correlation between Y and X,j . This is not the same as sample correlation
between Y and X,j , which we’ll see in later sections and we’ll examine the meaning behind each βj .

Second, instead of dealing primarily with numerical variables in simple regression, the multiple regression can
handle categorical and numerical variables. Specifically, X,j can either be categorical or numerical variables. Y s
still have to be numerical. But, this restriction will be relaxed in future lectures on generalized linear models.

Third, even though X’s are linear combinations of Y and we are, in essence, studying linear relationships be-
tween Y and X,1, ..., X,p, multiple regression framework is flexible to handle non-linear relationships. This is
commonly known as polynomial regression and will be discussed in a future section.

2 Estimation and Interpretation

Suppose we obtain a sample (Yi, Xi,1, ..., Xi,p) of n individuals and we want to use this sample to discover underlying
relationships described in equation (1). In the least squares framework, we achieve this goal by minimizing the
distance between Yi and the linear combination of Xs (including the intercept. Mathematically, we attempt to
minimize

min
β0,β1,...,βp

n∑
i=1

(Yi − (β0 + β1Xi,1 + ...+ βpXi,p))
2 (2)

To minimize this quantity, we take partial derivatives with respect to each βj , set all of them equal to zero, and
solve for βjs.

for all j = 1, ..., p:
δ

δβj

n∑
i=1

(Yi − (β0 + β1Xi,1 + ...+ βpXi,p))
2 = 0

The βjs we solve, denoted as β̂js are the global minimizers of equation (2) because the function is convex over a
convex domain.
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2.1 Categorical Data and Reformatting Xs

When some of the X,js are categorical, you must reformat the X,js to work within the regression framework.You
reformat the categorical data from, say X,j = ”A”, ”B”, ”C” to 1s and 0s. Specifically,

1. Count the number of choices/factors in a categorical measurement. Call this K. For example, if the
categorical variable is class year, there are four choices, freshmen, sophomore, junior, and senior.

2. Create K − 1 Xs. Each Xi,j will represent K − 1 choices out of K possible choices by assigning a binary
value. In particular,

Xi,j =

{
1 if the ith individual chose k amongst 1, ...,K choices

0 otherwise

For example, for class year, we will have three new Xs, Xi,1, Xi,2 and Xi,3. Xi,1 is 1 if the ith individual
was a freshmen and 0 if he wasn’t. Xi,2 is 1 if the ith individual was a sophomore and 0 if he wasn’t. Xi,3

is 1 if the ith individual was a junior and 0 if he wasn’t. Notice that if Xi,1 = Xi,2 = Xi,3 = 0, then the ith
individual must be a senior.

Thankfully, R automatically does this and you don’t need to worry about it. However, if you decide to not work
with R, be mindful that you have to convert a categorical data into binary format.

2.2 Missing Data

Often in real data, we have missing values for some of the measurements. For example, in a survey with 10
questions, given out to 500 people, some individuals may decide to not answer certain questions on the survey for
a variety of reasons. If there is a substantial minority of individuals who decide to not answer certain questions,
we may wonder whether there is a characteristic that links those individuals who answered the question and those
who did not. The method we’ll introduce here will attempt to capture this “pattern of missingness”. That is, it
will attempt to capture the behavior of those who answered the question vs. those who didn’t. This method only
works if there is a sizable minority of missing observations per measurement.1

Suppose you have a numerical X,j where some of the observations in the jth measurements are missing. To
capture the “pattern of missingness”, we can create a new a variable X ′,j in lieu with X,j where

X ′i,j =

{
1 if the ith individual has a missing value for the jth measurement

0 otherwise

In addition, for the original X,j which contains the missing values, you would replace them with the mean of the
measurements, X̄,j .

If X,j is categorical with K choices, you would treat this variable as if they had K + 1 choices, with the ex-
tra choice being the choice for missing. Then, you would follow the procedure outlined above.

Unfortunately, R’s default behavior with missing data is to drop missing observations. Although this is an-
other way to handle missingness at the expense of sample size, to incorporate the above method, you would have
to manually create these new X’s.

2.3 Interaction Terms

Interaction terms are terms that are included in the regression if you want to study the combined effects of two
measurements. For example, suppose your Y is the fever temperature of a child. X,1 is whether the child has taken
drug A which claims to lower fever and X,2 is whether the child has taken drug B which also claims it lowers fever.

1There are many methods to deal with missing values and these methods are context-specific. Here, we introduce one technique
that is popular in the field of observational studies
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Each β1 and β2 will represent individual effects from drug 1 and drug 2. However, it is possible that a combination
of these drugs may have effects that we want to measure. A method to incorporate this is by using interaction terms.

Interaction terms work by “multiplying” the X,js that are under consideration for interaction. You can tech-
nically “multiply” more than two variables (e.g. you may have drug C and you want to study the combined effects
of drug A,B, and C), but the expression gets complicated very quickly and therefore, we’ll only deal with two-way
interactions. Here are a couple of things to remember when you ”multiply” various measurements

1. If you are studying the interaction between two categorical variables, you will have a new categorical X
for each possible combination the choices from two categorical variables. This variable For example, if you
are studying the effects of drug A and B, you will have four possible choices of taking A and B: took A +
took B, took A + not took B, not took A + took B, and not took A + not took B. Of course, you will
have to reformat this newly formed categorical variable using the procedure outlined above. Thankfully, R
automatically does this and you don’t have to worry about it.

2. If you are studying the interaction between a categorical variable and a numerical variable, you will have a

3.

2.4 Interpretation of Estimates

Once your data is reformatted, you can solve the optimization problem outlined in equation (2) and obtain
β̂0, β̂1, ..., β̂p. Each β̂j states that a one-unit increase (in numerical variables) or choosing a particular option (in

categorical variables) will increase (if the sign of β̂j is positive) or decrease (if the sign of β̂j is negative) Y by

|β̂j | amount, under the condition that all the other Xs remain constant or fixed. Another way to say this is that
controlling for all other measurements that are not j, one-unit increase (in numerical variables) or choosing a
particular option (in categorical variables) will increase (if the sign of β̂j is positive) or decrease (if the sign of β̂j
is negative) Y by |β̂j | amount.

3 Inference

Inference in multiple regression revolves around testing hypotheses for a single β̂j or a group of β̂js. The latter
is more applicable to categorical X’s. Inference on the slope coefficients requires a significant use of the ANOVA
tables. In addition, there is also inference on prediction. Here, our focus will mostly be on constructing CIs and
PIs, like we did in simple regression.

3.1 Assumption

To make inference possible in the case of multiple regression, we have to make some assumptions about our
population in which we drew the samples (Yi, Xi,1, ..., Xi,p) from. The assumptions for multiple linear regression
are identical to those from simple linear regression and they are summarized in the following statement below.

Assumption 1. A linear regression model assumes the following about Xi,1, ...., Xi,p and Yi

1. Xi,1, ..., Xi,p are assumed to be fixed, non-random quantities. Yi’s are the only random quantities.

2. Yi is related to Xi,1, ..., Xi,p by the following linear relationship

Yi = β0 + β1Xi,1 + ...+ βpXi,p + εi (3)

where εi are i.i.d random variables, commonly referred to as errors. Here, βjs are the parameters that
characterize the true underlying relationship between Xi,j and Yi

3. εi is Normally distributed

4. εi have the same variance, σ2, for any value of Xi,1, ..., Xi,p. Another way to say this is that Yi’s have
homoscedastic errors.
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We can validate these assumptions using the diagnostic tools from simple linear regression.

1. Homoscedasticity: We can use a residual plot and look for any “spreading” behavior along the x-axis.

2. Linearity: We can use a residual plot and look for any non-linear patterns along the x-axis. T

3. Normality of the errors: We can use a QQ plot of the residuals and see if the points “hug” the y = x line.

4. Outliers: For leverage points and influential points, we can use Hii and Di values to evaluate the magnitude
of leverage and influence, respectively. For regression outliers (i.e. outliers in the y axis), we resort to residual
plots. In particular, if there are points in the residual plot that has large deviations in the y direction, these
points are likely to be regression outliers.

5. Collinearity: We’ll talk about this when we get to model selection. It states that all the X,j measurements
should not be correlated with each other. While this is not a violation of assumptions 1, a severe degree of
collinearity may cloud our interpretation when we do inference.

We can deal with any problems that may come up from these diagnostics the same way de dealt with them in
simple linear regression. For example, if there is a strong reason to believe heteroscedasticity maybe present, then
transformation of Y is not a bad idea. If there is a strong reason to believe nonlinearity may exist, then it is
generally advised that you transform one or several Xs until you get rid of the non-linear pattern in your residual
practice. From practice, the Xs that need transforming are those that already exhibit non-linear patterns if you
plot Y and X,j in a separate scatterplot.

Note that you cannot use a scatterplot of X and Y s, simply because there is no way to plot all of X,1, ..., X,p and
Y in a scatterplot; you would need a p+ 1 dimensional scatterplot, which is impossible!

3.2 ANOVA Table

For every regression we fit, we have an ANOVA table associated with the regression fit. Just like in simple linear
regression, mutiple regression’s ANOVA tables have the same interpretations. However, we must be careful with
the degrees of freedom. While DFT has the same degrees of freedom (n − 1), no matter what regression we fit
(since it is only the degrees of freedom associated with the sample variance of Y ), DFE and DFR have different
degrees of freedom depending on the number of categorical variables, the number of numerical variables, and the
number of interaction terms. If we can count the number of slope terms, p, the task is very easy.

Sum of Squares (SS) Mean SS(MS) Degrees of Freedom (DF)

SSE MSE DFE = n− p+ 1

SSR MSR DFR = p

SST MST DFT = n− 1

Table 1: ANOVA Table. This table is useful if you know the exact number of X,js in your model, after reformatting
your categorical variables and taking interaction terms into account.

3.3 Inference on Slope Coefficients

First, we start off with testing individual βjs.Suppose you want to test

H0 : βj = 0 vs. Ha : βj 6= 0 (4)

These tests use the t-distribution as their sampling distriubtion with degrees of freedom that is equal to that
associated with the SSE. The procedure to conduct this test is identical to the ones in simple regression. In
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particular, the p-value for this test is

max
βj∈H0

P (reject H0|H0 is true) = max
βj∈H0

P

∣∣∣∣∣∣ β̂j − βj√
V ar(β̂j)

∣∣∣∣∣∣ >
∣∣∣∣∣∣ β̂j,obs − βj√

V ar(β̂j)

∣∣∣∣∣∣ |H0 is true


= P

|tDFE | >
∣∣∣∣∣∣ β̂j,obs − 0√

V ar(β̂j)

∣∣∣∣∣∣


The p-values for each hypothesis regarding βj are on the R output. Also, if the test calls for H0 : βj = β vs.

Ha : βj 6= β where β 6= 0 (i.e. the boundary is not zero), you can use the estimates of βj and V ar(β̂j) (written

in R as standard errors, which are
√
V ar(β̂j)) to obtain the necessary p-values; the only difference in calculating

the p-value would be the maximization step, which would be replaced by
β̂j,obs−β√
V ar(β̂j)

instead of
β̂j,obs−0√
V ar(β̂j)

While the mechanics of testing is identical to that from simple linear regresison, the interpretation of the hy-
pothesis are drastically different in the multiple regression setting. Here, the test specified in equation (4) tests
the importance of the jth measurement in prediciting Y controlling for all the other measurements. Specifically,
given that all the other measurements besides X,j are fixed, the test in equation (4) is testing whether the jth
measurement, X,j , adds any value in explaining the variation in Y . Notice the similarity in interpetation between

the estimates of each β̂j and the inference for single βjs.

Next, we can expand our testing framework to test for multiple βjs in one single hypohtesis testing. For ex-
ample, suppose you want to test whether any of the β1, β2, and β3 are useful terms in explaining the variation of
Y , controlling for all the other X’s not present in the testing (here, we assume p > 3). Then, our hypothesis is
written as follows.

H0 : β1 = β2 = β3 = 0 vs. Ha : at least one βj 6= 0 (5)

Again, we have to always remember that we’re controlling for all the other X’s that are not in the hypothesis. That
is, given that the other X,4, X,5, ..., X,p explain some variation in Y , is X,1,X,2, and X,3 still useful in explaining
the variation we find in Y ?

The best way to test this is to fit two regression models. First regression model contains all the X,j (denoted as
the full model) and the second regression model contains only X,4, X,5, ..., X,p (denoted as the reduced model).
From each regression model, we obtain ANOVA tables shown below.

Sum of Squares (SS) Mean SS(MS) Degrees of Freedom (DF)

SSEfull MSEfull DFEfull = n− pfull + 1

SSRfull MSRfull DFRfull = pfull
SSTfull MSTfull DFTfull = n− 1

Table 2: ANOVA Table for the full regression model with all the X,js in it: Y = β0 + β1X,1 + ...+ βpX,p

Sum of Squares (SS) Mean SS(MS) Degrees of Freedom (DF)

SSEreduced MSEreduced DFEreduced = n− preduced + 1

SSRreduced MSRreduced DFRreduced = preduced
SSTreduced MSTreduced DFTreduced = n− 1

Table 3: ANOVA Table for the reduced regression model with all the X,js in it: Y = β0+β4X,4+β5X,5+...+βpX,p.
In this example with the first three X’s missing, preduced = pfull − 3

A couple of points about comparing two ANOVA tables
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1. SSTreduced = SSTfull, MSTreduced = MSTfull, and DFTreduced = DFTfull = n− 1 since SST is measuring
the variance of Y . None of the X’s play a role in determining any of the “..T” values in the ANOVA table.
This fact holds true for any ANOVA table

2. SSEfull ≤ SSEreduced since the reduced model is a subset of the full model. Specifically, with the full model,

we have more X variables to minimze the error between the observed Yi and Ŷi, even if some of them are
completely useless.

3. DFEfull ≤ DFEreduced since there are less β’s in the reduced model we have to estimate.

Once we have the two tables, a test statistic to test hypothesis (5) is

F =

SSEreduced−SSEfull

DFEreduced−DFEfull

SSEfull

DFEfull

(6)

Intuitively, equation (6) measures improvement in the full model in comparison to the reduced model, without the
X’s under testing; the numerator measures the magnitude of the improvement while the denominator “calibrates”
the magnitude from the numerator.

Under H0 specified in equation (5), the proposed test statistic in equation (6) would be zero since there won’t be
any differences between SSEreduced and SSEfull. Under Ha specified in equation (5), the proposed statistic in
equation (6) would be away from zero. Hence, we can reformulate our hypothesis as

H0 : F = 0 vs. Ha : F > 0

Finally, equation (6) has an F distribution with DFEreduced −DFEfull and DFEfull degrees of freedom. Then,
we can compute our p-value the same way we computed p-values for any other sampling distribution.

3.4 Inference on Prediction

Regression allows us to naturally estimate Ŷi given a set of X’s, Xi,1, ..., Xi,p. This estimate, Ŷi, is actually an
estimate of the conditional mean of Y at the Xi,1, ..., Xi,p

E(Y |Xi,1, ..., Xi,p)

Hence, Ŷi is an estimator for a parameter, the conditional mean. This also means that we can make inference
about this parameter, much like we made inference about βj ’s. Here, we’ll focus on obtaining CIs and PIs.

CIs are the confidence interval for the conditional mean, E(Y |Xi,1, ..., Xi,p), and its interpretaion is identical
to that from simple linear regression. PIs are prediction intervals for the conditional mean, E(Y |Xi,1, ..., Xi,p) and
its interpretation is the same as that from simple linear regression.

The formula for CIs and PIs are very complicated. Hence, we’ll let R deal with it. To obtain CI and PIs,
simply use the “predict()” function. The usage is described in the R cheat sheet.

4 Examples

4.1 Polynomial Regression

Polynomial regression is multiple regression where we take powers of the measurement to obtain a polynomial fit
between Y and X.

4.2 ANOVA

ANOVA is basically regression with categorical Xs.

4.3 ANCOVA

ANCOVA is regression with categorical and numerical Xs.
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