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1 Introduction

Previously, we have been investigating various properties of the population Fθ where θ is the parameter of the
population through sampling. All of our analysis were univariate. That is, we only studied one particular mea-
surement, say price of a cereal box, the mean price of a showcase on “Price is Right”, or the perceived age of the
instructor.

However, little attention has been devoted to studying multivariate measurements. In particular, we have yet
to develop tools to study relationships between measurements. Consider the following examples

Example 1.1. Suppose you want to study the relationship between the height of a boy and his father. Here, we
take two measurements per child, the child’s height and his/her father’s height, and we are interested in whether
there is a relationship between the heights.

Example 1.2. We are interested in studying the relationship between height and weight of UPenn students. Here,
each Penn student has two measurements, height and weight.

Example 1.3. Geologists are interested in studying the relationship between seismic activity from different out-
posts and the distance from these outposts to a nearby active volcano. Here, each outpost collects two measure-
ments, the seismic activity and the distance from it to the nearby active volcano.

These lectures will illustrate how we can study linear relationships between two measurements. We’ll develop
tools to derive linear relationships, provide tools to infer whether such a relationship exists, and finally consider
various diagnostic tools to validate the derived linear relations.

2 “How do you draw the best line?”

Suppose we collect n pairs of measurements (Xi, Yi) from individuals from a population. Any linear relationship
between two variables, if it exists, can be summarized by the equation for a line

Yi = β0 + β1Xi (1)

If there are two pairs of points (X1, Y1) and (X2, Y2), then finding β0 and β1 would be easy; simply use the slope
and intercept formulas you learned in middle school. However, it is often the case that we have n pairs of (Xi, Yi)
and we want to fit one single line that captures the linear relationship between X and Y . So, how do we proceed
to find this one line?

Amongst many candidates of lines, we can choose the one that is the “best” in some sense. In least squares
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regression, we define the “best” line to the line that minimizes the square of the residuals. Mathematically, we
attempt to minimize the following quantity

min
β0,β1

n∑
i=1

(Yi − (β0 + β1Xi))
2 =

n∑
i=1

r2
i , where ri = Yi − (β0 + β1Xi) (2)

To minimize this, we take partial derivatives with respect to β0 and β1 and set both derivatives equal to zero1,

δ

δβ0

n∑
i=1

(Yi − (β0 + β1Xi))
2 = 0 (3)

δ

δβ1

n∑
i=1

(Yi − (β0 + β1Xi))
2 = 0 (4)

The β0 and β1 we obtain from the derivatives are denoted as β̂0 and β̂1, which are

β̂0 = Ȳ − ρX̄ (5)

β̂1 = ρx,y
σ̂y
σ̂x

where ρx,y is the correlation between X and Y (6)

Because the minimization is done over a convex function on a convex set, we know that the solutions to equations,
(3) and (4) are global minimizers of equation (2).

Once we fit the line, we can plug in Xi to get a prediction for Yi at Xi, denoted as Ŷi. We can measure the
deviation from the predicted Yi, Ŷi, to the actual value Yi as residuals, or

ri = Yi − Ŷi

ri is different from εi because ri is derived from β̂0 and β̂1 while εi is derived from β0 and β1.

3 Inference

Our sample of n pairs of measurements, (Xi, Yi) helps us study the relationship between the two measurements.
For example, by fitting a line based on the sample, we have an estimate of the linear relationship between the two
variables. However, because this is a random sample of the population, there is some uncertainty as to whether
the fitted line is the actual, true relationship between the two. Hence, the fitted line we constructed can help us
infer about the underlying relationship between the two variables.

3.1 Assumptions

Similar to how we made assumptions about our population in the one-sample and two sample tests to derive
inference (e.g. hypothesis testing, CIs,etc), there are standard assumptions we make about how our measurements
are drawn. These are, in essence, assumptions about the populations of Xi and Yi.

Assumption 1. A simple linear regression model assumes the following about Xi and Yi

1. Xi are assumed to be fixed, non-random quantities. Yi’s are the only random quantities in (Xi, Yi)

2. Yi is related to Xi by the following linear relationship

Yi = β0 + β1Xi + εi (7)

where εi are i.i.d random variables, commonly referred to as errors. Here, β0 and β1 are the parameters that
characterize the true underlying relationship between Xi and Yi

1There are other (easier) ways to minimize this quantity, but you need to know some linear algebra
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3. εi is Normally distributed

4. εi have the same variance, σ2, for any value of Xi. Another way to say this is that Yi’s have homoscedastic
errors.

These assumptions may seem a bit idealistic for real-world data. However, without these assumptions, classical
inference on regression would be difficult. Modern techniques try to relax these assumptions by making weaker
assumptions about the structure of the relationship (e.g. nonparametric regression) or incorporating different
families of distributions for the errors (e.g. generalized linear models)

3.2 Inference about β̂0 and β̂1

From section 2, we learned how to obtain β̂0 and β̂1, estimates of the true underlying relationship based on the
sample. Because these estimates are derived from a random sample, they must have distributions associated with
them. These sampling distributions are listed below

Proposition 1. Under assumption 1, β̂0 and β̂1 are bivariate normals. Specifically,

β̂0 ∼ N
(
β0, σ

2

(
1

n
+
X̄2

Sxx

))
β̂1 ∼ N

(
β1, σ

2 1

Sxx

)
where Sxx =

∑n
i=1(Xi − X̄)2. Note that Sxx = (n− 1)σ̂2

xx

Based on proposition 1, we see that β̂0 and β̂1 are unbiased estimates for β0 and β1, assuming that assumption 1
holds. Also, we have sampling distributions for our estimators β̂0 and β̂1. Specifically, under assumption 1,

β̂0 − β0√
σ2
(

1
n + X̄2

Sxx

) ∼ N(0, 1) ,
β̂1 − β1√
σ2
(

1
Sxx

) ∼ N(0, 1)

However, unless σ2, the variance of the errors, are known, the above distributions are not true and we must
estimate σ2.

A natural estimator for σ2 is the variation around the actual Yi and the fitted line, or2

σ̂2 =
1

n− 2

n∑
i=1

(Yi − (β̂0 + β̂1Xi))
2 =

1

n− 2

n∑
i=1

r2
i (8)

Just like all of our estimators for variance in previous lectures, we can derive that

(n− 2)
σ̂2

σ2
∼ χ2

n−2

Furthermore, in the case where we derived the sampling distribution for the sample mean with unknown variance,
we have

β̂0 − β0√
σ̂2
(

1
n + X̄2

(n−1)σ̂2
x

) ∼ tn−2 ,
β̂1 − β1√

σ̂2
(

1
(n−1)σ̂2

x

) ∼ tn−2 (9)

With the sampling distributions for β̂0 and β̂1, we can ask a number of inference questions, for instance CIs of β̂0

and β̂1 or hypotheses regarding β0 and β1.

2σ̂2 can also be written as σ̂2 =MSE from our ANOVA table in table 1
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Example 3.1. Suppose we believe that there is no linear relationship between Xi and Yi. This hypothesis can be
written as

H0 : β1 = 0 vs. Ha : β1 6= 0

To test this hypothesis, we can compute the Type I Error from the sampling distributions we obtained in equation

P ( reject H0|H0 is true) = P


∣∣∣∣∣∣∣∣

β̂1 − β1√
σ̂2
(

1
(n−1)σ̂2

x

)
∣∣∣∣∣∣∣∣ >

∣∣∣∣∣∣∣∣
β̂1,obs − β1√
σ̂2
obs

(
1

(n−1)σ̂2
x

)
∣∣∣∣∣∣∣∣ |H0 is true



= P

|tn−2| >

∣∣∣∣∣∣∣∣
β̂1,obs − β1√
σ̂2
obs

(
1

(n−1)σ̂2
x

)
∣∣∣∣∣∣∣∣ |H0 is true


To obtain the p-value, we maximize the Type I Error. B because H0 is true only at β1, we can replace our β1 in
the expression above with β1 = 0 and get

P-value = P

|tn−2| >

∣∣∣∣∣∣∣∣
β̂1,obs√

σ̂2
obs

(
1

(n−1)σ̂2
x

)
∣∣∣∣∣∣∣∣


Example 3.2. Suppose we want to construct a 95% confidence interval for the intercept term β0. We have the
expression for the middle 95% quantiles of the tn−2 distribution.

P (tn−2,α/2 < tn−2 < tn−2,1−α/2) = P (tn−2,0.025 < tn−2 < tn−2,0.975) = 0.95 = 1− α

From the sampling distributions we obtained in equation , we can derive the following results

0.95 = P (tn−2,(0.025) < tn−2 < tn−2,(0.975))

= P

tn−2,(0.025) <
β̂0 − β0√

σ̂2
(

1
n + X̄2

(n−1)σ̂2
x

) < tn−2,(0.975)


= P

(
β̂0 − tn−2,(0.975)

√
σ̂2

(
1

n
+

X̄2

(n− 1)σ̂2
x

)
< β0 < β̂0 − tn−2,(0.025)

√
σ̂2

(
1

n
+

X̄2

(n− 1)σ̂2
x

))
(basic algebra here)

Using the fact that tn−2,(1−α/2) = −1∗tn−2,(α/2), we obtain the 95% CI , which is β̂0±tn−2,(0.975)

√
σ̂2
(

1
n + X̄2

(n−1)σ̂2
x

)
3.3 ANOVA Table and Goodness of Fit Test

In addition to using explicitly formulas for sampling distributions laid out in proposition 1, we can also summarize
the inference behind regression with an ANOVA table. ANOVA tables, in a nutshell, explains the variance of the
linear model. Using ANOVA tables l3 will be much easier for doing inference with regression, especially multiple
regression. A couple of remarks about the ANOVA table

1. MST is the estimate for the variance of Y . This is not the same as σ2! The variance of Y refers to just
looking at Y1, ..., Yn and computing the variance of (Y1, ..., Yn) without using Xis.

2. SST always has n− 1 degrees of freedom. This is from our lectures on sampling distribution for the sample
variance and how we lost a degree of freedom because we have to estimate one quantity, Ȳ , the center of Y,
in order to estimate the variation of Y around its center.

3I don’t know why people use SSR instead of SSM for ANOVA tables
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Sum of Squares (SS) Mean Sum of Squares (MS) Degrees of Freedom (DF)

Sum of Square Errors: SSE =
∑n

i=1(Yi − Ŷi)2 = r2
i MSE = SSE

DFE DFE = n− 2

Sum of Square Mode: SSR =
∑n

i=1(Ȳ − Ŷi)2 MSR = SSR
DFR DFR = 1

Sum of Square Total: SST =
∑n

i=1(Yi − Ȳ )2 MST = SST
DFT DFT = n− 1

Table 1: ANOVA Table for Simple Linear Regression

3. The number of degrees of freedom for each SS requires some thought about the number of estimates are in
the expression. For example, for SSE, we see that we are estimating two things, β0 and β1 and hence, we
lose two degrees of freedom from the sample, n − 2. For SSR, just take my word that it is the number of
parameters being estimated in addition to the intercept. In our case, it’ is the number of slope terms, or 1.

4. For any ANOVA table,
SST = SSE + SSR , DFE +DFR = DFT

The proof for SST = SSE + SSR is trivial and requires basic manipulation of quadratic expressions. On
the contrary, for the equality expression for the degrees of freedom, it’s easier to think about them in terms
of what’s being estimated in the square expression in the sum to justify the equality expression.

5. We can define the coefficient of determination, or R2. Intuitively, R2 measures the following how well a line
with a slope explains the relationship between X and Y , with the “wellness” measured in comparison to a
horizontal Ȳ line. Mathematically,

R2 = SSR/SST (10)

Because SSR ≤ SST , 0 ≤ R2 ≤ 1. An R2 = 0 would indicate that the slope is useless (or that there is
no relationship between X and Y . An R2 = 1 would indicate that SSE = 0 or that there is a perfect
relationship between X and Y . Interestingly enough,

R2 = ρ2
x,y

From the ANOVA table, we can perform inference just like we did in the previous section. Take a look at example
3.1. Here, we wanted to test whether a linear relationship exists between X and Y . Based on the ANOVA table,
R2 measures this relationship by comparing how well a line does in comparison to a horizontal line. Indeed, our
test statistic can also be based off of R2. Specifically, the test statistic F in

F =
SSR
DFR
SSE
DFE

∼ FDFR,DFE (11)

is known as the Goodness of Fit Test for regression. The p-value for this test matches that of example 3.1. In
fact, the value for F matches that of the t in previous regression set ups.

F =

 β̂1√
σ̂2
(

1
(n−1)σ̂2

x

)


2

3.4 Inference about prediction

Given a value Xi, you want to predict Yi based on the estimated relationship you obtained from your sample.
The natural thing to do is plug in Xi to the fitted line to obtain Ŷi, the predicted value for Xi. Ŷi is actually
the estimated mean value of the regression at the point Xi. That is, on average, the value of Y at Xi would
beE(Y |Xi) and an estimate of that average is the Ŷi we obtain from the sample.

Since Ŷi is an estimate of the mean of Y at Xi, there is always some uncertainty in this estimate. And where there
is uncertainty, we can create confidence intervals! The formula for the 1− α confidence interval is

Ŷi ± tn−2,(1−α/2)σ̂

√
1

n
+

(Xi − X̄)2

Sxx
(12)

5



The interpretation of this CI is the same as the interpretation of the CI for the population mean.

In addition to CIs, we also have prediction intervals, or PIs. 1 − α Prediction intervals are random intervals
where future observations will fall with 1− α probability. PIs have very straightforward and intuitive definitions,
in comparison to CIs because PIs claim that there is 1−α probability that a new observation will fall in the range
given by the interval. In contrast, CIs claim that the probability of the interval covering the parameter is 1− α;
for CIs, the probability is attached to the interval while the probability is attached to the object being covered,
the Ŷi.

The formula for 1− α prediction interval is

Ŷ ± tn−2,(1−α/2)σ̂

√
1 +

1

n
+

(Xi − X̄)2

Sxx
(13)

Notice that prediction intervals are larger than confidence intervals because in PIs, there is the uncertainty in not
only the interval, but also the object being covered, the Ŷi.

4 Diagnonstics

In this section, we’ll discuss techniques to verify assumptions of regression stated in 1 and remedy them whenever
possible. It is generally advised in applied statistics to check the assumptions in the following order

1. Homoscedasticity (i.e. common variance σ2

2. Linearity

3. Normal errors

4. Leverage points, influential points and outliers

Most of these assumptions, for better or worse, rely on looking at the residual plot, which is an x-y plot where x
represents the fitted values, Ŷi and the y represents the residuals of that fitted value, ri, (Ŷi, ri).

4.1 Homoscedasticity

Homescedasticity is the condition that all the variances of εi must be identical for every Xi. A violation of this
assumption means that some Xis have more variability in Yi measurements than other Xis. To check for violation
of this, we look for...

1. ...the scatterplot of (Xi, Yi) with the fitted line. From the perspective of the fitted line, if the points scatter
away in a ≺ as x increases, this implies that there is more variability in Y as X increases. To fix this,
transform your Yi by log(),

√
(), or 1/y. From the perspective of the fitted line, if the points scatter away

in a � as x decreases, this implies that there is more variability in Y as X decreases. To fix this, transform
your Yi by y2 or ey

2. ...the residual plot. From the perspective of the x axis, if the points scatter away in a ≺ as x increases, this
implies that there is more variability in Y as X increases. To fix this, transform your Yi by log(),

√
(), or

1/y. From the perspective of the x axis, if the points scatter away in a � as x decreases, this implies that
there is more variability in Y as X decreases. To fix this, transform your Yi by y2 or ey

4.2 Linearity

Linearity is the condition that there must exist an underlying linear relationship between X and Y , of which we
can estimate from the sample we collected. To check for this violation, we look for

1. the scatterplot of (Xi, Yi) with the fitted line. If the fit doesn’t “look right” and you see any nonlinear
relationships, there is reason to believe linearity of X and Y is violated. To fix this, transform your x based
on the rule given in lecture.
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2. the residual plot. If the residual plot has any nonlinear relationships with respect to the x axis, there is
reason to believe linearity of X and Y is violated. To fix this, transform your x based on the rule given in
lecture.

4.3 Normality

Regression assumes that εi are Normally distributed. To check for this, we resort to the residuals, which gives us
an idea of εi. In particular, we use a Normal QQ plot to check to see whether ris are Normally distributed or
not. If there is reason to believe that ris are not normally distributed from the QQ plot, we transform Yi based
on what type of deviation it is. These transformations are identical to those in the QQ plot lecture. That is, if
there is a right-skew, use log(),

√
(), 1/r transformations. If there is a left-skew, use r2 or exp().

4.4 Leverage and Influential Points, Outliers

Regression has three type of outliers we have to watch out for.

1. Regression Outliers (i.e. Outliers in Y ): These are outliers in the vertical direction (i.e. y-axis direction). To
check for presence of outliers, use a residual plot. In particular, check for large deviations in the y-direction.

2. Leverage point (i.e. Outliers in X): These are outliers in the horizontal direction (i.e. x-axis direction). To
check for presence of leverage points, use the (X,Y ) scatterplot and see which points are “far away” in the
x-axis. Also, leverage can be measured by the value known as Hii, which is a diagonal of a matrix known as
the Hat matrix. Leverage points are potential influential points.

3. Influential points: Influential points are leverage points where their removal would cause the fitted line to
change drastically. These changes are reflected in either drastically different β̂j , estimated variances of β̂j ,
p-values associated with testing the hypotheses H0 : βj = 0 vs. Ha : βj 6= 0, and estimates of σ̂2. Cook’s
Distance measures how influential each point. Each point has a Cook’s distance and it can be computed
using the formula

Di =

∑n
j=1(Ŷj − Ŷj,−i)2

2MSE
=

(Yi − Ŷi)2

2MSE

Hii

(1−Hii)2
(14)

where Ŷj,−i is the predicted value for the regression where the ith point is removed. Another way to interpret
this is that it is the squared difference in prediction between the regression with all the points included and
the regression with all but the ith point included. MSE is the MSE of the regression with all the points
included. Generally speaking, Di > 1 is considered an influential point.

When we discover outliers of these kind, the general advice is to remove them from the regression and refit the
line with the outliers removed.
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