Name: Quiz 1, Stat 431 (Summer 2012) July 8, 2012

- 1. (Population and Paramter/Sample and Statistic)
 - (a) (TRUE/FALSE): Parameters are random variables
 - (b) (TRUE/FALSE): The sample mean and the sample variance are random variables
 - (c) Suppose we have data listed as $(X_1, ..., X_n)$. Which of the following statistics are sensitive to outliers? Circle all that apply.
 - i. Sample mean, \bar{X}
 - ii. Sample median, $X_{0.5}$
 - iii. Sample variance, $\hat{\sigma}^2$
 - iv. Interquartile range, $X_{0.75} X_{0.25}$
 - v. The maximum, $\max(X_1, ..., X_n)$
- 2. Suppose we have $(X_1, ..., X_n)$ where $X_i \stackrel{\text{iid}}{\sim} F(\mu, \sigma^2)$ for some arbitrary F. In elementary statistics classes, there is no mathematical justification as to why $\frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is used instead of $\frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ in estimating the population variance, σ^2 . In these series of (hopefully) short questions, we'll provide one mathematical justification as why $\frac{1}{n-1}$ is preferred over $\frac{1}{n}$
 - (a) Is $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2$ an unbiased estimator for σ^2 ? A simple Yes/No will suffice.
 - (b) Is $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$ an unbiased estimator for σ^2 ? You must provide mathematical justification for your answer.
- 3. Suppose we have $(X_1, ..., X_n)$ where $X_i \stackrel{\text{iid}}{\sim} F(\mu, \sigma^2)$ for some arbitrary F and we know what the population mean, μ , is. Consider the following estimators for the population variance

Estimator 1:
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2$$

Estimator 2:
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

(a) Which estimator is an unbiased estimate for the population variance? You must provide mathematical justification for your answer

(b) If F is a normal distribution, what is the sampling distribution of the unbiased estimator? Hint: You may need some constants to be multiplied to your estimator and use the definition of Chi-square discussed in class

(c) If F is any arbitrary distribution, what is the limiting distribution of the unbiased estimator?

Hint: You may need some constants to be multiplied and added to your estimator before you use the Central Limit Theorem. The answer is NOT Chi-Squared, χ^2 .