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Abstract

We discuss another approach to estimating causal estimands based on the efficient influence function (EIF).

A lot of this document follows the beautiful exposition in [Kennedy| [2022]; this paper is especially useful if you
are already familiar with empirical processes. I also suggest reading [Hines et al.| [2022] if you want to dive into
the “mechanics” of constructing estimators based on the EIF and https://alejandroschuler.github.io/mci/
introduction-to-modern-causal-inference.html if you need a more comprehensive, but gentle introduction
to this topic. This document assumes that you have taken a Ph.D. course in mathematical statistics.

1

Review of Some Concepts

We review some concepts to help us understand influence functions.
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¢ O, and o, notation: Given a sequence of random variables X,, and a sequence of positive, fixed numbers

Tn, Xn = 0p(ry) means that X,, /r, — 0 in probability and X,, = O,(ry,) is X,,/r,, is bounded in probability,
i.e. Ve > 0, there exist M > 0 and N > 0 where P(|X,,/rn| > M) < € for all n > N. Some related results
include:

— X, = 0p(1) implies that X,, — 0 in probability.

— X, — X in distribution implies that X,, = O,(1).

— Op(ry) = 1,0,(1) and oy, (ry,) = 1,0,(1)
Taylor’s Theorem: Consider any function f : R — R and with at least 2 derivatives at and near the
neighborhood of zy. Then, we have
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where yiq is in between x and zg (i.e. in the neighhorhood of zp). Notably, this theorem implies that
when z deviates from xy by A, we have

Fleo+8) = [(w0) = f'(#0)A + 31" (emia) A7

The Approach

2.1 A Functional Perspective on Statistical Estimands

Suppose we are interested in studying some low-dimensional feature of a distribution F' where F' is the cumulative
distribution function. A bit more formally, we are interested in a functional ¥(F') : F — R where F denotes a
set of cumulative distribution functions. Some examples include:

e The population mean: (F) = E[O].

e The population variance: (F) = Var[O].

e Mean squared error of a fixed decision rule §: (F) = E[(O — §)?].
e The average treatment effect: ¢(F) =E[E[Y | A =1, X]].
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To study v, we take n i.i.d. samples Oy, ..., O, from a distribution ' € F. Note that we can obtain a uniformly
consistent estimate of I with the empirical cumulative distribution function, i.e. F, =n='>"  I1(0; <t) by
the Glivenko-Cantelli Theorem; in other words, with sufficient sample size, F' is reasonably close to F,.

Given this, a natural choice to estimate ¢(F) is to replace F' with F,, and study the behavior of

P(Fn) = (F) (1)

as I}, gets close to F'.

2.2 Derivative of ¢(-) and the influence function

Inspired by Taylor’s theorem, a natural way to study equation would be to conduct a version of Taylor
expansion of . This exercise requires extending the notion of differentiability of 1) with respect to a distribution
function F'. We define this derivative in two steps:

1. First, we describe how F' changes in the space of distribution functions F. Consider a small deviation from
F' in the form of F. = (1 —€)F + €d, = F' 4+ €(d, — F') where H € F and € > 0. Here, 0, is the diract delta
function at some support point o, i.e. §, = I(O = o).

2. Second, we then measure the infinitesimal change in v as it moves from F, to F":

IF (05, F) = limg S
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If this limit exists, this is called the influence curve of ¢ at the point F. More loosely stated, IF(o; 4, F) is
the derivative of the function ¢ at the point F. Note that the derivative 2 5- is the “usual” derivative from
calculus[1]

Some examples of this derivative are included below:
e Population mean: We have F, = (1 — €)F + €d,, Y(F.) = (1 — €)E[O] + €0, and ¢(F) = E[O]. Then

IF (0;4), F) = lim (1 - )E[0] + €0 —E[O]

e—0 € e—0 €
e Population variance: 1 (P) = Var[O] and 9(F.) = (1 — €)Var[O] + (o — E[O])?. Then,

TF(0; , F) — lim (1 — €)Var[O] + €(o — E[O])? — Var[O]

e—0 €

= (0o — E[0])? — Var[O]

e 7 estimator: Suppose E[g(O, 6*)] = 0 for some 6* and we are interested in estimating 6* = ¢(F'). Then,
Example 20.4 of van der vaart shows that

IF(0;¢), F) = —E [Vg(O,0)[g—p-] " g(0,0%).

o Average treatment effect. (F) =E[E[Y | A=1,X]]. Let y3 =E[Y | A=1,X]and n(X) = P(A=1]| X).
For pedagogy, we’ll assume the density of the distribution P(Y, A = 1, X) exists and is denoted by f(y, 1, x).
We also denote the density of F; as f.. Finally, we assume that we can exchange derivatives and integrals;
see below.

From the definition of conditional distributions, we arrive at
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Taking the derivative w.r.t. € and exchanging derivatives with integrals give us
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MIf it’s helpful, think of € as a parameter 6 of a distribution F.



Evaluating the derivative at e = 0 gives us
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2.3 Important Properties of Influence Functions

There are two key properties of the influence functions.

e The influence function has mean zero when the expectation is evaluated at F, i.e.

Erp[IF(O;¢, F)] =0
I add subscript F' in the expectation to emphasize that the expectation is evaluated with respect to F.
Because of this, Varg[IF(O; ), F)] = Ep[IF?(0; v, F)).

o If the tangent space (see below) is the entire Hilbert space of mean-zero, finite variance functions and the
influence function of ¢ at the point F' exists (see Theorem 4.4 of [Tsiatis| [2006]), this is the only influence
function (see Theorem 4.3 of [Tsiatis| [2006]). Roughly stated, if you find an influence function for v, this
is going to be the efficient influence function.

2.4 von Mises Expansion and the One-Step Estimator

Once we have a notion of a derivative for ¢(-), we can use an analogy of Taylor’s theorem on t(-). Specifically,
the von Mises expansion states that for two distributions F’, F' € P, the difference (F’) — ¢ (F') can be written
as

W(F') — (F) = / IF (0, F')(dF' — dF)o + R(F', F)
= —]EF[IF(O; P, F’)] + R(F/, F)

The term Ep[IF(O;, F')] represents the bias from plugging in F” instead of F' into the influence function. Note
that this term may still not go away if we replace F’ with the empirical cumulative distribution function F,,.
Then, a natural way to correct this plug-in bias is to add Ep[IF(O; ¢, F')] to ¢(F’), i.e. Y(F)+Eg[IF(O;, F')).

More formally, if we obtain O; K p , consider an estimate of F', say F, and the bias-corrected estimator of Y(F):
1< R

F)+ — IF(O;; ¢, F 3

+ 5 TR0 ) 3)

This is known as the one-step estimator. The asymptotic analysis of this estimator proceeds by looking at the



three terms (A), (B), and (C) described below:
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The term (A) is a mean-zero random variable and should behave like O,(1/y/n). The term (B) is an empirical
process term, which requires either Donsker conditions on IF (1), 13’) —1IF (¢, F) or sample splitting, to ensure that

it behaves like 0,(1/y/n). In particular, if F is constructed from an independent sample, say FL, Lemma 1 of
Kennedy| [2022] showed that

i=1

NG

In other words, we only need |[TF(O;; 4, F-) —IF(Oy; 4, F)||2 = 0,(1) in order for the second term to behave like
op(1/4/n). The term (C) requires a case-by-case analysis in order to ensure o,(1/y/n) and for some problems, it
can be annoying to deal with. Combined, the one-step estimator 1’s asymptotic variance is determined by the
first term.

3 Example with the ATE Estimator

X]. Throughout the exercise, we assume 0 < 7(X;). Suppose

Let (X)) =R[Y | A =1,X] and #(X) = E[
) [E[Y | A =1,X]] based on its influence function above, i.e.

we consider the one-step estimator for ¢(F') =

The term (A) behaves like a Normal random variable:
1 < , . = m (X,)) ,

where o2 is the variance of the influence function IF(O;; 1), F) evaluated at the true value F.
For the term (B), if we obtained an estimate of ji;(X;) and #(X;) from an independent sample, we only need
to study the behavior of the term

- (Aimﬁ()él)(Xi)) +ﬂ1(X,;)> _ <Ai(Yiﬂ(£1)(Xz‘)) + m(X¢)>
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As long as (a) both the estimated propensity score is bounded strictly away from 0 (b) the second moment of Y —
fi1(X;) is finite, and (c) the outcome regression estimator and the propensity score estimator are both consistent

(e [/ (X)— ul( Xi)l2 = 0p(1) and [|#(X;) ~7(Xi)[|2 = 0p(1)), we have |[IF(Os; ¢, ) ~IF(O39, F)|2 = 0p(1).



We remark that we can replace (c) with a condition where only one of the estimators are consistent. In this
case, IF (1), F) is replaced by IF (¢, Finis) where Fs denotes a model where either the propensity score or the
outcome regression is mis-specified

For the term (C), its explicit form can be derived from the definition of the remainder term in the von Mises
expansion:

R(F,F) = $(F) — (F) + Ep[IF(O; ¢, F]

—5r | (5007 — 7y ) (X)) n(x)

As long as (a) the estimated propensity score is bounded strictly away from 0, we have
|[R(F, F)| < Ollm(Xi) = #(X0) |2 - 111 (Xi) — o (X3) 2

and C' > 0 is some constant. Thus, as long as the product of these two estimates are of order o,(1/1/n), we get
the desired rate. We remark that this is where the term “doubly robust rates” arises.
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2If we do this, the term (A) still behaves like a mean-zero Normal random variable, albeit with a different variance.
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