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Abstract

We discuss another approach to estimating causal estimands based on the efficient influence function (EIF).
A lot of this document follows the beautiful exposition in Kennedy [2022]; this paper is especially useful if you
are already familiar with empirical processes. I also suggest reading Hines et al. [2022] if you want to dive into
the “mechanics” of constructing estimators based on the EIF and https://alejandroschuler.github.io/mci/

introduction-to-modern-causal-inference.html if you need a more comprehensive, but gentle introduction
to this topic. This document assumes that you have taken a Ph.D. course in mathematical statistics.

1 Review of Some Concepts

We review some concepts to help us understand influence functions.

• Op and op notation: Given a sequence of random variables Xn and a sequence of positive, fixed numbers
rn, Xn = op(rn) means thatXn/rn → 0 in probability andXn = Op(rn) isXn/rn is bounded in probability,
i.e. ∀ϵ > 0, there exist M > 0 and N > 0 where P (|Xn/rn| > M) < ϵ for all n > N . Some related results
include:

– Xn = op(1) implies that Xn → 0 in probability.

– Xn → X in distribution implies that Xn = Op(1).

– Op(rn) = rnOp(1) and op(rn) = rnop(1)

• Taylor’s Theorem: Consider any function f : R → R and with at least 2 derivatives at and near the
neighborhood of x0. Then, we have

f(x) = f(x0) + f ′(x0)(x− x0)︸ ︷︷ ︸
First order

+
1

2
f ′′(xmid)(x− x0)

2︸ ︷︷ ︸
Remainder R(f(x), f(x0))

where xmid is in between x and x0 (i.e. in the neighhorhood of x0). Notably, this theorem implies that
when x deviates from x0 by ∆, we have

f(x0 +∆)− f(x0) = f ′(x0)∆ +
1

2
f ′′(xmid)∆

2

2 The Approach

2.1 A Functional Perspective on Statistical Estimands

Suppose we are interested in studying some low-dimensional feature of a distribution F where F is the cumulative
distribution function. A bit more formally, we are interested in a functional ψ(F ) : F → R where F denotes a
set of cumulative distribution functions. Some examples include:

• The population mean: ψ(F ) = E[O].

• The population variance: ψ(F ) = Var[O].

• Mean squared error of a fixed decision rule δ: ψ(F ) = E[(O − δ)2].

• The average treatment effect: ψ(F ) = E[E[Y | A = 1, X]].
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To study ψ, we take n i.i.d. samples O1, . . . , On from a distribution F ∈ F . Note that we can obtain a uniformly
consistent estimate of F with the empirical cumulative distribution function, i.e. Fn = n−1

∑n
i=1 I(Oi ≤ t) by

the Glivenko-Cantelli Theorem; in other words, with sufficient sample size, F is reasonably close to Fn.
Given this, a natural choice to estimate ϕ(F ) is to replace F with Fn and study the behavior of

ψ(Fn)− ψ(F ) (1)

as Fn gets close to F .

2.2 Derivative of ψ(·) and the influence function

Inspired by Taylor’s theorem, a natural way to study equation (1) would be to conduct a version of Taylor
expansion of (1). This exercise requires extending the notion of differentiability of ψ with respect to a distribution
function F . We define this derivative in two steps:

1. First, we describe how F changes in the space of distribution functions F . Consider a small deviation from
F in the form of Fϵ = (1− ϵ)F + ϵδo = F + ϵ(δo − F ) where H ∈ F and ϵ ≥ 0. Here, δo is the diract delta
function at some support point o, i.e. δo = I(O = o).

2. Second, we then measure the infinitesimal change in ψ as it moves from Fϵ to F :

IF(o;ψ, F ) = lim
ϵ↓0

ψ(Fϵ)− ψ(F )

ϵ
=

δ

δϵ
ψ(Fϵ) |ϵ=0 (2)

If this limit exists, this is called the influence curve of ψ at the point F . More loosely stated, IF(o;ψ, F ) is
the derivative of the function ψ at the point F . Note that the derivative δ

δϵ is the “usual” derivative from
calculus.1

Some examples of this derivative are included below:

• Population mean: We have Fϵ = (1− ϵ)F + ϵδo, ψ(Fϵ) = (1− ϵ)E[O] + ϵo, and ψ(F ) = E[O]. Then

IF(o;ψ, F ) = lim
ϵ→0

(1− ϵ)E[O] + ϵo− E[O]

ϵ
= lim

ϵ→0

ϵ(o− E[O])

ϵ
= o− E[O]

• Population variance: ψ(P) = Var[O] and ψ(Fϵ) = (1− ϵ)Var[O] + ϵ(o− E[O])2. Then,

IF(o;ψ, F ) = lim
ϵ→0

(1− ϵ)Var[O] + ϵ(o− E[O])2 −Var[O]

ϵ
= (o− E[O])2 −Var[O]

• Z estimator: Suppose E[g(O, θ∗)] = 0 for some θ∗ and we are interested in estimating θ∗ = ψ(F ). Then,
Example 20.4 of van der vaart shows that

IF(o;ψ,F ) = −E [∇θg(O, θ)|θ=θ∗ ]
−1
g(o, θ∗).

• Average treatment effect. ψ(F ) = E[E[Y | A = 1, X]]. Let µ1 = E[Y | A = 1, X] and π(X) = P (A = 1 | X).
For pedagogy, we’ll assume the density of the distribution P (Y,A = 1, X) exists and is denoted by f(y, 1, x).
We also denote the density of Fϵ as fϵ. Finally, we assume that we can exchange derivatives and integrals;
see below.

From the definition of conditional distributions, we arrive at

ψ(Fϵ) =

∫ ∫
y
fϵ(y, 1, x)fϵ(x)

fϵ(1, x)
dydx

Taking the derivative w.r.t. ϵ and exchanging derivatives with integrals give us

δ

δϵ
ψ(Fϵ) =

∫ ∫
δ

δϵ

fϵ(y, 1, x)fϵ(x)

fϵ(1, x)
dydx

=

∫ ∫ (
y(I(y, 1, x)− f(y, 1, x))fϵ(x)

fϵ(1, x)
+
yfϵ(y, 1, x)(I(x)− f(x))

fϵ(1, x)
− yfϵ(y, 1, x)fϵ(x)(I(1, x)− f(1, x))

f2ϵ (1, x)

)
dydx

1If it’s helpful, think of ϵ as a parameter θ of a distribution F .
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Evaluating the derivative at ϵ = 0 gives us

δ

δϵ
ψ(Fϵ) |ϵ=0

=

∫ ∫ (
y(I(y, 1, x)− f(y, 1, x))f(x)

f(1, x)
+
yf(y, 1, x)(I(x)− f(x))

f(1, x)
− yf(y, 1, x)f(x)(I(1, x)− f(1, x))

f2(1, x)

)
dydx

=

∫ ∫
y
f(y, 1, x)f(x)

f(1, x)

[(
I(y, 1, x)

f(y, 1, x)
− 1

)
+

(
I(x)

f(x)
− 1

)
−
(
I(1, x)

f(1, x)
− 1

)]
dydx

=

∫ ∫
y
f(y, 1, x)f(x)

f(1, x)

[
I(y, 1, x)

f(y, 1, x)
+
I(x)

f(x)
− I(1, x)

f(1, x)
− 1

]
dydx

=
I(A = 1)

π(x)
(y − µ1(x)) + µ1(x)− E[µ1(X)]

2.3 Important Properties of Influence Functions

There are two key properties of the influence functions.

• The influence function has mean zero when the expectation is evaluated at F , i.e.

EF [IF(O;ψ, F )] = 0

I add subscript F in the expectation to emphasize that the expectation is evaluated with respect to F .
Because of this, VarF [IF(O;ψ,F )] = EF [IF

2(O;ψ, F )].

• If the tangent space (see below) is the entire Hilbert space of mean-zero, finite variance functions and the
influence function of ψ at the point F exists (see Theorem 4.4 of Tsiatis [2006]), this is the only influence
function (see Theorem 4.3 of Tsiatis [2006]). Roughly stated, if you find an influence function for ψ, this
is going to be the efficient influence function.

2.4 von Mises Expansion and the One-Step Estimator

Once we have a notion of a derivative for ψ(·), we can use an analogy of Taylor’s theorem on ψ(·). Specifically,
the von Mises expansion states that for two distributions F ′, F ∈ P, the difference ψ(F ′)−ψ(F ) can be written
as

ψ(F ′)− ψ(F ) =

∫
IF(o;ψ,F ′)(dF ′ − dF )o+R(F ′, F )

= −EF [IF(O;ψ,F ′)] +R(F ′, F ).

The term EF [IF(O;ψ, F ′)] represents the bias from plugging in F ′ instead of F into the influence function. Note
that this term may still not go away if we replace F ′ with the empirical cumulative distribution function Fn.

Then, a natural way to correct this plug-in bias is to add EF [IF(O;ψ, F ′)] to ψ(F ′), i.e. ψ(F ′)+EF [IF(O;ψ,F ′)].

More formally, if we obtain Oi
iid∼ F , consider an estimate of F , say F̂ , and the bias-corrected estimator of ψ(F ):

ψ̂ = ψ(F̂ ) +
1

n

n∑
i=1

IF(Oi;ψ, F̂ ) (3)

This is known as the one-step estimator. The asymptotic analysis of this estimator proceeds by looking at the
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three terms (A), (B), and (C) described below:

ψ̂ − ψ(F ) = ψ(F̂ ) +
1

n

n∑
i=1

IF(Oi;ψ, F̂ )− ψ(F )

= ψ(F̂ ) + EF [IF(O;ψ, F̂ )]− ψ(F )︸ ︷︷ ︸
R(F̂ ,F )

+EF [IF(O;ψ, F̂ )]− 1

n

n∑
i=1

IF(Oi;ψ, F̂ )

=
1

n

n∑
i=1

IF(Oi;ψ, F )− EF [IF(Oi;ψ,F )]︸ ︷︷ ︸
(A)

+
1

n

n∑
i=1

[
IF(Oi;ψ, F̂ )− IF(Oi;ψ,F )

]
− EF

[
IF(Oi;ψ, F̂ )− IF(Oi;ψ,F )

]
︸ ︷︷ ︸

(B)

+R(F̂ , F )︸ ︷︷ ︸
(C)

The term (A) is a mean-zero random variable and should behave like Op(1/
√
n). The term (B) is an empirical

process term, which requires either Donsker conditions on IF(ψ, F̂ )− IF(ψ,F ) or sample splitting, to ensure that
it behaves like op(1/

√
n). In particular, if F̂ is constructed from an independent sample, say F̂⊥, Lemma 1 of

Kennedy [2022] showed that

1

n

n∑
i=1

[
IF(Oi;ψ, F̂

⊥)− IF(Oi;ψ, F )
]
−EF

[
IF(Oi;ψ, F̂

⊥)− IF(Oi;ψ, F )
]
= Op

(
∥IF(Oi;ψ, F̂

⊥)− IF(Oi;ψ, F )∥2√
n

)

In other words, we only need ∥IF(Oi;ψ, F̂
⊥)− IF(Oi;ψ, F )∥2 = op(1) in order for the second term to behave like

op(1/
√
n). The term (C) requires a case-by-case analysis in order to ensure op(1/

√
n) and for some problems, it

can be annoying to deal with. Combined, the one-step estimator ψ̂’s asymptotic variance is determined by the
first term.

3 Example with the ATE Estimator

Let µ̂1(X) = Ê[Y | A = 1, X] and π̂(X) = Ê[A | X]. Throughout the exercise, we assume 0 < π(Xi). Suppose
we consider the one-step estimator for ψ(F ) = E[E[Y | A = 1,X]] based on its influence function above, i.e.

ψ̂ =
1

n

n∑
i=1

I(Ai = 1)

π̂(Xi)
(Yi − µ̂1(Xi)) + µ̂1(Xi)

The term (A) behaves like a Normal random variable:

1√
n

n∑
i=1

IF(Oi;ψ, F )− EF [IF(Oi;ψ,F )] =
1√
n

n∑
i=1

(
Ai(Yi − µ1(Xi))

π(Xi)
+ µ1(Xi)− E[µ1(Xi)]

)
→ N(0, σ2)

where σ2 is the variance of the influence function IF (Oi;ψ, F ) evaluated at the true value F .
For the term (B), if we obtained an estimate of µ̂1(Xi) and π̂(Xi) from an independent sample, we only need

to study the behavior of the term

IF(Oi;ψ, F̂
⊥)− IF(Oi;ψ,F )

=

(
Ai(Yi − µ̂1(Xi))

π̂(Xi)
+ µ̂1(Xi)

)
−
(
Ai(Yi − µ1(Xi))

π(Xi)
+ µ1(Xi)

)
=

(
1− Ai

π(Xi)

)
(µ̂1(Xi)− µ1(Xi)) +

Ai(Yi − µ̂1(Xi))(π(Xi)− π̂(Xi))

π̂(Xi)π(Xi)

As long as (a) both the estimated propensity score is bounded strictly away from 0 (b) the second moment of Y −
µ̂1(Xi) is finite, and (c) the outcome regression estimator and the propensity score estimator are both consistent
(i.e. ∥µ̂1(Xi)−µ1(Xi)∥2 = op(1) and ∥π̂(Xi)−π(Xi)∥2 = op(1)), we have ∥IF(Oi;ψ, F̂

⊥)−IF(Oi;ψ, F )∥2 = op(1).
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We remark that we can replace (c) with a condition where only one of the estimators are consistent. In this
case, IF(ψ,F ) is replaced by IF(ψ,Fmis) where Fmis denotes a model where either the propensity score or the
outcome regression is mis-specified.2

For the term (C), its explicit form can be derived from the definition of the remainder term in the von Mises
expansion:

R(F̂ , F ) = ψ(F̂ )− ψ(F ) + EF [IF(O;ψ, F̂ ]

= EF

[(
1

π̂(Xi)
− 1

π(Xi)

)
(µ1(Xi)− µ̂1(Xi))π(Xi)

]
.

As long as (a) the estimated propensity score is bounded strictly away from 0, we have

|R(F̂ , F )| ≤ C∥π(Xi)− π̂(Xi)∥2 · ∥µ1(Xi)− µ̂1(Xi)∥2

and C > 0 is some constant. Thus, as long as the product of these two estimates are of order op(1/
√
n), we get

the desired rate. We remark that this is where the term “doubly robust rates” arises.
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