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Review: Strong Ignorability and Observational Studies
In the previous lecture, we identified various causal estimands under
the following set of assumptions:

▶ (A1, SUTVA): Y = AY (1) + (1 − A)Y (0)
▶ (A2, Conditional randomization of A): A ⊥ Y (1), Y (0)|X
▶ (A3, Positivity/Overlap): 0 < P(A = 1|X = x) < 1 for all x

Let µa(X ) = E[Y | A = a, X ]. Under conditions (A1)-(A3), we
showed that the ATE can be identified as

ATE = E[Y (1) − Y (0)]
= E[E[Y | A = 1, X ]] − E[E[Y | A = 0, X ]]
= E[µ1(X )] − E[µ0(X )].

In observational studies, these assumptions state that the
investigator measured all variables that make assumptions (A2) and
(A3), also known as strong ignorability, plausible.

Clearly, this is a simplification of actual practice and strong
ignorability is unlikely to hold in an observational study.



Some Examples of When Strong Ignorability Fails
Unmeasured confounding in an observational study: People select
themselves into treatment (or control) based on what we can
measure X and what we cannot measure U. Had we measured both
X and U, strong ignorability would hold, i.e.

(B2) : A ⊥ Y (1), Y (0)|X , U and (B3) : 0 < P(A = 1|X = x , U = u) < 1 for all x , u

Imperfect randomized experiment: Suppose we run a randomized
experiment to study the causal effect of a new drug.

▶ Individuals are randomized to get the new drug or the placebo.

▶ After randomization, individuals may decide to not take the
new drug (or the placebo)

▶ If we want to identify the causal effect of actually taking the
new drug, the treatment receipt is no longer random.

▶ If we want to identify the causal effect of being assigned to to
the new drug, the treatment assignment is random and (A1),
(A2c), (A3c) holds if A is defined as the initial trt. assignment.



Consequences of Violating Strong Ignorability
In both examples, we no longer have
ATE = E[Y (1) − Y (0)] ̸= E[µ1(X )] − E[µ0(X )].

To understand the consequences of violating strong ignorability,
suppose conditions (B2) and (B3) hold and let
µa(X , U) = E[Y | A = a, X , U].

Then, from lecture notes, we get that the causal bias of identifying
the ATE based on assumptions (A1), (A2), and (A3) (i.e. via
E[µ1(X ) − µ0(X )]) even though in reality, assumptions (B2) and
(B3) hold is

ATE − E[µ1(X ) − µ0(X )]︸ ︷︷ ︸
"Causal bias"

=E[{µ1(X , U) − µ0(X , U)}︸ ︷︷ ︸
CATE of X and U

− {µ1(X ) − µ0(X )}︸ ︷︷ ︸
CATE of X

]

CATE stands for conditional average treatment effect that we
discussed from the previous lecture.



Consequences of Violating Strong Ignorability

There are some interesting implications of this “causal bias” formula.

▶ If the CATE of X and U does not vary too much as a function
of the unmeasured variable U, µ1(X , U) − µ0(X , U) will be
close to µ1(X ) − µ0(X ) and we would have a small causal bias.

▶ Suppose the difference between µa(X , U) and µa(X ) is at most
Γ ≥ 0, i.e. |µa(X , U) − µa(X )| ≤ Γ for all X , U, a. Then, we
can get a lower and upper bound of the ATE based on only
observed data:

E[µ1(X ) − µ1(X )] − 2Γ ≤ ATE ≤ E[µ1(X ) − µ1(X )] + 2Γ



Identification Without Strong Ignorability:
Instrumental Variables (IVs)



Identification Without Strong Ignorability: Instrumental
Variables (IVs)

Instrumental variables (IVs) are popular approaches to identify a
causal estimand when (A2) and (A3) does not hold; see Hernán and
Robins (2006) and Baiocchi, Cheng, and Small (2014) for a more
completely review.

Roughly speaking, an instrument relies on finding a variable Z ,
called an instrument where

▶ Z is related to the treatment,
▶ Z is independent from all unmeasured confounders that affect

the outcome and the treatment, and
▶ Z is related to the outcome via the treatment.

Here, we discuss two approaches to making the above statements
precise: (1) randomized encouragement designs (i.e. monotonicity)
and (2) no additive interactions approach



Motivation: Causal Effect of Smoking During Pregnancy
(Sexton and Hebel (1984), Permutt and Hebel (1989))

Sexton and Hebel (1984) wanted to study the causal effect of
maternal smoking on birth weight.

Because randomizing pregnant mothers to smoking (or
non-smoking) is unethical, they considered an experimental design
that randomized the encouragement to pregnant mothers to quit
smoking.

1. Randomly assign some mothers to an encouragement
intervention (i.e. Z = 1) or the usual care (i.e. Z = 0). The
encouragement intervention involved encouraging mothers to
not smoke through information, support, etc. We refer to Z as
the treatment assignment variable.

2. Observe their smoking status, denoted as A ∈ {0, 1} where
A = 1 denotes not smoking and A = 0 denotes smoking. We
refer to A as treatment receipt.

3. Observe the weight of the newborn, denoted as Y .



Data



Defining Counterfactuals
Let A(z) denote the counterfactual treatment receipt under
treatment variable z .

Let Y (a, z) denote the counterfactual outcome under treatment
variable z and treatment receipt a. In the maternal smoking
example:

▶ A(1): Counterfactual smoking status if the mother was
encouraged to stop smoking

▶ A(0): Counterfactual smoking status if the mother was not
encouraged to stop smoking (i.e. usual care)

▶ Y (1, 1): Counterfactual birthweight if the mother was
encouraged to stop smoking and the mother stopped smoking

▶ Y (1, 0): Counterfactual birthweight if the mother was under
the usual care and the mother stopped smoking

▶ Y (0, 1): Counterfactual birthweight if the mother was
encouraged to stop smoking and the mother kept smoking

▶ Y (0, 0): Counterfactual birthweight if the mother was under
the usual care and the mother kept smoking



Assumptions Behind Randomized Encouragement Designs
Randomized encouragement designs satisfy the following:

▶ (IV1, SUTVA): A = ZA(1) + (1 − Z )A(0) and
Y = ZY (A(1), 1) + (1 − Z )Y (A(0), z)

▶ (IV2, Ignorable instrument):
Z ⊥ Y (1, 1), Y (1, 0), Y (0, 1), Y (0, 0), A(1), A(0)

▶ (IV3, Overlap, positivity on instrument): 0 < P(Z = 1) < 1

Assumption (IV1) says we observe counterfactuals that correspond
to instrument/encouragement Z . Notably, we only get to observe
Y (a, z) that corresponds to Z = z and a = A(Z ).

Assumption (IV2) says that the instrument/encouragement was
completely randomized.

Assumption (IV3) says that all values of the instrument has a
non-zero probability of being realized.

Assumptions (IV1)-(IV3) are similar to (A1)-(A3) where Z is
replaced by A and we have more counterfactual outcomes.



Missing Data Perspective

We can also interpret assumptions (IV1), (IV2), and (IV3) using the
data table that includes both counterfactuals and observed variables:

Y (1, 1) Y (1, 0) Y (0, 1) Y (0, 0) A(1) A(0) Z Y A

Chloe 15 NA NA NA 1 NA 1 30 1
Sally NA NA 20 NA 0 NA 1 20 0
Kate NA NA NA 18 NA 0 0 18 0
Julie NA 25 NA NA NA 1 0 25 1

The variables Z and A both serve as missing indicators.

But, we only assume something about the missingness on Z via
(IV2) and (IV3); we don’t make any assumptions about the
missingness on A.



Missing Data Perspective

Y (1, 1) Y (1, 0) Y (0, 1) Y (0, 0) A(1) A(0) A Z Y

Chloe 15 NA NA NA 1 NA 1 1 30
Sally NA NA 20 NA 0 NA 0 1 20
Kate NA NA NA 18 NA 0 0 0 18
Julie NA 25 NA NA NA 1 1 0 25

▶ (IV2) and (IV3) say that the missingness in the columns A(1)
and A(0) are completely at random (MCAR). This implies that
identifying the causal effect of Z on A can be identified.

▶ But, the missingness in the columns of Y (·) may not be
entirely random. For the missingness in all Y (·) columns to be
random, we have to assume that
A, Z ⊥ Y (1, 1), Y (1, 0), Y (0, 1), Y (0, 0).



Conditional Versions of (IV2) and (IV3)

Assumptions (IV2) and (IV3) can have conditional counterparts that
condition on X , i.e.

▶ (IV2c): Z ⊥ Y (1, 0), Y (0, 1), Y (0, 0), A(1), A(0) | X
▶ (IV3c): 0 < P(Z = 1 | X = x) < 1 for all x

These conditional versions of (IV2) and (IV3) would be plausible if
the investigator conducted a stratified randomized encouragement
design where randomization of Z was done within pre-defined blocks
of individuals defined by X .

This is akin to the stratified randomized experiment from the
previous lecture.



IV Under Randomized Encouragement Designs

One way to formalize the definition of an instrument under a
randomized encouragement design is as follows:

▶ (IV4, Non-zero causal effect): E[A(1) − A(0)] ̸= 0
▶ (IV5, Exclusion restriction): Y (a, 1) = Y (a, 0) = Y (a) for all a
▶ (IV6, Monotonicity/No Defiers): P(A(1) ≥ A(0)) = 1

Assumption (IV4) states that the instrument has a non-zero,
average effect on the treatment receipt.

In the maternal smoking example, (IV4) states that the
encouragement intervention caused more mothers to quit smoking
during pregnancy.

Under (IV1)-(IV3), this assumption can be re-written based on the
observed data,
i.e. E[A(1) − A(0)] = E[A | Z = 1] − E[A | Z = 0] ̸= 0,



(IV5, Exclusion Restriction): Y (a, 1) = Y (a, 0) = Y (a)

(IV5) that after fixing a, the counterfactual outcomes are identical
between z = 1 and z ′ = 0.

In the maternal smoking example, (IV5) states that after fixing the
mother’s smoking status, whether the mother was encouraged or
not does not affect the birthweight of the newborn.

▶ Unlike (IV4), (IV5) cannot be written as a function of the
observed data because we cannot obseve both Y (a, 1) and
Y (a, 0).

▶ In other words, (IV5) cannot be directly assessed with the
observed data, but testable implications exist

▶ (IV5) is the most controversial assumption in IV as the other
assumptions (IV1)-(IV4) and (IV6) can be satisfied by a
randomized encouragement design or be directly tested
(e.g. (IV4)).



(IV6, Monotonicity) P(A(1) ≥ A(0)) = 1 and Compliance
It’s useful to interpret (IV6) by partitioning individuals based on
their counterfactual A(1), A(0)

A(0) A(1) Type

1 1 Always-taker
0 1 Complier
1 0 Defier
0 0 Never-taker

▶ Always-takers are mothers who smoke irrespective of whether
they were under the encouragement intervention or not.

▶ Compliers are mothers who do not smoke when they were
under the encouragement intervention, but smoke if they were
under the usual care.

▶ Never-takers are mothers who never smoke irrespective of
encouragement status.

▶ Defiers are mothers who do not smoke when they are under the
usual care, but smoke when they are encouraged to not smoke.



(IV6, Monotonicity)

A(0) A(1) Type

1 1 Always-taker
0 1 Complier
1 0 Defier
0 0 Never-taker

Assumption (IV6) rules out the existence of defiers in the study
population.

An important point from the table is that we cannot classify
everyone in the population as always-takers, compliers, and
never-takers as this requires observing both A(1) and A(0).

However, we can identify the column means of A(1) and A(0) from
(IV1)-(IV3), which allows us to identify the proportion of
compliance types under (IV6).



Formal Proof of Identifying Proportion of Compliance Types
Under (IV1)-(IV3), we have E[A(1)] = E[A | Z = 1] and
E[A(0)] = E[A | Z = 0]

Under (IV6) where defiers do not exist, we can identify the
proportion of always-takers and never-takers as

P(Always − takers) = P(A(0) = 1) (IV6)
= E[A | Z = 0] (IV1)-(IV3)

P(Never − takers) = P(A(1) = 0) (IV6)
= 1 − P(A(1) = 1)
= 1 − E[A | Z = 1] (IV1)-(IV3)

We can identify the proportion of compliers as one minus the
proportion of always-takers and never-takers:

P(Compliers)
=1 − (P(Always − takers) + P(Never − takers)) (IV6)
=E[A | Z = 1] − E[A | Z = 0] See above



One-Sided Noncompliance
In some experimental designs, we can enforce (IV6) by blocking
access to treatment for all individuals who are randomized to the
control Z = 0, i.e.,

▶ (IV6.0 One-Sided Noncompliance): A(0) = 0

One-sided non-compliance is plausible in settings where Z
represents a new program under evaluation and A represents the
actual enrollment into the new program.

▶ In these settings, those who are not randomized into the new
program (i.e Z = 0) usually cannot enroll into the new
program.

▶ In contrast, those who are randomized into the new program
(i.e Z = 1) can choose to enroll (i.e A = 1) or not enroll
(i.e. A = 0) into the program.

Note that (IV6.0) implies (IV6).



Causal Estimand: The Local Average Treatment Effect
(LATE)

With assumptions (IV1)-(IV6), we can identify the average
treatment effect among compliers. This quantity is sometimes
referred to the local average treatment effect (LATE):

LATE = E[Y (1) − Y (0) | A(1) = 1, A(0) = 0]

In the maternal smoking example, LATE is the average effect of
smoking during pregnancy among complier mothers

▶ We cannot identify the different types of individuals
(i.e. compliers, always-takers, and never-takers).

▶ In other words, LATE identifies the average treatment effect
among a subgroup defined by latent classes.

▶ In contrast, the CATE identifies the average treatment effect
among a subgroup of individuals defined by observed X .

▶ There is a healthy debate about whether LATE is a useful
estimand or not; see lecture notes.



Proof of Identifying the LATE
We will show that

LATE = E[Y (1) − Y (0)|A(1) − A(0) = 1] = E[Y | Z = 1] − E[Y | Z = 0]
E[A | Z = 1] − E[A | Z = 0]

First, we have

E[Y | Z = 1] = E[ZY (A(1), 1) + (1 − Z )Y (A(0), 0) | Z = 1] (IV1)
= E[Y (A(1), 1) | Z = 1]
= E[Y (1, 1)A(1) + Y (0, 1)(1 − A(1)) | Z = 1]
= E[Y (1, 1)A(1) + Y (0, 1)(1 − A(1))] (IV2)
= E[Y (1)A(1) + Y (0)(1 − A(1))] (IV5)

Note that (IV3) is needed to ensure that the conditional expectation
that conditions on {Z = 1} is well-defined.

By a similar argument, we have
E[Y | Z = 0] = E[Y (1)A(0) + Y (0)(1 − A(0))].



Proof of Identifying the LATE

Second, we take the difference between the two expectations

E[Y | Z = 1] − E[Y | Z = 0]
=E[{Y (1)A(1) + Y (0)(1 − A(1))} − {Y (1)A(0) + Y (0)(1 − A(0))}]
=E[Y (1){A(1) − A(0)} − Y (0){A(1) − A(0)}]
=E[{Y (1) − Y (0)}{A(1) − A(0)}]
=E[{Y (1) − Y (0)}I(A(1) − A(0) = 1)

+ {Y (1) − Y (0)}I(A(1) − A(0) = −1)]
=E[Y (1) − Y (0)|A(1) − A(0) = 1]P(A(1) − A(0) = 1) (IV6)

The last equality also uses the definition of conditional expectation.



Proof of Identifying the LATE
We can also take the difference between E[A | Z = 1] and
E[A | Z = 0]:

E[A | Z = 1] − E[A | Z = 0]
=E[A(1) − A(0)] (IV1)-(IV3)
=P(A(1) − A(0) = 1) (IV6)

Finally, under (IV4), we can take the ratio of the two differences
and the denominator of this ratio is non-zero and arrive at

E[Y | Z = 1] − E[Y | Z = 0]
E[A | Z = 1] − E[A | Z = 0]

=E[Y (1) − Y (0)|A(1) − A(0) = 1]P(A(1) − A(0) = 1)
P(A(1) − A(0) = 1)

=E[Y (1) − Y (0)|A(1) − A(0) = 1]
=LATE



IV Defined Under No Additive Interaction Assumption
Roughly speaking, the no additive interaction framework does not
necessarily assume the existence of the counterfactual A(z).

Instead, I like to think of this framework as treating the instrument
as a special, pre-treatment covariate Z that is endowed with the
following properties.

▶ (JV1, Causal consistency): Y = Y (A, Z )
▶ (JV2, Exhcangeable instrument):

Z ⊥ Y (1, 1), Y (1, 0), Y (0, 1), Y (0, 0)
▶ (JV3, Positivity): 0 < P(Z = 1) < 1
▶ (JV4, Instrument relevance) Z ̸⊥ A
▶ (JV5, Exclusion restriction) Y (a, 1) = Y (a, 0) = Y (a) for all a
▶ (JV6, No additive interaction) Suppose (JV5) holds. We have

E[Y (1) − Y (0)|Z = 1, A = 1] = E[Y (1) − Y (0)|Z = 0, A = 1]

Assumption (JV1) and (JV2) are similar to assumptions (IV1) and
(IV2), except that assumptions about the counterfactual A(z) are
no longer present.



Assumptions (JV1)-(JV3)

▶ (JV1, Causal consistency): Y = Y (A, Z )
▶ (JV2, Exhcangeable instrument):

Z ⊥ Y (1, 1), Y (1, 0), Y (0, 1), Y (0, 0)
▶ (JV3, Positivity): 0 < P(Z = 1) < 1

Assumption (JV1) and (JV2) are similar to assumptions (IV1) and
(IV2), except that assumptions about the counterfactual A(z) are
no longer present.

Assumption (JV3) and (IV3) are identical.

Also, similar to assumptions (IV2.c) and (IV3.c), we can create
conditional versions of (JV2) and (JV3), i.e.:

▶ (JV2.c) Z ⊥ Y (1, 1), Y (1, 0), Y (0, 1), Y (0, 0) | X
▶ (JV3.c) 0 < P(Z = 1 | X = x) < 1 for all x



Assumptions (JV4) and (JV5)

▶ (JV4, Instrument relevance) Z ̸⊥ A

▶ (JV5, Exclusion restriction) Y (a, 1) = Y (a, 0) = Y (a) for all a

Assumption (JV4) states that the instrument is associated with A.

In contrast to assumption (IV4), we do not necessarily need to have
a causal effect of Z on A.

Assumption (JV5) is identical to (IV5).



Assumption (JV6)
▶ (JV6, No additive interaction) Suppose (JV5) holds. We have

E[Y (1) − Y (0)|Z = 1, A = 1] = E[Y (1) − Y (0)|Z = 0, A = 1]

Assumption (JV6) can be interpreted by writing out a saturated
model of the conditional expectation in (JV6).

E[Y (1) − Y (0) | Z = z , A = 1] = β0 + β1z

The term β0 represents the ATT among individuals with Z = 0 and
the term β0 + β1 represents the ATT among individuals with Z = 1.

Assumption (JV6) can be rewritten as

E[Y (1)−Y (0) | Z = 1, A = 1]−E[Y (1)−Y (0) | Z = 0, A = 1] = β1 = 0

In other words, the no additive interaction effect says that the ATT
effect is the same among individuals with Z = 0 and Z = 1.



Formal Proof that No Additive Interaction IV Identifies the
ATT

Under (JV1-JV6), we can identify the ATT using the same ratio:

ATT = E[Y | Z = 1] − E[Y | Z = 0]
E[A | Z = 1] − E[A | Z = 0]

We begin with the numerator of this ratio.
E[Y | Z = z]

=E[Y (A, Z) | Z = z] (JV1)
=E[Y (A) | Z = z] (JV5)
=E[Y (1) | Z = z, A = 1]P(A = 1 | Z = z)

+ E[Y (0) | Z = z, A = 0]P(A = 0 | Z = z)
=E[Y (1) − Y (0) | Z = z, A = 1]P(A = 1 | Z = z)

+ E[Y (0) | Z = z, A = 1]P(A = 1 | Z = z)
+ E[Y (0) | Z = z, A = 0]P(A = 0 | Z = z)

=E[Y (1) − Y (0) | Z = z, A = 1]P(A = 1 | Z = z) + E[Y (0) | Z = z]
=E[Y (1) − Y (0) | Z = z, A = 1]P(A = 1 | Z = z) + E[Y (0)] (JV2)

(JV3) ensures well-defined conditional expectation.



Proof Continued

Taking the difference E[Y | Z = 1] − E[Y | Z = 0] yields

E[Y | Z = 1] − E[Y | Z = 0]
=E[Y (1) − Y (0) | Z = 1, A = 1]P(A = 1 | Z = 1)

− E[Y (1) − Y (0) | Z = 0, A = 1]P(A = 1 | Z = 0)
=E[Y (1) − Y (0) | Z = 0, A = 1] (P(A = 1 | Z = 1) − P(A = 1 | Z = 0)) (JV6)

Dividing this by the P(A = 1 | Z = 1) − P(A = 1 | Z = 0), which
must be non-zero by assumption (JV4).

Finally, under (JV6), we have
E[Y (1) − Y (0) | Z = 0, A = 1] = E[Y (1) − Y (0) | A = 1] and we
arrive at the desired result
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