Causal Inference: Estimation via Z Estimators

Hyunseung Kang

April 24, 2024

Abstract

Once the causal estimand is identified (i.e. the causal estimand is a function of the observed data), the next natural step is to estimate it with data. Here, we discuss an estimation approach using Z estimators. We'll first review Z estimators. Next, we'll show how to frame estimation of causal estimands as an instance of an Z estimation problem. This document assumes that you have taken an undergraduate course in mathematical statistics and an undergraduate course in linear algebra.

1 Review: Causal Identification

Causal identification is the exercise of equating a causal estimand into another estimand that is defined with only the observed data only. For example, we identified the average treatment effect under strong ignorability (i.e. $Y(1), Y(0) \perp A \mid X$ and $0<P(A=1 \mid X=x)<1$ for all x) and SUTVA (i.e $Y=A Y(1)+(1-A) Y(0))$ as follows:

$$
\mathrm{ATE}=\mathbb{E}[Y(1)-Y(0)]=\mathbb{E}\left[\mu_{1}(X)-\mu_{0}(X)\right], \quad \mu_{a}(X)=\mathbb{E}[Y \mid A=a, X]
$$

Once the causal estimands is identified, estimation focuses on estimating the estimand defined with the observed data, often referred to as a functional of the observed data. In the ATE example above, estimation involves estimating the functional $\mathbb{E}\left[\mu_{1}(X)-\mu_{0}(X)\right]$, which only consists of the observed data. We discuss how to do this using Z estimators. Throughout the document, we assume that we collect n i.i.d. samples from some common distribution.

2 Review: Z Estimators

2.1 Definition and Examples

Suppose we observe n i.i.d. samples of data $O_{1}, \ldots, O_{n} \stackrel{\text { iid }}{\sim} F$ from some distribution, denoted as F; note that O_{i} can be a scalar or a vector. Consider an estimator $\hat{\boldsymbol{\theta}}$ that satisfies the following equation:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} f\left(O_{i}, \hat{\theta}\right)=0, \quad f\left(O_{i}, \boldsymbol{\theta}\right) \in \mathbb{R}^{m}, \theta \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

where R_{n} is a sequence of random variables. Some estimators that satisfy equation (1) include

1. The sample mean can be written as

$$
\frac{1}{n} \sum_{i=1}^{n} O_{i}-\hat{\theta}=0, \quad f\left(O_{i}, \mu\right)=O_{i}-\theta, m=d=1
$$

Notice that this form remain the same for any distribution F (e.g. Normal, Poisson, Exponential, Exponential family, etc.).
2. The sample variance where the mean of F is unknown

$$
\binom{\frac{1}{n} \sum_{i=1}^{n} O_{i}-\hat{\theta}_{1}=0}{\frac{1}{n} \sum_{i=1}^{n}\left(O_{i}-\hat{\theta}_{1}\right)^{2}-\hat{\theta}_{2}=0}, \quad f\left(O_{i}, \theta\right)=\binom{O_{i}-\theta_{1}}{\left(O_{i}-\theta_{1}\right)^{2}-\theta_{2}}, m=d=2
$$

Notice again that this form remains the same for any distribution F.
3. The maximum likelihood estimator (MLE) for a parametric distribution of O_{i} with density $p(o, \theta), \theta \in \mathbb{R}^{d}$:

$$
\hat{\theta}=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmax}} \prod_{i=1}^{n} p\left(O_{i} \cdot \theta\right)=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left(p\left(O_{i}, \theta\right)\right)
$$

To solve the optimization problem, we usually have to take the partial derivative of the log likelihood with respect to θ and set it equal to zero:

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{p\left(O_{i}, \hat{\theta}\right)} \nabla_{\theta} p\left(O_{i}, \hat{\theta}\right)=0, \quad f\left(O_{i}, \theta\right)=\frac{1}{p\left(O_{i}, \theta\right)} \nabla_{\theta} p\left(O_{i}, \theta\right), m=d
$$

The function f above (i.e. the derivative of the log likelihood) is called the score function. The score function has the unique property that at the true value of the density, denoted as $p\left(o, \theta^{*}\right)$, its expectation is
$\mathbb{E}\left[\frac{1}{p\left(O_{i}, \theta^{*}\right)} \nabla_{\theta} p\left(O_{i}, \theta^{*}\right)\right]=\int \frac{1}{p\left(o, \theta^{*}\right)} \nabla_{\theta} p\left(o, \theta^{*}\right) p\left(o, \theta^{*}\right) d o={ }_{a} \int \nabla_{\theta} p\left(o, \theta^{*}\right) d o=\nabla_{\theta} \int p\left(o, \theta^{*}\right) d o=\nabla_{\theta} 1=0$
The equality $={ }_{a}$ assumes that we can switch integration with differentiation.
4. Linear regression where given the outcome $Y_{i} \in \mathbb{R}$ and d predictors $X_{i} \in \mathbb{R}^{d}$, we solve the following optimization problem:

$$
\hat{\theta}=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\top} \theta\right)^{2}
$$

We usually find the OLS estimator by taking the partial derivative of the objective with respect to θ and setting it equal to zero:

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\theta}\right)=0, \quad f\left(O_{i}, \theta\right)=X_{i}\left(Y_{i}-X_{i}^{\top} \theta\right), m=d
$$

Note that $O_{i}=\left(Y_{i}, X_{i}\right)$.
5. Logistic regression where given a binary outcome A and d predictors $X \in \mathbb{R}^{d}$, we solve the following likelihood problem:

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmax}} \prod_{i=1}^{n} \pi\left(X_{i}, \theta\right)_{i}^{A}\left(1-\pi\left(X_{i}, \theta\right)^{1-A_{i}}\right. \\
& =\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmax}} \sum_{i=1}^{n} A_{i} \log \left(\pi\left(X_{i}, \theta\right)\right)+\left(1-A_{i}\right) \log \left(1-\pi\left(X_{i}, \theta\right)\right), \quad \pi\left(X_{i}, \theta\right)=\frac{\exp \left(X_{i}^{\top} \theta\right)}{1+\exp \left(X_{i}^{\top} \theta\right)}
\end{aligned}
$$

We can solve the above optimization by taking the derivative with respect to θ, i.e.

$$
\begin{aligned}
\nabla_{\theta} \sum_{i=1}^{n} A_{i} \log \left(\pi\left(X_{i}, \theta\right)\right)+\left(1-A_{i}\right) \log \left(1-\pi\left(X_{i}, \theta\right)\right) & =\sum_{i=1}^{n} \nabla_{\theta} \pi\left(X_{i}, \theta\right)\left(\frac{A_{i}}{\pi\left(X_{i}, \theta\right)}-\frac{1-A_{i}}{1-\pi\left(X_{i}, \theta\right)}\right) \\
& =\sum_{i=1}^{n} \pi\left(X_{i}, \theta\right)\left(1-\pi\left(X_{i}, \theta\right)\right) X_{i}\left(\frac{A_{i}}{\pi\left(X_{i}, \theta\right)}-\frac{1-A_{i}}{1-\pi\left(X_{i}, \theta\right)}\right) \\
& =\sum_{i=1}^{n} X_{i}\left(A_{i}-\pi\left(X_{i}, \theta\right)\right)
\end{aligned}
$$

and setting the above to zero, i.e.

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(A_{i}-\pi\left(X_{i}, \theta\right)\right)=0, \quad f\left(O_{i}, \theta\right)=X_{i}\left(A_{i}-\pi\left(X_{i}, \theta\right)\right), m=d=p
$$

2.2 Key Result

The following theorem characterize the asymptotic behavior of estimators that satisfy equation (1). Throughout all the theory, we'll let θ^{*} be a solution to the equation:

$$
\begin{equation*}
\mathbb{E}\left[f\left(O_{i}, \theta^{*}\right)\right]=0 \tag{2}
\end{equation*}
$$

You want θ^{*} to be equal to the true parameter you want to estimate (e.g. population mean, population variance, true β in regression). We'll show that the estimator $\hat{\theta}$ in equation (1) is asymptotically Normal around θ^{*}.

Theorem 1. Consider the case when $m=d$. Suppose (A1) there exists $\theta^{*} \in \mathbb{R}^{d}$ where $\mathbb{E}\left[f\left(O_{i}, \theta^{*}\right)\right]=0$, (A2) $\mathbb{E}\left[\left\|f\left(O_{i}, \theta^{*}\right)\right\|_{2}^{2}\right]<\infty,(A 3) \mathbb{E}\left[\left.\nabla_{\theta} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}\right]$ exists and is non-singular, (A4) for each θ in an open subset of \mathbb{R}^{d}, $\frac{\delta^{2}}{\delta \theta_{j} \theta_{k}} f(o, \theta)$ exists for every j, k, o and is continuous in θ, and (A5) for every $h=1, \ldots, m$, there exists a fixed function $g(o)$ where $\mathbb{E}\left[\left|g\left(O_{i}\right)\right|\right]<\infty$ and $\left|\frac{\delta^{2}}{\delta \theta_{j} \theta_{k}} f_{h}(o, \theta)\right| \leq g(o)$ for every θ in a neighborhood of θ^{*}. Then, as long as the solution to $n^{-1} \sum_{i=1}^{n} f\left(O_{i}, \hat{\theta}\right)=0$ is unique for every n, we have $\hat{\theta} \rightarrow \theta^{*}$ and

$$
\sqrt{n}\left(\hat{\theta}-\theta^{*}\right) \rightarrow N\left(0, \mathbb{E}\left[\left.\nabla_{\theta} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}\right]^{-1} \mathbb{E}\left[f\left(O_{i}, \theta^{*}\right) f^{\top}\left(O_{i}, \theta^{*}\right)\right] \mathbb{E}\left[\left.\nabla_{\theta} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}\right]^{-\top}\right)
$$

Proof. See van der vaart, Theorem 5.41 and Theorem 5.42. In particular, the condition that there is a unique root to $n^{-1} \sum_{i=1}^{n} f\left(O_{i}, \hat{\theta}\right)=0$ guarantees that the estimator $\hat{\theta}$ that the statistician actually obtains is consistent.

This is not the most general theorem for Z estimators, but it's the easiest to understand ${ }^{1}$. For causal inference, the goal is to apply this theorem by checking the conditions (A1)-(A5) and if necessary, making additional assumptions to make sure (A1)-(A5) are satisfied.
[add next year: asymptotic efficiency via MLE; local asymptotic minimaxity from Chamberlain 1987]

2.3 Application of Theorem 1

2.3.1 Sample Mean

For the sample mean, we show that (A1)-(A5) in Theorem 1 are satisfied if O_{i} has a finite second moment.
(A1) We can take the expectation of f, i.e. $\mathbb{E}\left[f\left(O_{i}, \theta\right)\right]=\mathbb{E}\left[O_{i}\right]-\theta=0$. The values of θ that will make this equation equal to zero is $\theta=\mathbb{E}\left[O_{i}\right]$. In other words, $\theta^{*}=\mathbb{E}\left[O_{i}\right]$.
(A2) We can evaluate $\mathbb{E}\left[\left(O_{i}-\theta^{*}\right)^{2}\right]=\operatorname{Var}\left(O_{i}\right)$, which is finite because O_{i} has second moments.
(A3) We have $\left.\frac{\delta}{\delta \theta} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}=-1$. An expectation of this derivative is finite and this value is non-singular.
(A4) We have $\left.\frac{\delta^{2}}{\delta^{2} \theta} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}=0$ and thus, the second derivative s continuous for every θ.
(A5) From (A4), since the second derivative is zero, it is dominated by a function $g(o)=1$.
Also, for every n, the solution to $\frac{1}{n} \sum_{i=1}^{n} O_{i}-\hat{\theta}=0$ is unique, namely that $\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} O_{i}$.

2.3.2 Sample Variance

For the sample variance, we show that (A1)-(A5) in Theorem 1 are satisfied if O_{i} has a finite fourth moment.
(A1) We can take the expectation of f :

$$
\mathbb{E}\left[f\left(O_{i}, \theta\right)\right]=\binom{\mathbb{E}\left[O_{i}\right]-\theta_{1}}{\mathbb{E}\left[\left(O_{i}-\theta_{1}\right)^{2}\right]-\theta_{2}}=0
$$

The values of θ_{1}, θ_{2} that will make the above equation equal to zero is $\theta_{1}=\mathbb{E}\left[O_{i}\right]$ and $\theta_{2}=\operatorname{Var}\left[O_{i}\right]$. In other words, $\theta^{*}=\left(\mathbb{E}\left[O_{i}\right]\right.$, $\left.\operatorname{Var}\left[O_{i}\right]\right)$.
(A2) For the first component of f, we have $\mathbb{E}\left[\left(O_{i}-\theta_{1}^{*}\right)^{2}\right]=\operatorname{Var}\left(O_{i}\right)$, which is finite because O_{i} has finite fourth moments. For the second component of $f, \mathbb{E}\left[\left(\left(O_{i}-\theta_{1}^{*}\right)^{2}-\theta_{2}^{*}\right)^{2}\right]=\operatorname{Var}\left[\left(O_{i}-\theta_{1}^{*}\right)^{2}\right]$ where the equality is by the definition of variance. If the fourth moment of O_{i} exists, $\operatorname{Var}\left[\left(O_{i}-\theta_{1}^{*}\right)^{2}\right] \leq \mathbb{E}\left[\left(O_{i}-\theta_{1}^{*}\right)^{4}\right]$ is finite.
(A3) For each partial derivative, we have

$$
\left.\frac{\delta}{\delta \theta_{1}} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}=\binom{-1}{-2\left(O_{i}-\theta_{1}^{*}\right)},\left.\quad \frac{\delta}{\delta \theta_{2}} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}=\binom{0}{-1}
$$

The expectation of these quantities are finite. Also, the matrix $E\left[\left.\nabla_{\theta} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}\right]=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ is non-singular.
(A4) From (A3), we see that any second partial derivatives of $f(o, \theta)$ with respect to θ will be constant and hence, is continuous.
(A5) From (A4), since all second partial derivatives will be constant, they will be dominated by a function $g(o)=1$.
Also, for every n, the solution to $\frac{1}{n} \sum_{i=1}^{n} f\left(O_{i}, \hat{\theta}\right)=0$ is unique since $\hat{\theta}_{1}=\frac{1}{n} \sum_{i=1}^{n} O_{i}$ and thus, $\hat{\theta}_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(O_{i}-\right.$ $\left.\hat{\theta}_{1}\right)^{2}$

[^0]
2.3.3 Linear Regression

For linear regression, we show that if
(a) $\left(Y_{i}, X_{i}\right)$ is generated from the following model: $Y_{i}=X_{i}^{\top} \theta^{*}+\epsilon_{i}$ where $\mathbb{E}\left[\epsilon_{i} \mid X_{i}\right]=0$ and $\operatorname{Var}\left[\epsilon_{i} \mid X_{i}\right]=$ $\left(\sigma^{*}\right)^{2}<\infty$
(b) the covariance matrix of X, denoted as $\Sigma_{X}=\mathbb{E}\left[X_{i} X_{i}^{\top}\right]$, is finite and positive definite
(c) for every n, the matrix $\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top}$ is invertible
the conditions (A1)-(A5) are satisfied.
(A1) The values of θ that satisfies $\mathbb{E}\left[f\left(O_{i}, \theta\right)\right]=\mathbb{E}\left[X_{i}\left(Y_{i}-X_{i}^{\top} \theta\right)\right]=0$ is $\theta^{*}=\beta^{*}$ because $\mathbb{E}\left[X_{i}\left(Y_{i}-X_{i}^{\top} \beta^{*}\right)\right]=$ $\mathbb{E}\left[X_{i} \epsilon_{i}\right]=\mathbb{E}\left[X_{i} \mathbb{E}\left[\epsilon_{i} \mid X_{i}\right]\right]=0$
(A2) We have

$$
\mathbb{E}\left[\left\|X_{i}\left(Y_{i}-X_{i}^{\top} \beta^{*}\right)\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2} \epsilon_{i}^{2}\right]=\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2} \mathbb{E}\left[\epsilon_{i}^{2} \mid X_{i}\right] \|\right]=\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2}\right]\left(\sigma^{*}\right)^{2}
$$

Since Σ_{X} is finite, $\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2}\right]$ is bounded and thus, the whole expression is bounded.
(A3) We have $\nabla_{\theta} f\left(O_{i}, \theta\right)=-X_{i} X_{i}^{T}$, whose expectation exists and is non-singular by assumption on Σ_{X}
(A4) From (A3), $\frac{\delta^{2}}{\delta \theta_{j} \theta_{k}} f(o, \theta)=0$ for any j, k, o and is trivially continuous for all θ.
(A5) From (A4), the second partial derivatives are all bounded above by the constant function $g(o)=1$.
Finally, the solution $\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\theta}\right)=0$ is unique because $\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top} \hat{\theta}$ and so long as $\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top}$ is invertible for every n, we have $\hat{\theta}=\left(\sum_{i=1}^{n} X_{i} X_{i}^{\top}\right)^{-1} \sum_{i=1}^{n} X_{i} Y_{i}$.

3 Z Estimators of Causal Estimands

3.1 Basic Idea

We can construct a Z estimator of the ATE as follows. Suppose we pretend for a moment that we actually know the true $\mu_{a}(X)$. Then, a natural estimator of the ATE, denoted as $\hat{\theta}$, is simply the sample equivalent of $\mathbb{E}\left[\mu_{1}(X)-\mu_{0}(X)\right]$ or

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \mu_{1}\left(X_{i}\right)-\mu_{0}\left(X_{i}\right)-\hat{\theta}=0, \quad f\left(O_{i}, \theta\right)=\mu_{1}\left(X_{i}\right)-\mu_{0}\left(X_{i}\right)-\theta, m=d=1 \tag{3}
\end{equation*}
$$

Note that $O_{i}=X_{i} \in \mathbb{R}^{p}$. In other words, the estimator the ATE is equivalent to the sample mean of $\mu_{1}\left(X_{i}\right)-$ $\mu_{0}\left(X_{i}\right)$. Then, applying Theorem 11 we arrive at the following corollary
Corollary 1 (Asymptotic Normality Under Known μ_{a}). Suppose the function $\mu_{a}(x)=\mathbb{E}[Y \mid A=a, X=x]$ is known a priori. Let $\hat{\theta}=n^{-1} \sum_{i=1}^{n} \mu_{1}\left(X_{i}\right)-\mu_{0}\left(X_{i}\right)$ and $\theta^{*}=\mathbb{E}\left[\mu_{1}\left(X_{i}\right)-\mu_{0}\left(X_{i}\right)\right]$, which also equal the ATE under SUTVA and strong ignorability. If $\mu_{1}\left(X_{i}\right)-\mu_{0}\left(X_{i}\right)$ have finite second moments, we have

$$
\sqrt{n}\left(\hat{\theta}-\theta^{*}\right) \rightarrow N\left(0, \operatorname{Var}\left[\mu_{1}\left(X_{i}\right)-\mu_{0}\left(X_{i}\right)\right]\right)
$$

Proof. This is a direct consequence of the sample mean example in Section 2.3.1 where $\mu_{1}\left(X_{i}\right)-\mu_{0}\left(X_{i}\right)$ is the new O_{i}.

Also, let $e\left(X_{i}\right)=P\left(A_{i}=1 \mid X_{i}\right)$ be the propensity score and suppose this function is known; this would be the case in a randomized experiment. Consider the following estimator of the ATE, sometimes referred to as the inverses probability weighted (IPW) estimator:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i} A_{i}}{e\left(X_{i}\right)}-\frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}-\hat{\theta}=0, \quad f\left(O_{i}, \theta\right)=\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}-\frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}-\theta, m=d=1 \tag{4}
\end{equation*}
$$

Note that $O_{i}=\left(Y_{i}, A_{i}, X_{i}\right)$. We can apply Theorem 1 and arrive at the following:
Corollary 2 (Asymptotic Normality Under Known Propensity Score). Suppose the function $\pi(x)=P\left(A_{i}=1 \mid\right.$ $\left.X_{i}=x\right)$ is known a priori and $0<\pi(x)<1$. Let $\hat{\theta}=n^{-1} \sum_{i=1}^{n} \frac{Y_{i} A_{i}}{e\left(X_{i}\right)}-\frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}$. If $\mathbb{E}\left[Y^{2} \mid A=a\right.$, X] has finite second moments for $a=0,1$, we have
$\sqrt{n}\left(\hat{\theta}-\theta^{*}\right) \rightarrow N\left(0, \mathbb{E}\left[\frac{\mathbb{E}\left[Y_{i}^{2} \mid A_{i}=1, X\right]}{e\left(X_{i}\right)}\right]+\mathbb{E}\left[\frac{\mathbb{E}\left[Y_{i}^{2} \mid A_{i}=0, X\right]}{1-e\left(X_{i}\right)}\right]-(\mathbb{E}[\mathbb{E}[Y \mid A=1, X]]-\mathbb{E}[\mathbb{E}[Y \mid A=0, X]])^{2}\right)$.
where $\theta^{*}=\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid A_{i}=1, X_{i}\right]-\mathbb{E}\left[Y_{i} \mid A_{i}=1, X_{i}\right]\right]$

Proof. We go through each of the conditions in Theorem 1 below.
(A1) We see that

$$
\mathbb{E}\left[\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}\right]=\mathbb{E}\left[\frac{1}{e\left(X_{i}\right)} \mathbb{E}\left[Y_{i} A_{i} \mid X_{i}\right]\right]=\mathbb{E}\left[\frac{1}{e\left(X_{i}\right)} \mathbb{E}\left[Y_{i} \mid X_{i}, A_{i}=1\right] P\left(A_{i}=1 \mid X_{i}\right)\right]=\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid X_{i}, A_{i}=1\right]\right]
$$

A similar logic reveals $\mathbb{E}\left[\frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}\right]=\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid X_{i}, A_{i}=0\right]\right]$. Then, the solution to the equation $\mathbb{E}\left[f\left(O_{i}, \theta^{*}\right)\right]=$ $\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid X_{i}, A_{i}=1\right]\right]-\left[\mathbb{E}\left[Y_{i} \mid X_{i}, A_{i}=0\right]\right]-\theta^{*}=0$ is equal to $\theta^{*}=\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid X_{i}, A_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid X_{i}, A_{i}=0\right]\right]$
(A2) We have $\mathbb{E}\left[f\left(O_{i}, \theta^{*}\right)^{2}\right]=\operatorname{Var}\left[\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}-\frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}\right]$, which is bounded by assumption.
(A3) We have $\frac{\delta}{\delta \theta} f\left(O_{i}, \theta\right)=-1$, which is non-singular.
(A4) The second partial derivative $\frac{\delta^{2}}{\delta^{2} \theta} f\left(O_{i}, \theta\right)=0$, which is continuous for all θ
(A5) The second partial derivative is always bounded above by the constant function $g(o)=1$
Finally, it's obvious that the solution to $\frac{1}{n} \sum_{i=1}^{n} f\left(O_{i}, \hat{\theta}\right)=0$ is unique.
For the asymptotic variance, we have

$$
\begin{aligned}
\operatorname{Var}\left[\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}\right] & =\mathbb{E}\left[\frac{Y_{i}^{2} A_{i}}{e^{2}\left(X_{i}\right)}\right]-\mathbb{E}\left[\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}\right]^{2}=\mathbb{E}\left[\frac{\mathbb{E}\left[Y_{i}^{2} \mid A_{i}=1, X\right]}{e\left(X_{i}\right)}\right]-\mathbb{E}[\mathbb{E}[Y \mid A=1, X]]^{2} \\
\operatorname{Var}\left[\frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}\right] & =\mathbb{E}\left[\frac{\mathbb{E}\left[Y_{i}^{2} \mid A_{i}=0, X\right]}{1-e\left(X_{i}\right)}\right]-\mathbb{E}[\mathbb{E}[Y \mid A=0, X]]^{2} \\
\operatorname{Cov}\left[\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}, \frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}\right] & =-\mathbb{E}\left[\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}\right] \mathbb{E}\left[\frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}\right]=-\mathbb{E}[\mathbb{E}[Y \mid A=1, X]] \cdot \mathbb{E}[\mathbb{E}[Y \mid A=0, X]]
\end{aligned}
$$

Combining the above results, we get

$$
\begin{aligned}
& \operatorname{Var}\left[\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}-\frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}\right] \\
= & \operatorname{Var}\left[\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}\right]+\operatorname{Var}\left[\frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}\right]-2 \operatorname{Cov}\left[\frac{Y_{i} A_{i}}{e\left(X_{i}\right)}, \frac{Y_{i}\left(1-A_{i}\right)}{1-e\left(X_{i}\right)}\right] \\
= & \mathbb{E}\left[\frac{\mathbb{E}\left[Y_{i}^{2} \mid A_{i}=1, X\right]}{e\left(X_{i}\right)}\right]+\mathbb{E}\left[\frac{\mathbb{E}\left[Y_{i}^{2} \mid A_{i}=0, X\right]}{1-e\left(X_{i}\right)}\right]-(\mathbb{E}[\mathbb{E}[Y \mid A=1, X]]-\mathbb{E}[\mathbb{E}[Y \mid A=0, X]])^{2}
\end{aligned}
$$

3.2 Estimation of the ATE with Estimated Nuisance Functions

Now, consider a more realistic scenario where $\mu_{a}(X)$ is unknown and must be estimated. For each $A=a$, suppose we use OLS to estimate $\mu_{a}(X)$, which can be written as the following Z estimators

$$
\binom{\frac{1}{n} \sum_{i=1}^{n} X_{i}\left(Y_{i}-X_{i}^{\boldsymbol{\top}} \hat{\beta}-\hat{\theta}\right)=0}{\frac{1}{n} \sum_{i=1}^{n} A_{i} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}_{1}\right)=0}, \quad f\left(O_{i},\left(\beta_{0}, \beta_{1}\right)\right)=\binom{\left(1-A_{i}\right) X_{i}\left(Y_{i}-X_{i}^{\boldsymbol{\top}} \beta_{0}\right)}{A_{i} X_{i}\left(Y_{i}-X_{i}^{\top} \beta_{1}\right)}, m=d=2 p
$$

We then plug in the predictions from the OLS estimator into equation (3). This plug-in estimator plus the OLS estimators of $\mu_{a}(\cdot)$ can be written as a Z estimator

$$
\left(\begin{array}{c}
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{\top} \hat{\beta}_{1}-X_{i}^{\top} \hat{\beta}_{0}-\hat{\theta}=0 \tag{5}\\
\frac{1}{n} \sum_{i=1}^{n}\left(1-A_{i}\right) X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}_{0}\right)=0 \\
\frac{1}{n} \sum_{i=1}^{n} A_{i} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}_{1}\right)=0
\end{array}\right), \quad f\left(O_{i},\left(\theta, \beta_{0}, \beta_{1}\right)\right)=\left(\begin{array}{c}
X_{i}^{\top} \beta_{1}-X_{i}^{\top} \beta_{0}-\theta \\
\left(1-A_{i}\right) X_{i}\left(Y_{i}-X_{i}^{\top} \beta_{0}\right) \\
A_{i} X_{i}\left(Y_{i}-X_{i}^{\top} \beta_{1}\right)
\end{array}\right), m=d=2 p
$$

Here, $O_{i}=\left(Y_{i}, A_{i}, X_{i}\right)$ and the first element of the vector f is the plug-in estimator $\hat{\theta}$ based on the OLS estimates of $\mu_{a}\left(X_{i}\right)$. In other words, the only difference between equation (3) and the equation (5) is that we are taking an average of estimated $\mu_{a}\left(X_{i}\right)$.

The following corollary shows that $\hat{\theta}$ in equation 5 is asymptotically Normal.
Proposition 1. Consider the estimator $\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{\boldsymbol{\top}} \hat{\beta}_{1}-X_{i}^{\boldsymbol{\top}} \hat{\beta}_{0}$ where $\hat{\beta}_{a}$ is defined in equation 3 . Suppose the following conditions hold:

- (a) $\left(Y_{i}, X_{i}, A_{i}\right)$ follows the model

$$
Y_{i}=\left\{\begin{array}{ll}
X_{i}^{\top} \beta_{0}^{*}+\epsilon_{0, i}, \mathbb{E}\left[\epsilon_{0, i} \mid X_{i}, A_{i}=0\right]=0, \operatorname{Var}\left[\epsilon_{0, i} \mid X_{i}, A_{i}=0\right]=\left(\sigma_{0}^{*}\right)^{2} & \text { if } A_{i}=0 \\
X_{i}^{\top} \beta_{1}^{*}+\epsilon_{1, i}, & \mathbb{E}\left[\epsilon_{0, i} \mid X_{i}, A_{i}=1\right]=0, \operatorname{Var}\left[\epsilon_{0, i} \mid X_{i}, A_{i}=1\right]=\left(\sigma_{1}^{*}\right)^{2}
\end{array} \quad \text { if } A_{i}=1\right.
$$

and the variances $\left(\sigma_{a}^{*}\right)^{2}$ are finite. Note that this assumption implicitly assumes positivity, i.e. $0<P\left(A_{i} \mid\right.$ $\left.X_{i}=x\right)<1$ for every x

- (b) The covariance matrix of X given $A=a$, denoted as $\Sigma_{X \mid a}=\operatorname{Cov}\left[X_{i} \mid A_{i}=a\right]$, is finite and is non-singular for each $a=0,1$
- (c) For every n, the matrices $\frac{1}{n} \sum i=1^{n} A_{i} X_{i} X_{i}^{\top}$ and $\frac{1}{n} \sum_{i=1}^{n}\left(1-A_{i}\right) X_{i} X_{i}^{\top}$ are invertible.

Then, we have

$$
\sqrt{n}\left(\hat{\theta}-\theta^{*}\right) \rightarrow N\left(0, \operatorname{Var}\left[X_{i}^{\top}\left(\beta_{1}^{*}-\beta_{0}^{*}\right)\right]\right) .
$$

where $\theta^{*}=\mathbb{E}\left[X_{i}^{\top} \beta_{1}^{*}-X_{i}^{\top} \beta_{0}^{*}\right]$
Proof. We show that the five conditions in Theorem 1 hold for the Z -estimator written in equation (55).
(A1) If we define $\theta^{*}=\left(\mathbb{E}\left[X_{i}^{\top} \beta_{1}^{*}-X_{i}^{\top} \beta_{0}^{*}\right], \beta_{0}^{*}, \beta_{1}^{*}\right)$, the first element of f is zero. The other parts of f become zero because

$$
\begin{aligned}
\mathbb{E}\left[\left(1-A_{i}\right) X_{i}\left(Y_{i}-X_{i}^{\top} \beta_{0}^{*}\right)\right] & =\mathbb{E}\left[X_{i}\left(Y_{i}-X_{i}^{\top} \beta_{0}\right) \mid A_{i}=0\right] \mathbb{P}\left(A_{i}=0\right) \\
& =\mathbb{E}\left[X_{i}\left(\mathbb{E}\left[Y_{i} \mid X_{i}, A_{i}=0\right]-X_{i}^{\top} \beta_{0}^{*}\right) \mid A_{i}=0\right] \mathbb{P}\left(A_{i}=0\right) \\
& =\mathbb{E}\left[X_{i}\left(X_{i}^{\top} \beta_{0}^{*}-X_{i}^{\top} \beta_{0}^{*}\right) \mid A_{i}=0\right] \mathbb{P}\left(A_{i}=0\right) \\
& =0,
\end{aligned}
$$

and the same argument can show that $\mathbb{E}\left[A_{i} X_{i}\left(Y_{i}-X_{i}^{\top} \beta_{1}^{*}\right)\right]=0$.
(A2) Let $q=\max \left(\left(\sigma_{0}^{*}\right)^{2},\left(\sigma_{1}^{*}\right)^{2}\right)$, which must be bounded. Then,

$$
\begin{aligned}
& \mathbb{E}\left[\left\|f\left(O_{i}, \theta^{*}\right)\right\|_{2}^{2}\right] \\
= & \operatorname{Var}\left[X_{i}^{\top}\left(\beta_{1}^{*}-\beta_{0}^{*}\right)\right]+\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2}\left(1-A_{i}\right)\left(Y_{i}-X_{i}^{\top} \beta_{0}^{*}\right)^{2}\right]+\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2} A_{i}\left(Y_{i}-X_{i}^{\top} \beta_{1}^{*}\right)^{2}\right] \\
= & \operatorname{Var}\left[X_{i}^{\top}\left(\beta_{1}^{*}-\beta_{0}^{*}\right)\right]+\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2}\left(Y_{i}-X_{i}^{\top} \beta_{0}^{*}\right)^{2} \mid A_{i}=0\right] \mathbb{P}\left(A_{i}=0\right)+\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2}\left(Y_{i}-X_{i}^{\top} \beta_{1}^{*}\right)^{2} \mid A_{i}=1\right] \mathbb{P}\left(A_{i}=1\right) \\
= & \operatorname{Var}\left[X_{i}^{\top}\left(\beta_{1}^{*}-\beta_{0}^{*}\right)\right]+\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2} \mid A_{i}=0\right]\left(\sigma_{0}^{*}\right)^{2} \mathbb{P}\left(A_{i}=0\right)+\mathbb{E}\left[\left\|X_{i}\right\|_{2}^{2} \mid A_{i}=1\right]\left(\sigma_{1}^{*}\right)^{2} \mathbb{P}\left(A_{i}=1\right)
\end{aligned}
$$

Since $\Sigma_{X \mid a}$ is finite, the above term are bounded.
(A3) The partial derivatives with respect to $\theta, \beta_{1}, \beta_{0}$ yield

$$
\begin{aligned}
& \left.\frac{\delta}{\delta \theta} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}=(-1, \mathbf{0}) \in \mathbb{R}^{2 p+1} \\
& \left.\frac{\delta}{\delta \beta_{1, k}} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}=\left(X_{i k},-A_{i} X_{i} X_{i k}, \mathbf{0}\right) \in \mathbb{R}^{2 p+1}, \quad k=1, \ldots, p \\
& \left.\frac{\delta}{\delta \beta_{0, k}} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}=\left(-X_{i k}, \mathbf{0},-\left(1-A_{i}\right) X_{i} X_{i k}\right) \in \mathbb{R}^{2 p+1}, \quad k=1, \ldots, p .
\end{aligned}
$$

This implies the gradient

$$
\mathbb{E}\left[\left.\nabla_{\theta} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}\right]=\left(\begin{array}{ccc}
-1 & \mathbb{E}\left[X_{i}\right] & -\mathbb{E}\left[X_{i}\right] \\
\mathbf{0} & -\mathbb{E}\left[A_{i} X_{i} X_{i}^{\top}\right] & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\mathbb{E}\left[\left(1-A_{i}\right) X_{i} X_{i}^{\top}\right]
\end{array}\right)=\left(\begin{array}{ccc}
-1 & \mathbb{E}\left[X_{i}\right] & -\mathbb{E}\left[X_{i}\right] \\
\mathbf{0} & -\Sigma_{X \mid 1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\Sigma_{X \mid 0}
\end{array}\right)
$$

Using the property of determinants, the determinant of the above matrix is $-1 * \operatorname{det}\left(\Sigma_{X \mid 1}\right) \operatorname{det}\left(\Sigma_{X \mid 0}\right)$, which is non-zero by the non-singularity of the covariance matrices and thus, the expectation of the gradient is non-singular.
(A4) From (A3), all of the second partial derivatives must be zero and thus, is continuous in θ
(A5) From (A4), every second partial derivative is uniformly bounded above by the function $g(0)=1$
Finally, for every n, the solutions to $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are unique in the equation $\frac{1}{n} \sum_{i=1}^{n} f\left(O_{i},\left(\hat{\theta}, \hat{\beta}_{1}, \hat{\beta}_{0}\right)\right)=0$ based on the arguments in the linear regression example. If $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are unique, then the solution $\hat{\theta}$ is also unique.

Finally, the asymptotic variance can be derived as follows. First, inverting the gradient gives us equal to

$$
\mathbb{E}\left[\left.\nabla_{\theta} f\left(O_{i}, \theta\right)\right|_{\theta=\theta^{*}}\right]^{-1}=\left(\begin{array}{ccc}
-1 & \mathbb{E}\left[X_{i}\right] & -\mathbb{E}\left[X_{i}\right] \\
\mathbf{0} & -\Sigma_{X \mid 1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\Sigma_{X \mid 0}
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
-1 & -\mathbb{E}\left[X_{i}\right] \Sigma_{X \mid 1}^{-1} & \mathbb{E}\left[X_{i}\right] \Sigma_{X \mid 0}^{-1} \\
\mathbf{0} & -\Sigma_{X \mid 1}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\Sigma_{X \mid 1}^{-1}
\end{array}\right)
$$

Second, the inner matrix $\mathbb{E}\left[f\left(O_{i}, \theta^{*}\right) f\left(O_{i}, \theta^{*}\right)^{\boldsymbol{\top}}\right]$ simplifies to

$$
\mathbb{E}\left[f\left(O_{i}, \theta^{*}\right) f\left(O_{i}, \theta^{*}\right)^{\top}\right]=\left(\begin{array}{ccc}
\operatorname{Var}\left[X_{i}^{\top}\left(\beta_{1}^{*}-\beta_{0}^{*}\right)\right] & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \Sigma_{X \mid 1}\left(\sigma_{1}^{*}\right)^{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \Sigma_{X \mid 0}\left(\sigma_{0}^{*}\right)^{2}
\end{array}\right)
$$

The off-diagonal elements use the fact that

$$
\begin{aligned}
\mathbb{E}\left[\left(X_{i}^{\top} \beta_{1}^{*}-X_{i}^{\top} \beta_{0}^{*}-\theta^{*}\right)\left(1-A_{i}\right)\left(Y_{i}-X_{i}^{\top} \beta_{0}^{*}\right)\right] & =\mathbb{E}\left[\left(X_{i}^{\top} \beta_{1}^{*}-X_{i}^{\top} \beta_{0}^{*}-\theta^{*}\right) \mathbb{E}\left[\left(Y_{i}-X_{i}^{\top} \beta_{0}^{*}\right) \mid X_{i}, A_{i}=0\right]\right]=0 \\
\mathbb{E}\left[\left(X_{i}^{\top} \beta_{1}^{*}-X_{i}^{\top} \beta_{0}^{*}-\theta^{*}\right) A_{i}\left(Y_{i}-X_{i}^{\top} \beta_{1}^{*}\right)\right] & =\mathbb{E}\left[\left(X_{i}^{\top} \beta_{1}^{*}-X_{i}^{\top} \beta_{0}^{*}-\theta^{*}\right) \mathbb{E}\left[\left(Y_{i}-X_{i}^{\top} \beta_{1}^{*}\right) \mid X_{i}, A_{i}=1\right]\right]=0 \\
\mathbb{E}\left[A_{i}\left(Y_{i}-X_{i}^{\top} \beta_{1}^{*}\right)\left(1-A_{i}\right)\left(Y_{i}-X_{i}^{\top} \beta_{0}^{*}\right)\right] & =0
\end{aligned}
$$

Third, multiplying the matrices above and extracting the $(1,1)$ element gives us the desired result.
An interesting phenomena occurs for the IPW estimator if we use an estimated $\hat{e}\left(X_{i}\right)$ instead of the true \hat{e}.
Proposition 2. Consider the IPW estimator $\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i} A_{i}}{\hat{e}\left(X_{i}\right)}-\frac{Y_{i}\left(1-A_{i}\right)}{1-\hat{e}\left(X_{i}\right)}$ where $\hat{e}\left(X_{i}\right)=\hat{p}=\frac{1}{n} \sum_{i=1}^{n} A_{i}$. Suppose the following conditions hold: (a) $\mathbb{E}\left[Y^{2} \mid A=a\right]$ is bounded for $a=0,1$, (b) $\mathbb{E}\left[A_{i}\right]$ is far from 0 and 1 , and (c) for every n, \hat{p} is far from 0 and 1 . Let $\theta^{*}=\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid A_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid A_{i}=0\right]\right]$. Let σ^{2} be the asymptotic variance under Corollary 2 where we use the true $e\left(X_{i}\right)$. Then, we have

$$
\sqrt{n}\left(\hat{\theta}-\theta^{*}\right) \rightarrow N\left(0, \sigma^{2}-q^{2}\right)
$$

where $q^{2} \geq 0$.
Proposition 2 shows that the asymptotic variance of the IPW estimator is less than or equal to the asymptotic variance of the IPW estimator with a known p^{*}. This does not occur with the estimator based on the outcome regression.

Proof. The corresponding Z estimator is

$$
\binom{\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i} A_{i}}{\hat{p}}-\frac{Y_{i}\left(1-A_{i}\right)}{1-\hat{\hat{p}}}-\hat{\theta}=0}{\frac{1}{n} \sum_{i=1}^{n} A_{i}-\hat{p}=0}, \quad f\left(O_{i}, \theta, p\right)=\binom{\frac{Y_{i} A_{i}}{p}-\frac{Y_{i}\left(1-A_{i}\right)}{1-p}-\theta}{A_{i}-p}, m=d=2
$$

We show that the five conditions in Theorem 1 hold.
(A1) The solution to $\mathbb{E}\left[f\left(O_{i}, \theta^{*}, p^{*}\right)\right]=0$ exists and they are $p^{*}=\mathbb{E}\left[A_{i}\right]$ and $\theta^{*}=\mathbb{E}[\mathbb{E}[Y \mid A=1]-\mathbb{E}[Y \mid A=0]]$.
(A2) We have

$$
\begin{aligned}
\mathbb{E}\left[\left\|f\left(O_{i}, \theta^{*}, p^{*}\right)\right\|_{2}^{2}\right] & =\mathbb{E}\left[\left(\frac{Y_{i} A_{i}}{p^{*}}-\frac{Y_{i}\left(1-A_{i}\right)}{1-p^{*}}-\theta^{*}\right)^{2}\right]+\mathbb{E}\left[\left(A_{i}-p^{*}\right)^{2}\right] \\
& =\operatorname{Var}\left[\frac{Y_{i} A_{i}}{p^{*}}-\frac{Y_{i}\left(1-A_{i}\right)}{1-p^{*}}\right]+p^{*}\left(1-p^{*}\right)
\end{aligned}
$$

The last expression is bounded above by assumption.
(A3) The first-order partial derivatives are

$$
\begin{aligned}
\left.\frac{\delta}{\delta \theta} f\left(O_{i}, \theta, p\right)\right|_{\theta=\theta^{*}, p=p^{*}} & =\{-1,0\} \\
\left.\frac{\delta}{\delta p} f\left(O_{i}, \theta, p\right)\right|_{\theta=\theta^{*}, p=p^{*}} & =\left\{-1\left(\frac{Y_{i} A_{i}}{\left(p^{*}\right)^{2}}+\frac{Y_{i}\left(1-A_{i}\right)}{\left(1-p^{*}\right)^{2}}\right),-1\right\} \\
\mathbb{E}\left[\left.\frac{\delta}{\delta p} f\left(O_{i}, \theta, p\right)\right|_{\theta=\theta^{*}, p=p^{*}}\right] & =\left\{-1\left(\frac{\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid A_{i}=1\right]\right]}{p^{*}}+\frac{\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid A_{i}=0\right]\right]}{\left(1-p^{*}\right)}\right),-1\right\}
\end{aligned}
$$

Thus, $\mathbb{E}\left[\left.\nabla_{\theta, \beta} f\left(O_{i}, \theta, p\right)\right|_{\theta=\theta^{*}, p=p^{*}}\right]$ exists and is non-singular.
(A4) All of the second partial derivatives are zero except

$$
\frac{\delta}{\delta^{2} p} f\left(O_{i}, \theta, p\right)=\left\{-2\left(\frac{Y_{i}\left(1-A_{i}\right)}{(1-p)^{3}}-\frac{Y_{i} A_{i}}{p^{3}}\right), 0\right\}
$$

This exists and is continuous within a neighborhood of p^{*} that is far from 0 and 1.
(A5) All elements of the Hessian matrix is bounded above by $g(o)=1$ except for the Hessian corresponding to the second partial derivatives of p. For that component, since $\mathbb{E}\left[A_{i}\right]$ is far from 0 and 1 , there exists $\delta>0$ such that $\delta<\mathbb{E}\left[A_{i}\right]<1-\delta$. Consider a function g such that $g(o)=2 * Y_{i}\left(\left(1-A_{i}\right)(1-\delta)^{3}+A_{i} \delta^{3}\right)$. This g function satisfies

$$
\left|-2\left(\frac{Y_{i}\left(1-A_{i}\right)}{(1-p)^{3}}-\frac{Y_{i} A_{i}}{p^{3}}\right)\right| \leq 2 *\left|Y_{i}\right| \cdot\left|\left(1-A_{i}\right)(1-\delta)^{3}+A_{i} \delta^{3}\right|
$$

Furthermore, we have $\mathbb{E}\left[\left|g\left(O_{i}\right)\right|\right]=2 \mathbb{E}\left[(1-\delta)^{3} \mathbb{E}\left[\left|Y_{i}\right| \mid A_{i}=0\right]\left(1-p^{*}\right)+\delta^{*} \mathbb{E}\left[\left|Y_{i}\right| \mid A_{i}=1\right] p^{*}\right]$, which is bounded above by the finite moment assumption on Y_{i} given $A_{i}=a$.
We also guarantee that the solution is unique at every n by ensuring that \hat{p} is far from 0 and 1 .
For the asymptotic variance, we get

$$
\begin{aligned}
\mathbb{E}\left[\left.\nabla_{\theta, p} f\left(O_{i}, \theta, p\right)\right|_{\theta=\theta^{*}, p=p^{*}}\right] & =\left(\begin{array}{cc}
-1 & -1\left(\frac{\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid A_{i}=1\right]\right]}{p^{*}}+\frac{\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid A_{i}=0\right]\right]}{\left(1-p^{*}\right)}\right) \\
0 & -1
\end{array}\right) \\
\mathbb{E}\left[\left.\nabla_{\theta, p} f\left(O_{i}, \theta, p\right)\right|_{\left.\theta=\theta^{*}, p=p^{*}\right]^{-1}}\right. & =\left(\begin{array}{cc}
-1 & \left(\frac{\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid A_{i}=1\right]\right]}{p^{*}}+\frac{\mathbb{E}\left[\mathbb{E}\left[Y_{i} \mid A_{i}=0\right]\right]}{\left(1-p^{*}\right)}\right) \\
0 & -1
\end{array}\right) \\
\mathbb{E}\left[f\left(O_{i}, \theta^{*}, p^{*}\right) f\left(O_{i}, \theta^{*}, p^{*}\right)^{\top}\right] & =\left(\begin{array}{cc}
\operatorname{Var}\left[\frac{Y_{i} A_{i}}{p^{*}}-\frac{Y_{i}\left(1-A_{i}\right)}{1-p^{*}}\right] & \mathbb{E}\left[Y_{i} \mid A_{i}=1\right]\left(1-p^{*}\right)+\mathbb{E}\left[Y_{i} \mid A_{i}=0\right] p^{*} \\
\mathbb{E}\left[Y_{i} \mid A_{i}=1\right]\left(1-p^{*}\right)+\mathbb{E}\left[Y_{i} \mid A_{i}=0\right] p^{*} & p^{*}\left(1-p^{*}\right)
\end{array}\right.
\end{aligned}
$$

Putting it all together and some painful algebra leads to

$$
\begin{aligned}
& \mathbb{E}\left[f\left(O_{i}, \theta^{*}, p^{*}\right) f\left(O_{i}, \theta^{*}, p^{*}\right)^{\boldsymbol{\top}}\right]^{-1} \mathbb{E}\left[f\left(O_{i}, \theta^{*}, p^{*}\right) f\left(O_{i}, \theta^{*}, p^{*}\right)^{\top}\right] \mathbb{E}\left[f\left(O_{i}, \theta^{*}, p^{*}\right) f\left(O_{i}, \theta^{*}, p^{*}\right)^{\top}\right]^{-\top} \\
= & \operatorname{Var}\left[\frac{Y_{i} A_{i}}{p^{*}}-\frac{Y_{i}\left(1-A_{i}\right)}{1-p^{*}}\right]-\frac{\left(\mathbb{E}[Y \mid A=1]\left(1-p^{*}\right)+\mathbb{E}[Y \mid A=0] p^{*}\right)^{2}}{p^{*}\left(1-p^{*}\right)}
\end{aligned}
$$

[^0]: ${ }^{1}$ In Theorem 1 for those with a weak background in real analysis, you can replace "for each θ in an open subset of $\mathbb{R}^{d "}$ with "for every $\theta \in \mathbb{R}^{d "}$ and "for every θ in a neighborhood of $\theta^{* "}$ with "for every θ." These changes are more stringent than Theorem 1 .

