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Abstract

Once the causal estimand is identified (i.e. the causal estimand is a function of the observed data), the next
natural step is to estimate it with data. Here, we discuss an estimation approach using Z estimators. We’ll
first review Z estimators. Next, we’ll show how to frame estimation of causal estimands as an instance of an
Z estimation problem. This document assumes that you have taken an undergraduate course in mathematical
statistics and an undergraduate course in linear algebra.

1 Review: Causal Identification

Causal identification is the exercise of equating a causal estimand into another estimand that is defined with
only the observed data only. For example, we identified the average treatment effect under strong ignorability
(i.e. Y (1), Y (0) ⊥ A | X and 0 < P (A = 1|X = x) < 1 for all x) and SUTVA (i.e Y = AY (1) + (1−A)Y (0)) as
follows:

ATE = E[Y (1)− Y (0)] = E[µ1(X)− µ0(X)], µa(X) = E[Y | A = a,X]

Once the causal estimands is identified, estimation focuses on estimating the estimand defined with the observed
data, often referred to as a functional of the observed data. In the ATE example above, estimation involves
estimating the functional E[µ1(X)−µ0(X)], which only consists of the observed data. We discuss how to do this
using Z estimators. Throughout the document, we assume that we collect n i.i.d. samples from some common
distribution.

2 Review: Z Estimators

2.1 Definition and Examples

Suppose we observe n i.i.d. samples of data O1, . . . , On
iid∼ F from some distribution, denoted as F ; note that Oi

can be a scalar or a vector. Consider an estimator θ̂ that satisfies the following equation:

1

n

n∑
i=1

f(Oi, θ̂) = 0, f(Oi,θ) ∈ Rm, θ ∈ Rd (1)

where Rn is a sequence of random variables. Some estimators that satisfy equation (1) include

1. The sample mean can be written as

1

n

n∑
i=1

Oi − θ̂ = 0, f(Oi, µ) = Oi − θ, m = d = 1

Notice that this form remain the same for any distribution F (e.g. Normal, Poisson, Exponential, Expo-
nential family, etc.).

2. The sample variance where the mean of F is unknown(
1
n

∑n
i=1 Oi − θ̂1 = 0

1
n

∑n
i=1(Oi − θ̂1)

2 − θ̂2 = 0

)
, f(Oi, θ) =

(
Oi − θ1

(Oi − θ1)
2 − θ2

)
,m = d = 2

Notice again that this form remains the same for any distribution F .
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3. The maximum likelihood estimator (MLE) for a parametric distribution of Oi with density p(o, θ), θ ∈ Rd:

θ̂ = argmax
θ∈Rd

n∏
i=1

p(Oi.θ) = argmax
θ∈Rd

n∑
i=1

log(p(Oi, θ))

To solve the optimization problem, we usually have to take the partial derivative of the log likelihood with
respect to θ and set it equal to zero:

1

n

n∑
i=1

1

p(Oi, θ̂)
∇θp(Oi, θ̂) = 0, f(Oi, θ) =

1

p(Oi, θ)
∇θp(Oi, θ), m = d

The function f above (i.e. the derivative of the log likelihood) is called the score function. The score
function has the unique property that at the true value of the density, denoted as p(o, θ∗), its expectation
is

E
[

1

p(Oi, θ∗)
∇θp(Oi, θ

∗)

]
=

∫
1

p(o, θ∗)
∇θp(o, θ

∗)p(o, θ∗)do =a

∫
∇θp(o, θ

∗)do = ∇θ

∫
p(o, θ∗)do = ∇θ1 = 0

The equality =a assumes that we can switch integration with differentiation.

4. Linear regression where given the outcome Yi ∈ R and d predictors Xi ∈ Rd, we solve the following
optimization problem:

θ̂ = argmax
θ∈Rd

1

n

n∑
i=1

(Yi −X⊺
i θ)

2.

We usually find the OLS estimator by taking the partial derivative of the objective with respect to θ and
setting it equal to zero:

1

n

n∑
i=1

Xi(Yi −X⊺
i θ̂) = 0, f(Oi, θ) = Xi(Yi −X⊺

i θ), m = d

Note that Oi = (Yi, Xi).

5. Logistic regression where given a binary outcome A and d predictors X ∈ Rd, we solve the following
likelihood problem:

θ̂ = argmax
θ∈Rd

n∏
i=1

π(Xi, θ)
A
i (1− π(Xi, θ)

1−Ai

= argmax
θ∈Rd

n∑
i=1

Ai log(π(Xi, θ)) + (1−Ai) log(1− π(Xi, θ)), π(Xi, θ) =
exp(X⊺

i θ)

1 + exp(X⊺
i θ)

We can solve the above optimization by taking the derivative with respect to θ, i.e.

∇θ

n∑
i=1

Ai log(π(Xi, θ)) + (1−Ai) log(1− π(Xi, θ)) =

n∑
i=1

∇θπ(Xi, θ)

(
Ai

π(Xi, θ)
− 1−Ai

1− π(Xi, θ)

)

=

n∑
i=1

π(Xi, θ)(1− π(Xi, θ))Xi

(
Ai

π(Xi, θ)
− 1−Ai

1− π(Xi, θ)

)

=

n∑
i=1

Xi(Ai − π(Xi, θ)),

and setting the above to zero, i.e.

1

n

n∑
i=1

Xi(Ai − π(Xi, θ)) = 0, f(Oi, θ) = Xi(Ai − π(Xi, θ)), m = d = p

2.2 Key Result

The following theorem characterize the asymptotic behavior of estimators that satisfy equation (1). Throughout
all the theory, we’ll let θ∗ be a solution to the equation:

E[f(Oi, θ
∗)] = 0 (2)

You want θ∗ to be equal to the true parameter you want to estimate (e.g. population mean, population variance,

true β in regression). We’ll show that the estimator θ̂ in equation (1) is asymptotically Normal around θ∗.
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Theorem 1. Consider the case when m = d. Suppose (A1) there exists θ∗ ∈ Rd where E[f(Oi, θ
∗)] = 0, (A2)

E[∥f(Oi, θ
∗)∥22] < ∞, (A3) E[∇θf(Oi, θ) |θ=θ∗ ] exists and is non-singular, (A4) for each θ in an open subset of

Rd, δ2

δθjθk
f(o, θ) exists for every j, k, o and is continuous in θ, and (A5) for every h = 1, . . . ,m, there exists a

fixed function g(o) where E[|g(Oi)|] < ∞ and | δ2

δθjθk
fh(o, θ)| ≤ g(o) for every θ in a neighborhood of θ∗. Then,

as long as the solution to n−1
∑n

i=1 f(Oi, θ̂) = 0 is unique for every n, we have θ̂ → θ∗ and
√
n(θ̂ − θ∗) → N

(
0,E[∇θf(Oi, θ) |θ=θ∗ ]−1E[f(Oi, θ

∗)f⊺(Oi, θ
∗)]E[∇θf(Oi, θ) |θ=θ∗ ]−⊺

)
Proof. See van der vaart, Theorem 5.41 and Theorem 5.42. In particular, the condition that there is a unique root
to n−1

∑n
i=1 f(Oi, θ̂) = 0 guarantees that the estimator θ̂ that the statistician actually obtains is consistent.

This is not the most general theorem for Z estimators, but it’s the easiest to understand1. For causal
inference, the goal is to apply this theorem by checking the conditions (A1)-(A5) and if necessary, making
additional assumptions to make sure (A1)-(A5) are satisfied.

[add next year: asymptotic efficiency via MLE; local asymptotic minimaxity from Chamberlain 1987]

2.3 Application of Theorem 1

2.3.1 Sample Mean

For the sample mean, we show that (A1)-(A5) in Theorem 1 are satisfied if Oi has a finite second moment.

(A1) We can take the expectation of f , i.e. E[f(Oi, θ)] = E[Oi] − θ = 0. The values of θ that will make this
equation equal to zero is θ = E[Oi]. In other words, θ∗ = E[Oi].

(A2) We can evaluate E[(Oi − θ∗)2] = Var(Oi), which is finite because Oi has second moments.

(A3) We have δ
δθf(Oi, θ) |θ=θ∗= −1. An expectation of this derivative is finite and this value is non-singular.

(A4) We have δ2

δ2θf(Oi, θ) |θ=θ∗= 0 and thus, the second derivative s continuous for every θ.

(A5) From (A4), since the second derivative is zero, it is dominated by a function g(o) = 1.

Also, for every n, the solution to 1
n

∑n
i=1 Oi − θ̂ = 0 is unique, namely that θ̂ = 1

n

∑n
i=1 Oi.

2.3.2 Sample Variance

For the sample variance, we show that (A1)-(A5) in Theorem 1 are satisfied if Oi has a finite fourth moment.

(A1) We can take the expectation of f :

E[f(Oi, θ)] =

(
E[Oi]− θ1

E[(Oi − θ1)
2]− θ2

)
= 0.

The values of θ1, θ2 that will make the above equation equal to zero is θ1 = E[Oi] and θ2 = Var[Oi]. In
other words, θ∗ = (E[Oi],Var[Oi]).

(A2) For the first component of f , we have E[(Oi − θ∗1)
2] = Var(Oi), which is finite because Oi has finite fourth

moments. For the second component of f , E[
(
(Oi − θ∗1)

2 − θ∗2
)2
] = Var[(Oi − θ∗1)

2] where the equality is
by the definition of variance. If the fourth moment of Oi exists, Var[(Oi − θ∗1)

2] ≤ E[(Oi − θ∗1)
4] is finite.

(A3) For each partial derivative, we have

δ

δθ1
f(Oi, θ) |θ=θ∗=

(
−1

−2(Oi − θ∗1)

)
,

δ

δθ2
f(Oi, θ) |θ=θ∗=

(
0
−1

)
The expectation of these quantities are finite. Also, the matrix E[∇θf(Oi, θ) |θ=θ∗ ] =

(
−1 0
0 −1

)
is

non-singular.

(A4) From (A3), we see that any second partial derivatives of f(o, θ) with respect to θ will be constant and
hence, is continuous.

(A5) From (A4), since all second partial derivatives will be constant, they will be dominated by a function
g(o) = 1.

Also, for every n, the solution to 1
n

∑n
i=1 f(Oi, θ̂) = 0 is unique since θ̂1 = 1

n

∑n
i=1 Oi and thus, θ̂2 = 1

n

∑n
i=1(Oi−

θ̂1)
2

1In Theorem 1, for those with a weak background in real analysis, you can replace “for each θ in an open subset of Rd” with “for
every θ ∈ Rd” and “for every θ in a neighborhood of θ∗” with “for every θ.” These changes are more stringent than Theorem 1.
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2.3.3 Linear Regression

For linear regression, we show that if

(a) (Yi, Xi) is generated from the following model: Yi = X⊺
i θ

∗ + ϵi where E[ϵi | Xi] = 0 and Var[ϵi | Xi] =
(σ∗)2 < ∞

(b) the covariance matrix of X , denoted as ΣX = E[XiX
⊺
i ], is finite and positive definite

(c) for every n, the matrix 1
n

∑n
i=1 XiX

⊺
i is invertible

the conditions (A1)-(A5) are satisfied.

(A1) The values of θ that satisfies E[f(Oi, θ)] = E[Xi(Yi −X⊺
i θ)] = 0 is θ∗ = β∗ because E[Xi(Yi −X⊺

i β
∗)] =

E[Xiϵi] = E[XiE[ϵi | Xi]] = 0

(A2) We have
E[∥Xi(Yi −X⊺

i β
∗)∥22] = E[∥Xi∥22ϵ2i ] = E[∥Xi∥22E[ϵ2i | Xi]∥] = E[∥Xi∥22](σ∗)2

Since ΣX is finite, E[∥Xi∥22] is bounded and thus, the whole expression is bounded.

(A3) We have ∇θf(Oi, θ) = −XiX
T
i , whose expectation exists and is non-singular by assumption on ΣX

(A4) From (A3), δ2

δθjθk
f(o, θ) = 0 for any j, k, o and is trivially continuous for all θ.

(A5) From (A4), the second partial derivatives are all bounded above by the constant function g(o) = 1.

Finally, the solution 1
n

∑n
i=1 Xi(Yi −X⊺

i θ̂) = 0 is unique because 1
n

∑n
i=1 XiYi =

1
n

∑n
i=1 XiX

⊺
i θ̂ and so long as

1
n

∑n
i=1 XiX

⊺
i is invertible for every n, we have θ̂ = (

∑n
i=1 XiX

⊺
i )

−1
∑n

i=1 XiYi.

3 Z Estimators of Causal Estimands

3.1 Basic Idea

We can construct a Z estimator of the ATE as follows. Suppose we pretend for a moment that we actually
know the true µa(X). Then, a natural estimator of the ATE, denoted as θ̂, is simply the sample equivalent of
E[µ1(X)− µ0(X)] or

1

n

n∑
i=1

µ1(Xi)− µ0(Xi)− θ̂ = 0, f(Oi, θ) = µ1(Xi)− µ0(Xi)− θ, m = d = 1. (3)

Note that Oi = Xi ∈ Rp. In other words, the estimator the ATE is equivalent to the sample mean of µ1(Xi)−
µ0(Xi). Then, applying Theorem 1, we arrive at the following corollary

Corollary 1 (Asymptotic Normality Under Known µa). Suppose the function µa(x) = E[Y | A = a,X = x]

is known a priori. Let θ̂ = n−1
∑n

i=1 µ1(Xi) − µ0(Xi) and θ∗ = E[µ1(Xi) − µ0(Xi)], which also equal the ATE
under SUTVA and strong ignorability. If µ1(Xi)− µ0(Xi) have finite second moments, we have

√
n(θ̂ − θ∗) → N (0,Var[µ1(Xi)− µ0(Xi)]) .

Proof. This is a direct consequence of the sample mean example in Section 2.3.1 where µ1(Xi)− µ0(Xi) is the
new Oi.

Also, let e(Xi) = P (Ai = 1 | Xi) be the propensity score and suppose this function is known; this would be
the case in a randomized experiment. Consider the following estimator of the ATE, sometimes referred to as the
inverses probability weighted (IPW) estimator:

1

n

n∑
i=1

YiAi

e(Xi)
− Yi(1−Ai)

1− e(Xi)
− θ̂ = 0, f(Oi, θ) =

YiAi

e(Xi)
− Yi(1−Ai)

1− e(Xi)
− θ, m = d = 1 (4)

Note that Oi = (Yi, Ai, Xi). We can apply Theorem 1 and arrive at the following:

Corollary 2 (Asymptotic Normality Under Known Propensity Score). Suppose the function π(x) = P (Ai = 1 |
Xi = x) is known a priori and 0 < π(x) < 1. Let θ̂ = n−1

∑n
i=1

YiAi

e(Xi)
− Yi(1−Ai)

1−e(Xi)
. If E[Y 2 | A = a,X] has finite

second moments for a = 0, 1, we have

√
n(θ̂−θ∗) → N

(
0,E

[
E[Y 2

i | Ai = 1, X]

e(Xi)

]
+ E

[
E[Y 2

i | Ai = 0, X]

1− e(Xi)

]
− (E[E[Y | A = 1, X]]− E[E[Y | A = 0, X]])

2

)
.

where θ∗ = E[E[Yi | Ai = 1, Xi]− E[Yi | Ai = 1, Xi]]
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Proof. We go through each of the conditions in Theorem 1 below.

(A1) We see that

E
[
YiAi

e(Xi)

]
= E

[
1

e(Xi)
E[YiAi | Xi]

]
= E

[
1

e(Xi)
E[Yi | Xi, Ai = 1]P (Ai = 1 | Xi)

]
= E[E[Yi | Xi, Ai = 1]]

A similar logic reveals E
[
Yi(1−Ai)
1−e(Xi)

]
= E[E[Yi | Xi, Ai = 0]]. Then, the solution to the equation E[f(Oi, θ

∗)] =

E[E[Yi | Xi, Ai = 1]]− [E[Yi | Xi, Ai = 0]]− θ∗ = 0 is equal to θ∗ = E[E[Yi | Xi, Ai = 1]−E[Yi | Xi, Ai = 0]]

(A2) We have E[f(Oi, θ
∗)2] = Var

[
YiAi

e(Xi)
− Yi(1−Ai)

1−e(Xi)

]
, which is bounded by assumption.

(A3) We have δ
δθf(Oi, θ) = −1, which is non-singular.

(A4) The second partial derivative δ2

δ2θf(Oi, θ) = 0, which is continuous for all θ

(A5) The second partial derivative is always bounded above by the constant function g(o) = 1

Finally, it’s obvious that the solution to 1
n

∑n
i=1 f(Oi, θ̂) = 0 is unique.

For the asymptotic variance, we have

Var

[
YiAi

e(Xi)

]
= E

[
Y 2
i Ai

e2(Xi)

]
− E

[
YiAi

e(Xi)

]2
= E

[
E[Y 2

i | Ai = 1, X]

e(Xi)

]
− E[E[Y | A = 1, X]]2

Var

[
Yi(1−Ai)

1− e(Xi)

]
= E

[
E[Y 2

i | Ai = 0, X]

1− e(Xi)

]
− E[E[Y | A = 0, X]]2

Cov

[
YiAi

e(Xi)
,
Yi(1−Ai)

1− e(Xi)

]
= −E

[
YiAi

e(Xi)

]
E
[
Yi(1−Ai)

1− e(Xi)

]
= −E[E[Y | A = 1, X]] · E[E[Y | A = 0, X]]

Combining the above results, we get

Var

[
YiAi

e(Xi)
− Yi(1−Ai)

1− e(Xi)

]
=Var

[
YiAi

e(Xi)

]
+Var

[
Yi(1−Ai)

1− e(Xi)

]
− 2Cov

[
YiAi

e(Xi)
,
Yi(1−Ai)

1− e(Xi)

]
=E

[
E[Y 2

i | Ai = 1, X]

e(Xi)

]
+ E

[
E[Y 2

i | Ai = 0, X]

1− e(Xi)

]
− (E[E[Y | A = 1, X]]− E[E[Y | A = 0, X]])

2

3.2 Estimation of the ATE with Estimated Nuisance Functions

Now, consider a more realistic scenario where µa(X) is unknown and must be estimated. For each A = a,
suppose we use OLS to estimate µa(X), which can be written as the following Z estimators(

1
n

∑n
i=1 Xi(Yi −X⊺

i β̂ − θ̂) = 0
1
n

∑n
i=1 AiXi(Yi −X⊺

i β̂1) = 0

)
, f(Oi, (β0, β1)) =

(
(1−Ai)Xi(Yi −X⊺

i β0)
AiXi(Yi −X⊺

i β1)

)
, m = d = 2p

We then plug in the predictions from the OLS estimator into equation (3). This plug-in estimator plus the OLS
estimators of µa(·) can be written as a Z estimator 1

n

∑n
i=1 X

⊺
i β̂1 −X⊺

i β̂0 − θ̂ = 0
1
n

∑n
i=1(1−Ai)Xi(Yi −X⊺

i β̂0) = 0
1
n

∑n
i=1 AiXi(Yi −X⊺

i β̂1) = 0

 , f(Oi, (θ, β0, β1)) =

 X⊺
i β1 −X⊺

i β0 − θ
(1−Ai)Xi(Yi −X⊺

i β0)
AiXi(Yi −X⊺

i β1)

 , m = d = 2p (5)

Here, Oi = (Yi, Ai, Xi) and the first element of the vector f is the plug-in estimator θ̂ based on the OLS estimates
of µa(Xi). In other words, the only difference between equation (3) and the equation (5) is that we are taking
an average of estimated µa(Xi).

The following corollary shows that θ̂ in equation 5 is asymptotically Normal.

Proposition 1. Consider the estimator θ̂ = 1
n

∑n
i=1 X

⊺
i β̂1 −X⊺

i β̂0 where β̂a is defined in equation 3. Suppose
the following conditions hold:
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• (a) (Yi, Xi, Ai) follows the model

Yi =

{
X⊺

i β
∗
0 + ϵ0,i, E[ϵ0,i | Xi, Ai = 0] = 0, Var[ϵ0,i | Xi, Ai = 0] = (σ∗

0)
2 if Ai = 0

X⊺
i β

∗
1 + ϵ1,i, E[ϵ0,i | Xi, Ai = 1] = 0, Var[ϵ0,i | Xi, Ai = 1] = (σ∗

1)
2 if Ai = 1

and the variances (σ∗
a)

2 are finite. Note that this assumption implicitly assumes positivity, i.e. 0 < P (Ai |
Xi = x) < 1 for every x

• (b) The covariance matrix of X given A = a, denoted as ΣX|a = Cov[Xi | Ai = a], is finite and is
non-singular for each a = 0, 1

• (c) For every n, the matrices 1
n

∑
i = 1nAiXiX

⊺
i and 1

n

∑n
i=1(1−Ai)XiX

⊺
i are invertible.

Then, we have √
n(θ̂ − θ∗) → N (0,Var[X⊺

i (β
∗
1 − β∗

0)]) .

where θ∗ = E[X⊺
i β

∗
1 −X⊺

i β
∗
0 ]

Proof. We show that the five conditions in Theorem 1 hold for the Z-estimator written in equation (5).

(A1) If we define θ∗ = (E[X⊺
i β

∗
1 − X⊺

i β
∗
0 ], β

∗
0 , β

∗
1), the first element of f is zero. The other parts of f become

zero because

E[(1−Ai)Xi(Yi −X⊺
i β

∗
0)] = E[Xi(Yi −X⊺

i β0) | Ai = 0]P(Ai = 0)

= E[Xi(E[Yi | Xi, Ai = 0]−X⊺
i β

∗
0) | Ai = 0]P(Ai = 0)

= E[Xi(X
⊺
i β

∗
0 −X⊺

i β
∗
0) | Ai = 0]P(Ai = 0)

= 0,

and the same argument can show that E[AiXi(Yi −X⊺
i β

∗
1)] = 0.

(A2) Let q = max((σ∗
0)

2, (σ∗
1)

2), which must be bounded. Then,

E[∥f(Oi, θ
∗)∥22]

=Var[X⊺
i (β

∗
1 − β∗

0 )] + E[∥Xi∥22(1−Ai)(Yi −X⊺
i β

∗
0 )

2] + E[∥Xi∥22Ai(Yi −X⊺
i β

∗
1 )

2]

=Var[X⊺
i (β

∗
1 − β∗

0 )] + E[∥Xi∥22(Yi −X⊺
i β

∗
0 )

2 | Ai = 0]P(Ai = 0) + E[∥Xi∥22(Yi −X⊺
i β

∗
1 )

2 | Ai = 1]P(Ai = 1)

=Var[X⊺
i (β

∗
1 − β∗

0 )] + E[∥Xi∥22 | Ai = 0](σ∗
0)

2P(Ai = 0) + E[∥Xi∥22 | Ai = 1](σ∗
1)

2P(Ai = 1)

Since ΣX|a is finite, the above term are bounded.

(A3) The partial derivatives with respect to θ, β1, β0 yield

δ

δθ
f(Oi, θ) |θ=θ∗= (−1,0) ∈ R2p+1

δ

δβ1,k
f(Oi, θ) |θ=θ∗= (Xik,−AiXiXik,0) ∈ R2p+1, k = 1, . . . , p

δ

δβ0,k
f(Oi, θ) |θ=θ∗= (−Xik,0,−(1−Ai)XiXik) ∈ R2p+1, k = 1, . . . , p.

This implies the gradient

E[∇θf(Oi, θ) |θ=θ∗ ] =

−1 E[Xi] −E[Xi]
0 −E[AiXiX

⊺
i ] 0

0 0 −E[(1−Ai)XiX
⊺
i ]

 =

−1 E[Xi] −E[Xi]
0 −ΣX|1 0
0 0 −ΣX|0


Using the property of determinants, the determinant of the above matrix is −1∗det(ΣX|1)det(ΣX|0), which
is non-zero by the non-singularity of the covariance matrices and thus, the expectation of the gradient is
non-singular.

(A4) From (A3), all of the second partial derivatives must be zero and thus, is continuous in θ

(A5) From (A4), every second partial derivative is uniformly bounded above by the function g(0) = 1

Finally, for every n, the solutions to β̂1 and β̂0 are unique in the equation 1
n

∑n
i=1 f(Oi, (θ̂, β̂1, β̂0)) = 0 based on

the arguments in the linear regression example. If β̂1 and β̂0 are unique, then the solution θ̂ is also unique.
Finally, the asymptotic variance can be derived as follows. First, inverting the gradient gives us equal to

E[∇θf(Oi, θ) |θ=θ∗ ]−1 =

−1 E[Xi] −E[Xi]
0 −ΣX|1 0
0 0 −ΣX|0

−1

=

−1 −E[Xi]Σ
−1
X|1 E[Xi]Σ

−1
X|0

0 −Σ−1
X|1 0

0 0 −Σ−1
X|1
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Second, the inner matrix E[f(Oi, θ
∗)f(Oi, θ

∗)⊺] simplifies to

E[f(Oi, θ
∗)f(Oi, θ

∗)⊺] =

Var[X⊺
i (β

∗
1 − β∗

0)] 0 0
0 ΣX|1(σ

∗
1)

2 0
0 0 ΣX|0(σ

∗
0)

2


The off-diagonal elements use the fact that

E[(X⊺
i β

∗
1 −X⊺

i β
∗
0 − θ∗)(1−Ai)(Yi −X⊺

i β
∗
0)] = E[(X⊺

i β
∗
1 −X⊺

i β
∗
0 − θ∗)E[(Yi −X⊺

i β
∗
0) | Xi, Ai = 0]] = 0

E[(X⊺
i β

∗
1 −X⊺

i β
∗
0 − θ∗)Ai(Yi −X⊺

i β
∗
1)] = E[(X⊺

i β
∗
1 −X⊺

i β
∗
0 − θ∗)E[(Yi −X⊺

i β
∗
1) | Xi, Ai = 1]] = 0

E[Ai(Yi −X⊺
i β

∗
1)(1−Ai)(Yi −X⊺

i β
∗
0)] = 0

Third, multiplying the matrices above and extracting the (1, 1) element gives us the desired result.

An interesting phenomena occurs for the IPW estimator if we use an estimated ê(Xi) instead of the true ê.

Proposition 2. Consider the IPW estimator θ̂ = 1
n

∑n
i=1

YiAi

ê(Xi)
− Yi(1−Ai)

1−ê(Xi)
where ê(Xi) = p̂ = 1

n

∑n
i=1 Ai.

Suppose the following conditions hold: (a) E[Y 2 | A = a] is bounded for a = 0, 1, (b) E[Ai] is far from 0 and 1,
and (c) for every n, p̂ is far from 0 and 1. Let θ∗ = E[E[Yi | Ai = 1]− E[Yi | Ai = 0]]. Let σ2 be the asymptotic
variance under Corollary 2 where we use the true e(Xi). Then, we have

√
n(θ̂ − θ∗) → N(0, σ2 − q2)

where q2 ≥ 0.

Proposition 2 shows that the asymptotic variance of the IPW estimator is less than or equal to the asymptotic
variance of the IPW estimator with a known p∗. This does not occur with the estimator based on the outcome
regression.

Proof. The corresponding Z estimator is(
1
n

∑n
i=1

YiAi

p̂ − Yi(1−Ai)
1−p̂ − θ̂ = 0

1
n

∑n
i=1 Ai − p̂ = 0

)
, f(Oi, θ, p) =

(
YiAi

p − Yi(1−Ai)
1−p − θ

Ai − p

)
, m = d = 2

We show that the five conditions in Theorem 1 hold.

(A1) The solution to E[f(Oi, θ
∗, p∗)] = 0 exists and they are p∗ = E[Ai] and θ∗ = E[E[Y | A = 1]−E[Y | A = 0]].

(A2) We have

E[∥f(Oi, θ
∗, p∗)∥22] = E

[(
YiAi

p∗
− Yi(1−Ai)

1− p∗
− θ∗

)2
]
+ E[(Ai − p∗)2]

= Var

[
YiAi

p∗
− Yi(1−Ai)

1− p∗

]
+ p∗(1− p∗)

The last expression is bounded above by assumption.

(A3) The first-order partial derivatives are

δ

δθ
f(Oi, θ, p) |θ=θ∗,p=p∗ = {−1, 0}

δ

δp
f(Oi, θ, p) |θ=θ∗,p=p∗ =

{
−1

(
YiAi

(p∗)2
+

Yi(1−Ai)

(1− p∗)2

)
,−1

}
E
[
δ

δp
f(Oi, θ, p) |θ=θ∗,p=p∗

]
=

{
−1

(
E[E[Yi | Ai = 1]]

p∗
+

E[E[Yi | Ai = 0]]

(1− p∗)

)
,−1

}
Thus, E[∇θ,βf(Oi, θ, p) |θ=θ∗,p=p∗ ] exists and is non-singular.

(A4) All of the second partial derivatives are zero except

δ

δ2p
f(Oi, θ, p) =

{
−2

(
Yi(1−Ai)

(1− p)3
− YiAi

p3

)
, 0

}
This exists and is continuous within a neighborhood of p∗ that is far from 0 and 1.
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(A5) All elements of the Hessian matrix is bounded above by g(o) = 1 except for the Hessian corresponding to
the second partial derivatives of p. For that component, since E[Ai] is far from 0 and 1, there exists δ > 0
such that δ < E[Ai] < 1− δ. Consider a function g such that g(o) = 2 ∗ Yi((1− Ai)(1− δ)3 + Aiδ

3). This
g function satisfies ∣∣∣∣−2

(
Yi(1−Ai)

(1− p)3
− YiAi

p3

)∣∣∣∣ ≤ 2 ∗ |Yi| · |(1−Ai)(1− δ)3 +Aiδ
3|

Furthermore, we have E[|g(Oi)|] = 2E[(1 − δ)3E[|Yi| | Ai = 0](1 − p∗) + δ∗E[|Yi| | Ai = 1]p∗], which is
bounded above by the finite moment assumption on Yi given Ai = a.

We also guarantee that the solution is unique at every n by ensuring that p̂ is far from 0 and 1.
For the asymptotic variance, we get

E[∇θ,pf(Oi, θ, p) |θ=θ∗,p=p∗ ] =

(
−1 −1

(
E[E[Yi|Ai=1]]

p∗ + E[E[Yi|Ai=0]]
(1−p∗)

)
0 −1

)

E[∇θ,pf(Oi, θ, p) |θ=θ∗,p=p∗ ]−1 =

(
−1

(
E[E[Yi|Ai=1]]

p∗ + E[E[Yi|Ai=0]]
(1−p∗)

)
0 −1

)

E[f(Oi, θ
∗, p∗)f(Oi, θ

∗, p∗)⊺] =

(
Var

[
YiAi

p∗ − Yi(1−Ai)
1−p∗

]
E[Yi | Ai = 1](1− p∗) + E[Yi | Ai = 0]p∗

E[Yi | Ai = 1](1− p∗) + E[Yi | Ai = 0]p∗ p∗(1− p∗)

)

Putting it all together and some painful algebra leads to

E[f(Oi, θ
∗, p∗)f(Oi, θ

∗, p∗)⊺]−1E[f(Oi, θ
∗, p∗)f(Oi, θ

∗, p∗)⊺]E[f(Oi, θ
∗, p∗)f(Oi, θ

∗, p∗)⊺]−⊺

=Var

[
YiAi

p∗
− Yi(1−Ai)

1− p∗

]
− (E[Y | A = 1](1− p∗) + E[Y | A = 0]p∗)

2

p∗(1− p∗)
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