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Review: Causal Identification Under Complete Randomized
Experiment

Under an ideal, complete randomized experiment, the following
assumptions are satisfied:

▶ (A1,SUTVA): Y = AY (1) + (1 − A)Y (0)
▶ (A2, Randomization of A): A ⊥ X , Y (1), Y (0)
▶ (A3, Positivity/Overlap): 0 < P(A = 1) < 1

These assumptions were motivated from missing data literature:

Y (1) Y (0) Y A XAge

John NA 0.9 0.9 0 38
Sally 0.8 NA 0.8 1 30
Kate NA 0.6 0.6 0 23
Jason 0.6 NA 0.6 1 26

To identify the column mean of Y (1), we can take the observed
Y (1). This was valid as long as the missingness was completely at
random, i.e. E[Y (1)] = E[Y |A = 1] if A ⊥ Y (1).



Stratified/Block Randomized Experiments

▶ In most randomized experiments, treatment is not randomized
completely at random.

▶ Often, treatment is randomized within a pre-defined block of
individuals based on their covariates X in order to improve
precision.

▶ This type of randomized experiment is broadly known as
stratified/blocked experiments.
▶ Subdividing above table by Xunder30 = I(XAge < 30) and

randomizing treatment within each block.
▶ Twin experiments where treatment is randomized within each

twin.

▶ Treatment probabilities can be different across blocks. But,
within each block, the treatment is assigned randomly.



Assumptions Behind Stratified Randomized Experiments
We can formalize the assumptions under a stratified randomized
experiment as follows:

▶ (A1, SUTVA): Y = AY (1) + (1 − A)Y (0)
▶ (A2c, Conditional randomization of A): A ⊥ Y (1), Y (0)|X
▶ (A3c’, Positivity/Overlap): 0 < P(A = 1|X = x) < 1 for all x

For example, if X = Xunder30:

▶ (A2c) states that conditional on different age group, treatment
A is randomly assigned to individuals

▶ (A3c) states that conditional on different age group, each
person has a non-zero probability of receiving treatment or
control. Note that the treatment probability may be different
across age groups, i.e. P(A = 1|Xunder30 = 1) may not be
equal to P(A = 1|Xunder30 = 0).

Assumptions (A2c) and (A3c) are known as strong ignorability
(Rosenbaum and Rubin (1983))



Connection to Complete Randomized Experiments

Stratified randomized experiment:

(A2c) : A ⊥ Y (1), Y (0)|X , (A3c)0 < P(A = 1|X = x) < 1∀x

Complete randomized experiment:

(A2) : A ⊥ Y (1), Y (0), X , (A3c)0 < P(A = 1) < 1

Intuitively, if the treatment was randomized completely at random
to everyone, the treatment is also randomized to a subgroup of
individuals defined by their covariates.

▶ Formally, we can show (A2) implies (A2c); see lecture notes.

▶ We can also show (A3) and (A2) implies (A3c). Without (A2),
it’s not always the case that (A3) implies (A3c); see lecture
notes



Connection to Missing Data
Assumptions (A2c) and (A3c) have connections to the missing at
random (MAR) assumption in the missing data literature.

Consider the data table partitioned by age:

Y (1) Y (0) Y A Xunder30

John NA 0.9 0.9 0 0
Sally 0.8 NA 0.8 1 0
Kate NA 0.6 0.6 0 1
Jason 0.6 NA 0.6 1 1

▶ (A2c): within the rows of the sub-table where X s are identical
(i.e. conditional on X ), the missingness indicator A is
completely independent of the columns Y (1), Y (0).

▶ (A3c) states that within the rows of the sub-table, some values
of Y (1) (or Y (0)) are observed and this holds for every
sub-table.



Causal Identification Under Strong Ignorability
(i.e. Assumptions (A1),(A2c), and (A3c))



Identification of the ATE
Under a stratified randomized experiment (i.e. where strong
ignorability holds), identification of the ATE among a subgroup
defined by X , i.e. τ(x) = E[Y (1) − Y (0)|X = x ] is immediate.

▶ Intuitively, identification is achieved by considering the
sub-table of people with X = x .

▶ Then, similar to a complete randomized experiment, we can
identify E[Y (1)|X = x ] by taking the average of the observed
Y (1) within the sub-table.

▶ τ(x) is known as the conditional average treatment effect
(CATE).

We can take the average of τ(X ) over the distribution of X to
identify the ATE:

E[Y (1) − Y (0)] = E[E[Y |A = 1, X ]] − E[E[Y |A = 0, X ]]



Formal Proof

E[Y |A = 1, X = x ] =E[AY (1) + (1 − A)Y (0)|A = 1, X = x ] (A1)
=E[Y (1)|A = 1, X = x ]
=E[Y (1)|X = x ] (A2c)

Assumption (A3c) ensures that the conditioning event
E[Y |A = 1, X = x ] is well-defined.

By the law of total expectation, we can also identify the
unconditional mean E[Y (1)] as follows

E[Y (1)] = E[E[Y (1)|X ]] Law of total expectation
= E[E[Y |A = 1, X ]] Argument from above

Using a similar argument, we get E[Y (0)] = E[E[Y |A = 0, X ]].



Identification of the Average Treatment Effect Among the
Treated (ATT)

Another popular causal estimand is the average treatment effect
among the treated (ATT)

ATT = E[Y (1) − Y (0) | A = 1]

Y (1) Y (0) Y A XAge

John NA 0.9 0.9 0 38
Sally 0.8 NA 0.8 1 30
Kate NA 0.6 0.6 0 23
Jason 0.6 NA 0.6 1 26

The ATT represents the average difference of Y (1) − Y (0) among
Sally and Jason, both of whom were treated.

Note that the ATT is different than the ATE, which is the average
of Y (1) − Y (0) for both treated and untreated individuals.



A Minor Change in Assumptions Under ATT

A unique feature of the ATT is that you can estimate this causal
effect by a weaker version of strong ignorability, i.e.

(A2c.0) : A ⊥ Y (0) | X

where A does not have to be independent of Y (1) given X , i.e.

(A2c) : A ⊥ Y (1), Y (0) | X

Missing data perspective: we only need the missingness indicator to
be independent of the column Y (0), not necessarily with the
column Y (1).

From my experience, the practical difference between (A2c) and
(A2c.0) where investigators discuss whether plausibility of
assumptions in observational studies, is minor.



Formal Proof
The term E[Y (1) | A = 1] can be identified with just (A1):

E[Y (1) | A = 1]
=E[E[Y (1) | A = 1, X ] | A = 1] Law of total expectation
=E[E[Y | A = 1, X ] | A = 1] (A1)

The term E[Y (0) | A = 1] can be identified with (A1),(A2c.0) and
(A3).

E[Y (0) | A = 1]
=E[E[Y (0) | A = 1, X ] | A = 1] Law of total expectation
=E[E[Y (0) | A = 0, X ] | A = 1] (A2c.0) and (A3)
=E[E[Y | A = 0, X ] | A = 1] (A1)

Hence, under (A1), (A2c.0), and (A3), we can identify the ATT via
E[Y (1)−Y (0) | A = 1] = E[E[Y | A = 1, X ] | A = 1]−E[E[Y | A = 0, X ] | A = 1]



Identification of Other Measures of Causal Effects: Causal
Relative Risk (CRR) and Causal Odds Ratio (COR)

Under a binary outcome, some popular causal estimands are the
causal relative risk (CRR) or causal odds ratio (COR):

CRR = E[Y (1)]
E[Y (0)] = P(Y (1) = 1)

P(Y (0) = 1)

COR =
P(Y (1)=1)

1−P(Y (1)=1)
P(Y (0)=1)

1−P(Y (0)=1)

▶ There are some issues with defining causal odds ratios (or more
generally odds ratios). I recommend using CRRs instead of
CORs unless the scientific question is expressed in odds ratios.

▶ The original ATE E [Yi(1) − Yi(0)], or a linear contrast of the
outcomes, is still well-defined for binary outcomes.



Formal Proof
Identification of the CRR or the COR often proceeds by identifying
E[Y (a)] for any a.

Formally, we have

E[Y (a)] = E[E[Y (a) | X ]] Law of total expectation
= E[E[Y (a) | A = a, X ]] (A2c) and (A3c)
= E[E[Y | A = a, X ]] (A1)

Note that we need (A3c) to ensure that the conditioning event
{A = a, X} is well-defined.

Then, under (A1), (A2c), and (A3c), CRR and COR are identified as

CRR = E[E[Y | A = 1, X ]]
E[E[Y | A = 0, X ]]

COR =
E[E[Y |A=1,X ]]

1−E[E[Y |A=1,X ]]
E[E[Y |A=0,X ]]

1−E[E[Y |A=0,X ]]



Identification of Single, Static, Optimal Treatment
Regime/Policy (OTR)

In personalized medicine, the goal is to develop an optimal
treatment assignment policy where the patient receives the
treatment that maximizes the patient’s outcome.

Formally, consider a policy function π : X → {0, 1} which assigns
either treatment (i.e 1) or control (i.e 0) based on the individual’s
characteristic X ∈ X .

The goal is to find the best π, denoted as πOTR, that maximizes
the expected counterfactual outcome:

πOTR = argmax
π∈Π

E[Y (π(X ))]

Π represents all policy functions of the form f : X → {0, 1}



Value Function

πOTR = argmax
π∈Π

E[Y (π(X ))]

The term Y (π(X )) is the counterfactual outcome if treatment is
assigned based on π and can be written as

Y (π(X )) = Y (1)I(π(X ) = 1) + Y (0)I(π(X ) = 0)

The term E[Y (π(X ))] takes an average of the counterfactual
outcome under policy π and is called the value of π.

▶ For example, the value of a policy that always assigns
treatment, i.e. π(X ) = 1, is E[Y (π(X ))] = E[Y (1)]

▶ The value of a policy that assigns control, i.e. π(X ) = 0, is
E[Y (π(X ))] = E[Y (0)]



Causal Identification of the Value Function

Given any policy π, we can identify its value under assumptions
(A1), (A2c), and (A3c)

E[Y (π(X))]
=E[Y (1)I(π(X) = 1) + Y (0)I(π(X) = 0)] Definition
=E[E[Y (1)I(π(X) = 1) + Y (0)I(π(X) = 0) | X ]] Law of total exp.
=E[I(π(X) = 1)E[Y (1) | X ] + I(π(X) = 0)E[Y (0) | X ]]
=E[I(π(X) = 1)E[Y | A = 1, X ] + I(π(X) = 0)E[Y | A = 0, X ]] (A1), (A2c), (A3c)

The last equality follows from the identification of the ATE.

Note that the identification result holds for any policy π.



Causal Identification of Optimal Policy
Once we identified the value function, we don’t need any more
assumptions to identify the optimal policy.

Let µa(x) = E[Y | A = a, X = x ]. Then,
πOTR =argmax

π
E[Y (π(X ))]

=argmax
π

E[I(π(X ) = 1)µ1(X ) + I(π(X ) = 0)µ0(X )]

=argmax
π

E[π(X )µ1(X ) + (1 − π(X ))µ0(X )]

=argmax
π

E[π(X )(µ1(X ) − µ0(X ))]

=I(µ1(X ) − µ0(X ) ≥ 0)
The optimal treatment policy πOTR for a person with characteristic
X is to check whether the expected outcome among people with X
is larger under treatment (i.e. µ1(X )) or under control (i.e. µ0(X )).

▶ If µ1(X ) ≥ µ0(X ), the person should be treated.

▶ If µ1(X ) < µ0(X ), the person should get control.



Some Details About Proof
Let ∆(x) = µ1(x) − µ0(x). Then, the second to the last equality
becomes

E[π(X )(µ1(X ) − µ0(X ))]
=E[π(X )∆(x){I(∆(x) ≥ 0) + I(∆(X ) < 0)}]
=E[π(X )∆(x)I(∆(x) ≥ 0)]︸ ︷︷ ︸

non-negative

+E[π(X )∆(x)I(∆(X ) < 0)]︸ ︷︷ ︸
non-positive

To find π that maximize the above expression, we need

▶ π(X ) = 0 whenever ∆(X ) < 0 to maximize the non-positive
term

▶ π(X ) = 1 whenever ∆(X ) > 0 to maximize the non-negative
term

Combining these two observations, we arrive at
πOTR(X ) = I(∆(X ) ≥ 0).



Observational Studies and Strong Ignorability
When studying observational studies for causal effects, several works
assume that we have measured pre-treatment covariates X where
the treatment A can be considered “as-if” random conditional on
them, akin to a stratified randomized experiment.

Another way to interpret these assumptions in the context of
observational studies are

▶ We measured all the confounders in the observational study
(i.e. X ) and these variables satisfy (A2c) and (A3c) above.

▶ There are no unmeasured confounders U that can influence
the propensity for someone to be treated (or receive control).
A bit more formally, we do not have the case where

A ⊥ Y (1), Y (0)|X , U but A ̸⊥ Y (1), Y (0)|X
▶ Self-selection into treatment (or control) does not depend on

anything except X .
▶ If (A2c) and (A3c) hold in an observational study, we must

adjust/control for X in order to identify the ATE.



Observational Study and Randomized Experiments

See Cochran (1965),Rubin (2007), and a very recent, nice article by
Small (2024) for further discussion about studying observational
studies from the lens of a randomized experiment.

▶ In a randomized experiment, the propensity score e(X ) is
known by the investigator. In contrast, in an observational
study, e(X ) is not known since individual’s selection into
treatment cannot be controlled by the investigator.

▶ There is a push in observational studies to blind the outcome,
akin to a randomized experiment where the investigator is blind
to the outcome by design. Specifically, investigators should
focus on X and treatment assignment A, especially achieving
balance in the form of X ⊥ A | e(X ), before seeing the
outcome.



Central Role of the Propensity Score P(A = 1|X )

We highlight the two most important properties of the propensity
score.

Consider any function b(X ) of the covariates. This function b is
called a balancing score if conditional on b(X ), the treatment is
independent of X , i.e.

A ⊥ X |b(X )

A couple of remarks:

▶ A trivial function b that satisfies this condition is the identity
function b(X ) = X .

▶ Theorem 1 of Rosenbaum and Rubin (1983) showed that the
propensity score e(X ) is a balancing score; see their Theorem 1.



Propensity Score is the Coarsest Balancing Score

Theorem 2 of Rosenbaum and Rubin (1983): b(X ) is a balancing
score if and only if b(X ) is finer than the propensity score e(X ),
i.e. if there exists a function g where e(X ) = g(b(X )).

▶ The propensity score contains the “smallest’ ’ amount of
information to achieve A ⊥ X |b(X ); the propensity score is
the coarsest balancing score.

▶ To intuitively check this, consider setting b(X ) = X . This is
not only a balancing score, but also provides much more
information (i.e. finer information) than the propensity score
P(A = 1|X = x), which is a number between 0 and 1.

▶ In the above case, e(X ) = e(b(X )) where g = e.



Propensity Score Is Sufficient for Strong Ignorability
Theorem 3 of Rosenbaum and Rubin (1983): Let
e(X ) = P(A = 1|X ). If conditions (A1), (A2c), and (A3c) hold,
then we have

A ⊥ Y (1), Y (0)|e(X ) and 0 < P(A = 1|e(X )) < 1

Some implications:

▶ If (A1),(A2c), and (A3c) hold for X , then these assumptions
also hold for a scalar summary of X , i.e.e(X ).

▶ We can identify the ATE via

E[Y (1)−Y (0)] = E[E[Y | A = 1, e(X )]]−E[E[Y | A = 1, e(X )]]

The proof of this follows directly from the proof of the
identification of the ATE where we replace X with e(X ).

▶ In completely randomized trial where (A2) and (A3) held, we
had A ⊥ X and covariates were balanced. Under (A2c) and
(A3c), we now have A ⊥ X | e(X ) or covariates are balanced
conditional on the propensity score e(X ).
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