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Concepts Covered Today

▶ Association versus causation
▶ Defining causal quantities with counterfactual/potential

outcomes
▶ Connection to missing data
▶ Identification of the average treatment effect in a completely

randomized experiment
▶ Covariate balance



Does daily smoking cause a decrease in lung function?
Data: 2009-2010 National Health and Nutrition Examination
Survey (NHANES).

▶ Treatment (𝐴): Daily smoker (𝐴 = 1) vs. never smoker
(𝐴 = 0)

▶ Outcome (𝑌 ): ratio of forced expiratory volume in one second
over forced vital capacity. 𝑌 ≥ 0.8 is good lung function!

▶ Sample size is 𝑛 = 2360.

Table 1: A Subset of the Observed Data

Lung Function (Y) Smoking Status (A)
0.940 Never
0.918 Never
0.808 Daily
0.838 Never

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2009
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2009
https://oac.med.jhmi.edu/res_phys/Encyclopedia/ForcedExpiration/ForcedExpiration.HTML


Association of Smoking and Lung Function

0.4

0.6

0.8

1.0

Daily (A=1) Never (A=0)
Smoking Status (A)

Lu
ng

 F
un

ct
io

n 
(Y

)

▶ 𝑌 daily(A=1) = 0.75 and 𝑌 never(A=0) = 0.81.
▶ 𝑡-stat = -11.8, two-sided p value: ≪ 10−16

Daily smoking is strongly associated with 0.06 reduction in lung
function.

But, is the strong association evidence for causality?



Definition of Association

Association: 𝐴 is associated with 𝑌 if 𝐴 is informative about 𝑌
▶ If you smoke daily (𝐴 = 1), then it’s likely that your lungs

aren’t functioning well (𝑌 ).
▶ If smoking status doesn’t provide any information about lung

function, 𝐴 is not associated with 𝑌 .

Formally, 𝐴 is associated with 𝑌 if ℙ(𝑌 |𝐴) ≠ ℙ(𝑌 ).
Some parameters that measure association:

▶ Population difference in means: 𝔼[𝑌 |𝐴 = 1] − 𝔼[𝑌 |𝐴 = 0]
▶ Population covariance: cov(𝐴, 𝑌 ) = 𝔼[(𝐴 − 𝔼[𝐴])(𝑌 − 𝔼[𝑌 ])]

Estimators/tests that measure association:
▶ Sample difference in means, regression, etc.
▶ Two-sample t-tests, Wilcoxon signed-rank test, etc.



Defining Causation: Parallel Universe Analogy

Suppose John’s lung functions are different between the two
universes.

▶ The difference in lung functions can only be attributed to the
difference in smoking status.

▶ Why? All variables (except smoking status) are the same
between the two parallel universes.

Key Point: comparing outcomes between parallel universes enable
us to say any difference in the outcome must be due to a
difference in the treatment status.

This provides a basis for defining a causal effect of 𝐴 on 𝑌 .



Counterfactual/Potential Outcomes
Notation for outcomes in parallel universes:

▶ 𝑌 (1): counterfactual/potential lung function if you smoked
(i.e. parallel world where you smoked)

▶ 𝑌 (0): counterfactual/potential lung function if you didn’t
smoke (i.e. parallel world where you didn’t smoke)

Similar to the observed data table, we can create
counterfactual/potential outcomes data table.

𝑌 (1) 𝑌 (0)
John 0.5 0.9
Sally 0.8 0.8
Kate 0.9 0.6
Jason 0.6 0.9

For pedagogy, we’ll assume that all data tables are an i.i.d. sample
from some population (i.e. 𝑌𝑖(1), 𝑌𝑖(0) i.i.d.∼ ℙ{𝑌 (1), 𝑌 (0)}).



Causal Estimands
𝑌 (1) 𝑌 (0)

John 0.5 0.9
Sally 0.8 0.8
Kate 0.9 0.6
Jason 0.6 0.9

Some quantities/parameters from the counterfactual outcomes:
▶ 𝑌John(1) − 𝑌John(0) = −0.4: Causal effect of John smoking

versus not smoking (i.e. individual treatment effect)
▶ 𝔼[𝑌 (1)]: Average of counterfactual outcomes when everyone

is a daily smoker.
▶ 𝔼[𝑌 (1) − 𝑌 (0)]: Difference in the average counterfactual

outcomes when everyone is smoking versus when everyone is
not smoking (i.e. average treatment effect, ATE)

A causal estimand/parameter is a function of the counterfactual
outcomes.



Counterfactual Data Versus Observed Data
Table 4: Comparison of tables.

(a) Counterfactual table

𝑌 (1) 𝑌 (0)
John 0.5 0.9
Sally 0.8 0.8
Kate 0.9 0.6
Jason 0.6 0.9

(b) Observed table

𝑌 𝐴
John 0.9 0
Sally 0.8 1
Kate 0.6 0
Jason 0.6 1

For both, we can define parameters (i.e. 𝔼[𝑌 ] or 𝔼[𝑌 (1)]) and take
i.i.d. samples from their respective populations to learn them.

▶ 𝑌𝑖(1), 𝑌𝑖(0) i.i.d.∼ ℙ{𝑌 (1), 𝑌 (0)} and ℙ is Uniform, etc.

If we can observe the counterfactual table, we can run your
favorite statistical methods and estimate/test causal estimands.



Fundamental Problem of Causal Inference

If we can observe all counterfactual outcomes, causal inference
reduces to doing usual statistical analysis with 𝑌 (0), 𝑌 (1)
But, in many cases, we don’t get to observe all counterfactual
outcomes.

A key goal in causal inference is to learn about the counterfactual
outcomes 𝑌 (1), 𝑌 (0) from the observed data (𝑌 , 𝐴).

▶ How do we learn about causal parameters (e.g. 𝔼[𝑌 (1)]) from
the observed data (𝑌 , 𝐴)

▶ What causal parameters are impossible to learn from the
observed data?

Addressing this type of question is referred to as causal
identification.



Causal Identification: SUTVA or Causal Consistency
First, let’s make the following assumption known as stable unit
treatment value assumption (SUTVA) or causal consistency (Rubin
(1980), page 4 of Herna'n MA (2020)).

𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)

Equivalently,

𝑌 = 𝑌 (𝐴) or if 𝐴 = 𝑎, 𝑌 = 𝑌 (𝑎)

The assumption states the observed outcome is one realizaton of
the counterfactual outcomes.

▶ It also states that there are no multiple versions of
treatment.

▶ It also states that there is no interference, a term coined by
Cox (1958).



No Multiple Versions of Treatment
Daily smoking (i.e. 𝐴 = 1) can include different type of smokers

▶ Daily smoker who smokes one pack of cigarettes per day
▶ Daily smoker who smokes one cigarette per day
▶ Daily smoker who vapes per day

The current 𝑌 (1) does not distinguish outcomes between different
types of smokers.

We can define counterfactual outcomes for all kinds of daily
smokers, say 𝑌 (𝑘) for 𝑘 = 1, … , 𝐾 type of daily smokers. But, if
𝐴 = 1, which counterfactual outcome should this correspond to?

SUTVA eliminates these variations in the counterfactuals. Or, if
𝑌 (𝑘) exists, it assumes that these variations
𝑌 (1) = 𝑌 (2) = … = 𝑌 (𝐾).
Implicitly, SUTVA forces you to define meaningful 𝑌 (𝑎). Some
authors restrict counterfactual outcomes to be based on
well-defined interventions or “no causation without manipulation”
(Holland (1986),Hernán and Taubman (2008),Cole and Frangakis
(2009), VanderWeele (2009)).



No Interference

Suppose we want to study the causal effect of getting the measles
vaccine on getting the measles. Let’s define the following
counterfactual outcomes:

▶ 𝑌 (0): Jamie’s counterfactual measles status when Jamie is
not vaccinated

▶ 𝑌 (1): Jamie’s counterfactual measles status when Jamie is
vaccinated

Suppose Jamie has a sibling Alex and let’s entertain the possible
values of Jamie’s 𝑌 (0) based on Alex’s vaccination status.

▶ Jamie’s counterfactual measles status when Alex is vaccinated.
▶ Jamie’s counterfactual measles status when Alexis not

vaccinated.

The current 𝑌 (0) does not distinguish between the two
counterfactual outcomes.



No Interference

We can again define counterfactual outcomes to incorporate this
scenario, say 𝑌 (𝑎, 𝑏) where 𝑎 refers to Jamie’s vaccination status
and 𝑏 refers to Alex’s vaccination status.

SUTVA states that Jamie’s outcome only depends on Jamie’s
vaccination status, not Alex’s vaccination status. Or, more
precisely 𝑌 (𝑎, 𝑏) = 𝑌 (𝑎, 𝑏′) for all 𝑎, 𝑏, 𝑏′.

In some studies, the no interference assumption is not plausible
(e.g. vaccine studies, peer effects in classrooms/neighborhoods, air
pollutions). Rosenbaum (2007) has a nice set of examples of when
the no interference assumption is not plausible.

There is a lot of ongoing work on this topic (Rosenbaum
(2007),Hudgens and Halloran (2008), Tchetgen and VanderWeele
(2012)). I am interested in in this area as well and let me know if
you want to learn more.



Causal Identification and Missing Data
Once we assume SUTVA (i.e. 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)), causal
identification can be seen as a problem in missing data.

𝑌 (1) 𝑌 (0) 𝑌 𝐴
John NA 0.9 0.9 0
Sally 0.8 NA 0.8 1
Kate NA 0.6 0.6 0
Jason 0.6 NA 0.6 1.

Under SUTVA, we only see one of the two counterfactual
outcomes based on 𝐴.

▶ 𝐴 serves as the “missingness” indicator where 𝐴 = 1 implies
𝑌 (1) is observed and 𝐴 = 0 implies 𝑌 (0) is observed.

▶ 𝑌 is the “observed” value.
▶ Being able to only observe one counterfactual outcome in the

observed data is known as the “fundamental problem of
causal inference’ ’ (page 476 of Holland (1988)).



Assumption on Missingness Pattern
𝑌 (1) 𝑌 (0) 𝑌 𝐴

John NA 0.9 0.9 0
Sally 0.8 NA 0.8 1
Kate NA 0.6 0.6 0
Jason 0.6 NA 0.6 1.

Suppose we are interested in learning the causal estimand 𝔼[𝑌 (1)]
(i.e. the mean of the first column).

One approach would be to take the average of the “complete
cases” (i.e. Sally’s 0.8 and Jason’s 0.6).

▶ Formally, we would use 𝔼[𝑌 |𝐴 = 1], the mean of the observed
outcome 𝑌 among 𝐴 = 1.

▶ This approach is valid if the entries of the first column are
missing completely at random (MCAR)

▶ In other words, the missingness indicator 𝐴 flips a random
coin per each individual and decides whether its 𝑌 (1) is
missing or not.

This is essentially akin to a randomized experiment.



Formal Statement of MCAR

Formally, MCAR can be stated as

𝐴 ⟂ 𝑌 (1) and 0 < ℙ(𝐴 = 1)

▶ 𝐴 ⟂ 𝑌 (1) states that missingness is independent of 𝑌 (1)
i. Missingness occurs completely at random in the rows of the

first column, say by a flip of a random coin.
ii. Missingness doesn’t occur more frequently for higher values of

𝑌 (1); this would violate 𝐴 ⟂ 𝑌 (1).
▶ 0 < ℙ(𝐴 = 1) < 1 states that you have a non-zero probability

of observing some entries of the column 𝑌 (1)
i. If ℙ(𝐴 = 1) = 0, then all entries of the column 𝑌 (1) are

missing and we can’t learn anything about its column mean.



Formal Proof of Causal Identification of 𝔼[𝑌 (1)]

Suppose SUTVA and MCAR hold:
▶ (A1): 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)
▶ (A2): 𝐴 ⟂ 𝑌 (1)
▶ (A3): 0 < ℙ(𝐴 = 1)

Then, we can identify the causal estimand 𝔼[𝑌 (1)] by writing it as
the following function of the observed data 𝔼[𝑌 |𝐴 = 1]:

𝔼[𝑌 |𝐴 = 1] = 𝔼[𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)|𝐴 = 1] (A1)
= 𝔼[𝑌 (1)|𝐴 = 1] Definition of conditional expectation
= 𝔼[𝑌 (1)] (A2)

(A3) is used to ensure that 𝔼[𝑌 |𝐴 = 1] is a well-defined quantity.



Causal Identification of the ATE

In a similar vein, to identify the ATE 𝔼[𝑌 (1) − 𝑌 (0)], a natural
approach would be to use 𝔼[𝑌 |𝐴 = 1] − 𝔼[𝑌 |𝐴 = 0], respectively.

This approach would be valid under the following variation of the
MCAR assumption:

𝐴 ⟂ 𝑌 (0), 𝑌 (1), 0 < ℙ(𝐴 = 1) < 1

▶ The first part states that the treatment 𝐴 is independent of
𝑌 (1), 𝑌 (0). This is called exchangeability or ignorability in
causal inference.

▶ 0 < ℙ(𝐴 = 1) < 1 states that there is a non-zero probability
of observing some entries from the column 𝑌 (1) and from the
column 𝑌 (0). This is called positivity or overlap in causal
inference.



Formal Proof of Causal Identification of the ATE
Suppose SUTVA and MCAR hold:

▶ (A1): 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)
▶ (A2): 𝐴 ⟂ 𝑌 (1), 𝑌 (0)
▶ (A3): 0 < ℙ(𝐴 = 1) < 1

Then, we can identify the ATE from the observed data via:

𝔼[𝑌 |𝐴 = 1] − 𝔼[𝑌 |𝐴 = 0]
=𝔼[𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)|𝐴 = 1]

− 𝔼[𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)|𝐴 = 0] (A1)
=𝔼[𝑌 (1)|𝐴 = 1] − 𝔼[𝑌 (0)|𝐴 = 0] Definition of conditional expectation
=𝔼[𝑌 (1)] − 𝔼[𝑌 (0)] (A2)

(A3) ensures that the conditioning events in 𝔼[|𝐴 = 0] and
𝔼[|𝐴 = 1] are well-defined.



Why Randomized Experiments Identify Causal Effects
Consider an ideal, completely randomized experiment (RCT):

1. Treatment & control are well-defined (e.g. take new drug or
placebo)

2. Counterfactual outcomes do not depend on others’ treatment
(e.g. taking the drug/placebo only impacts my own outcome)

3. Assignment to treatment or control is completely randomized
4. There is a non-zero probability of receiving treatment and

control (e.g. some get drug while others get placebo)

Assumptions (A1)-(A3) are satisfied because
▶ From 1 and 2, SUTVA holds.
▶ From 3, treatment assignment 𝐴 is completely random,

i.e. 𝐴 ⟂ 𝑌 (1), 𝑌 (0)
▶ From 4, 0 < 𝑃(𝐴 = 1) < 1

This is why RCTs are considered the gold standard for identifying
causal effects as all assumptions for causal identification are
satisfied by the experimental design.



RCTs with Covariates
In addition to 𝑌 and 𝐴, we often collect pre-treatment covariates
𝑋.

𝑌 (1) 𝑌 (0) 𝑌 𝐴 X (Age)
John NA 0.9 0.9 0 38
Sally 0.8 NA 0.8 1 30
Kate NA 0.6 0.6 0 23
Jason 0.6 NA 0.6 1 26

If the treatment 𝐴 is completely randomized (as in an RCT), we
would also have 𝐴 ⟂ 𝑋.

Note that we can then combine this into the existing (A2) as (A2):

𝐴 ⟂ 𝑋𝑌 (1), 𝑌 (0)

Other assumptions, (A1) and (A3), remain the same.



Causal Identification of The ATE with Covariates
Even with the change in (A2), the proof to identify the ATE in an
RCT remains the same as before.

▶ (A1): 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)
▶ (A2): 𝐴 ⟂ 𝑌 (1), 𝑌 (0), 𝑋
▶ (A3): 0 < ℙ(𝐴 = 1) < 1

Then, we can identify the ATE from the observed data via:

𝔼[𝑌 (1)] − 𝔼[𝑌 (0)] = 𝔼[𝑌 |𝐴 = 1] − 𝔼[𝑌 |𝐴 = 0]
However, we can also identify the ATE via

𝔼[𝑌 (1)]−𝔼[𝑌 (0)] = 𝔼[𝔼[𝑌 |𝑋, 𝐴 = 1]|𝐴 = 1]−𝔼[𝔼[𝑌 |𝑋, 𝐴 = 0]|𝐴 = 0]

The new equality simply uses the law of total expectation,
i.e. 𝔼[𝑌 |𝐴 = 1] = 𝔼[𝔼[𝑌 |𝑋, 𝐴 = 1]|𝐴 = 1]. However, this new
equality requires modeling 𝔼[𝑌 |𝑋, 𝐴 = 𝑎] correctly. We’ll discuss
more about this in later lectures.



Covariate Balance

An important, conceptual implication of complete randomization of
the treatment (i.e. 𝐴 ⟂ 𝑋) is that

ℙ(𝑋|𝐴 = 1) = ℙ(𝑋|𝐴 = 0)

This concept is known as covariate balance where the distribution
of covariates are balanced between treated units and control units.

Often in RCTs (and non-RCTs), we check for covariate balance by
comparing the means of 𝑋s among treated and control units
(e.g. two-sample t-test of the mean of 𝑋). This is to ensure that
randomization was actually carried out properly.



RCT Balances Measured and Unmeasured Covariates

Critically, the above equality would hold even if some
characteristics of the person are unmeasured (e.g. everyone’s
precise health status).

▶ Formally, let 𝑈 be unmeasured variables and 𝑋 be measured
variables.

▶ Because 𝐴 is completely randomized in an RCT, we have
𝐴 ⟂ 𝑋, 𝑈 and

ℙ(𝑋, 𝑈|𝐴 = 1) = ℙ(𝑋, 𝑈|𝐴 = 0)

Complete randomization ensures that the distribution of both
measured and unmeasured characteristics of individuals are the
same between the treated and control groups.



Randomization Creates Comparable Groups

Roughly speaking, completely randomization creates two synthetic,
parallel universes where, on average, the characteristics between
universe 𝐴 = 0 and universe 𝐴 = 1 are identical.

Thus, in an RCT, any difference in 𝑌 can only be attributed a
difference in the group label (i.e. 𝐴) since all measured and
unmeasured characteristics between the two universes are
distributionally identical.

This was essentially the “big” idea from Fisher in 1935 where he
used randomization as the “reasoned basis’ ’ for causal inference
from RCTs. Paul Rosenbaum explains this more beautifully than I
do in Chapter 2.3 of Rosenbaum (2020).



Note About Pre-treatment Covariates

We briefly mentioned that covariates 𝑋 must precede treatment
assignment, i.e.

1. We collect 𝑋 (i.e. baseline covariates)
2. We assign treatment/control 𝐴
3. We observe outcome 𝑌

If they are post-treatment covariates, then the treatment can have
a causal effect on both the outcome 𝑌 and the covariates 𝑋.

In this case, it’s not unclear whether 𝑌 has a causal effect because
of a causal effect in 𝑋. Studying this type of question is called
causal mediation analysis.

In general, we don’t want to condition on post-treatment
covariates 𝑋 when the goal is to estimate the average treatment
effect of 𝐴 on 𝑌 .
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