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Concepts Covered Today

▶ Identification with an instrument▶ Monotonicity-based approach and the local/complier average
treatment effect (LATE)▶ No additive interaction approach▶ Randomized encouragement designs▶ References:▶ Chapter 16 of M. Hernán and Robins (2020)▶ For monotonicity-based approach: Baiocchi, Cheng, and Small
(2014)▶ For no additive interaction approach: Wang and Tchetgen
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Review: Strong Ignorability and Observational Studies I
We identified various causal estimands under the following
assumptions:▶ (A1, SUTVA): 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)▶ (A2, Conditional randomization of 𝐴): 𝐴 ⟂ 𝑌 (1), 𝑌 (0)|𝑋▶ (A3, Positivity/Overlap): 0 < ℙ(𝐴 = 1|𝑋 = 𝑥) < 1 for all 𝑥
Assumptions (A2) and (A3) are referred to as strong ignorability.

Under (A1)-(A3), we showed that the ATE can be identified as

ATE = 𝔼[𝑌 (1)−𝑌 (0)] = 𝔼[𝔼[𝑌 ∣ 𝐴 = 1, 𝑋]]−𝔼[𝔼[𝑌 ∣ 𝐴 = 0, 𝑋]]
(A1)-(A3) are plausible in a stratified randomized experiment. But
the assumptions, especially (A2), is often implausible in an
observational study.
This lecture will focus on the failure of (A2).



When Does (A2) Fail? Non-compliance in Experiments I
One way for (A2) to fail is due to non-compliance from a
randomized experiment.
Consider a randomized experiment to study the causal effect of a
new therapy program versus the “standard” program.

1. Participants are randomized to the new therapy program (i.e.,𝐴 = 1) or the standard program (i.e., 𝐴 = 0).
2. But after randomization, some participants either▶ Drop out of the new program for the standard program or▶ Opt into the new program from the standard program

This is referred to as non-compliance because participants are not
“complying” to the initial randomization of treatment.
Suppose the goal is to study the causal effect of using the new
program versus not using it.▶ Participant’s usage/adherence is not randomized. Formally,



When Does (A2) Fail? Non-compliance in Experiments II▶ Let 𝐷 ∈ {0, 1} denote the treatment receipt of an individual▶ 𝐷 = 1: individual uses the new therapy program.▶ 𝐷 = 0: individual uses the standard program.▶ Let 𝑌 (𝑑), 𝑑 ∈ {0, 1} denote the counterfactual outcome of the
new therapy (i.e.., 𝑌 (1)) or the standard program (i.e, 𝑌 (0)).▶ We have 𝐷⟂̸𝑌 (1), 𝑌 (0), 𝑋

If, however, participant’s usage of the program 𝐷 is as-if random
after adjusting for measured 𝑋, 𝐷 will satisfy (A2), i.e.,𝐷 ⟂ 𝑌 (1), 𝑌 (0) ∣ 𝑋, and we can use previous lectures to identify
the causal effect of using the program.▶ For example, if using the new therapy program is effectively

random after adjusting for patient’s age and gender, then 𝐷
will satisfy (A2).▶ In most cases, investigators rarely believe that 𝐷 satisfies (A2)
with 𝑋.



When Does (A2) Fail? Unmeasured Confounders I

Another way for (A2) to fail is due to a presence of unmeasured
confounders 𝑈 in an observational study.▶ People select themselves into treatment (or control) based on

measured covariates 𝑋 and unmeasured covariates 𝑈 .▶ More formally, strong ignorability holds with 𝑋 and 𝑈 :𝐴 ⟂ 𝑌 (1), 𝑌 (0)|𝑋, 𝑈 and 0 < ℙ(𝐴 = 1|𝑋 = 𝑥, 𝑈 = 𝑢) < 1 for all 𝑥, 𝑢
In both examples, we no longer have the identification result:

𝔼[𝑌 (1) − 𝑌 (0)] ≠ 𝔼[𝔼[𝑌 ∣ 𝐴 = 1, 𝑋]] − 𝔼[𝔼[𝑌 ∣ 𝐴 = 0, 𝑋]]



Identification Without (A2): Instrumental Variables (IVs)

Instrumental variables (IVs) are a popular approach to identify a
causal effect when (A2) does not hold; see M. A. Hernán and
Robins (2006) and Baiocchi, Cheng, and Small (2014) for a review.
Roughly speaking, an instrument relies on finding a variable 𝑍,
called an instrument, where▶ 𝑍 is related to the treatment 𝐴,▶ 𝑍 is independent from all unmeasured confounders that affect

the outcome 𝑌 and the treatment 𝐴, and▶ 𝑍 is related to the outcome 𝑌 via the treatment 𝐴.
Here, we discuss two approaches to making the above statements
about 𝑍 precise.

1. Monotonicity-based approach
2. No additive interaction approach



Randomized Encouragement Designs: Motivation I

Sexton and Hebel (1984) studied the causal effect of maternal
smoking on birth weight. Because randomizing pregnant mothers
to smoking is unethical, the authors considered an experimental
design that randomized the encouragement to quit smoking.

1. Randomly assign some mothers to the encouragement
intervention (i.e. 𝑍 = 1) or the usual care (i.e. 𝑍 = 0). The
encouragement intervention encouraged mothers to not smoke
through information, support, practical guidance, and the
usual care.

2. Observe mothers’ smoking status where 𝐴 = 1 denotes that
the mother is not smoking during pregnancy and 𝐴 = 0
denotes that the mother is smoking during pregnancy.

3. Observe the birth weight of the newborn, denoted as 𝑌 .



Randomized Encouragement Designs: Motivation II

We refer to 𝑍 as the treatment assignment variable or the
instrument. We refer to 𝐴 as the treatment receipt variable. This
type of experimental design is referred to as a randomized
encouragement design because the encouragement (or lack
thereof; 𝑍) was randomized. But, the treatment receipt 𝐴 is not
randomized.▶ If the encouragement is 100% successful so that 𝑍 = 𝐴, we

have effectively randomized 𝐴 via 𝑍. In practice, this is rarely
the case.▶ Nevertheless, the randomization of 𝑍 induces some
randomization of 𝐴, which we can exploit to obtain some
causal effect of 𝐴.



Randomized Encouragement Designs: Counterfactuals I

To define causal effects in a randomized encouragement design, we
define the following counterfactual outcomes▶ 𝐴(𝑧): the counterfactual treatment receipt under instrument 𝑧▶ 𝑌 (𝑎, 𝑧): the counterfactual outcome under instrument 𝑧 and

treatment receipt 𝑎.
In the maternal smoking example:▶ 𝐴(1): counterfactual smoking status if the mother was

encouraged to stop smoking (i.e., 𝑧 = 1)▶ 𝐴(0): counterfactual smoking status if the mother was not
encouraged to stop smoking (i.e. 𝑧 = 0)▶ 𝑌 (1, 1): counterfactual birth weight if the mother was
encouraged to stop smoking (i.e., 𝑧 = 1) and the mother
stopped smoking (i.e., 𝑎 = 1)



Randomized Encouragement Designs: Counterfactuals II▶ 𝑌 (1, 0): counterfactual birth weight if the mother was under
the usual care (i.e., 𝑧 = 0) and the mother stopped smoking
(i.e., 𝑎 = 1)▶ 𝑌 (0, 1): counterfactual birth weight if the mother was
encouraged to stop smoking (i.e., 𝑧 = 1) and the mother kept
smoking (i.e., 𝑎 = 0)▶ 𝑌 (0, 0): counterfactual birth weight if the mother was under
the usual care (i.e., 𝑧 = 0) and the mother kept smoking (i.e.,𝑎 = 0)

It’s also useful to study the following counterfactuals derived from
above:▶ 𝑌 (𝐴(𝑧), 𝑧): the counterfactual outcome under instrument 𝑧

and treatment receipt if it takes on the value 𝐴(𝑧)▶ Given 𝑧, the potential outcome 𝑌 (𝐴(𝑧), 𝑧) is determined.▶ This is in contrast to 𝑌 (𝑎, 𝑧) where we need to specify both 𝑎
and 𝑧.



Randomized Encouragement Designs: Counterfactuals III

▶ When used in the context of defining 𝑌 (𝐴(𝑧), 𝑧), 𝐴(𝑧) is
sometimes referred to as the “natural value” of 𝐴.

In the maternal smoking example:▶ 𝑌 (𝐴(1), 1): counterfactual birth weight if the mother was
encouraged to stop smoking (i.e., 𝑧 = 1) and the mother’s
smoking status was set to her counterfactual smoking status
under encouragement 𝐴(1).▶ 𝑌 (𝐴(0), 0): counterfactual birth weight if the mother was not
encouraged to stop smoking (i.e., 𝑧 = 0) and the mother’s
smoking status was set to her counterfactual smoking status
under no encouragement 𝐴(0).



Randomized Encouragement Designs: Assumptions I
The following assumptions are implied from a randomized
encouragement design.▶ (IV1, SUTVA): 𝐴 = 𝑍𝐴(1) + (1 − 𝑍)𝐴(0) and𝑌 = 𝑍𝑌 (𝐴(1), 1) + (1 − 𝑍)𝑌 (𝐴(0), 𝑧)▶ (IV2, Ignorable instrument):𝑍 ⟂ 𝑌 (1, 1), 𝑌 (1, 0), 𝑌 (0, 1), 𝑌 (0, 0), 𝐴(1), 𝐴(0)▶ (IV3, Overlap/positivity on instrument): 0 < 𝑃(𝑍 = 1) < 1
Assumption (IV1) says we get to observe the counterfactuals that
correspond to the observed value of the instrument 𝑍.▶ For the outcome, we only get to observe the counterfactual

outcome 𝑌 (𝑎, 𝑧) that corresponds to the observed instrument𝑍 = 𝑧, specifically 𝑌 (𝐴(𝑧), 𝑧).▶ This is the case in the randomized encouragement design
above where the researcher only has two interventions: the
encouragement to quit smoking or the usual care.



Randomized Encouragement Designs: Assumptions II▶ Note that SUTVA also implies two “mini” assumptions about
no multiple versions of treatment and no interference.

Assumption (IV2) says that the instrument (i.e. 𝑍) was completely
randomized.▶ This is the case in the randomized encouragement design

above where the encouragement intervention (i.e., 𝑍) was
completely randomized.

Assumption (IV3) says that all values of the instrument have a
non-zero probability of being realized.▶ This is also the case in the randomized encouragement design

above where some mothers were randomized to the
encouragement intervention while other mothers were
randomized to the usual care.



Randomized Encouragement Designs: Assumptions III

In short, (IV1)-(IV3) are conceptually identical to (A1)-(A3) where𝑍 is replaced by 𝐴.

This implies that if our goal is to simply identify the causal effect
of 𝑍 (i.e., the causal effect of encouragement versus usual care),
we can use the prior lectures do this.▶ For example, suppose we are interested in the effect of the

encouragement (i.e., 𝑍) on mother’s smoking status (i.e., 𝐴),
say 𝔼[𝐴(1) − 𝐴(0)].▶ From the previous lectures, under (IV1)-(IV3), we can identify
the causal effect𝔼[𝐴(1) − 𝐴(0)] = 𝔼[𝐴 ∣ 𝑍 = 1] − 𝔼[𝐴 ∣ 𝑍 = 0]



Intent-to-Treat (ITT) Effects I
We can also identify the causal effect of 𝑍 on the outcome 𝑌 ,
which is often called the intent-to-treat (ITT) effect.

ITT = 𝔼[𝑌 (𝐴(1), 1) − 𝑌 (𝐴(0), 0)]
The ITT effect is also written as 𝔼[𝑌 (1) − 𝑌 (0)] where the
counterfactual outcome is re-defined so that 𝑌 (𝑧) = 𝑌 (𝐴(𝑧), 𝑧).
In words, the ITT effect measure the causal effect of the initial
random assignment (or the instrument 𝑍) on the outcome▶ The initial random assign represents the investigator’s intent

to assign treatment (or control) to participants in an
experiment.▶ In the maternal smoking example, the ITT effect is the causal
effect of the encouragement intervention on the newborn’s
birth weight



Intent-to-Treat (ITT) Effects II▶ The ITT effect does not directly measure the causal effect of
maternal smoking on the newborn’s birth weight.▶ The ITT effect is often reported in many randomized
experiments and IV studies.

The identification of the ITT effect follows from assumptions
(IV1)-(IV3), i.e.,𝔼[𝑌 ∣ 𝑍 = 1] = 𝔼[𝑍𝑌 (𝐴(1), 1) + (1 − 𝑍)𝑌 (𝐴(0), 0) ∣ 𝑍 = 1] (IV1)= 𝔼[𝑌 (𝐴(1), 1) ∣ 𝑍 = 1]= 𝔼[𝑌 (𝐴(1), 1)] (IV2)

By a similar argument, we have 𝔼[𝑌 ∣ 𝑍 = 0] = 𝔼[𝑌 (𝐴(0), 0)].
Combined, we have

𝔼[𝑌 (𝐴(1), 1)] − 𝔼[𝑌 (𝐴(0), 0)] = 𝔼[𝑌 ∣ 𝑍 = 1] − 𝔼[𝑌 ∣ 𝑍 = 0]



Randomized Encouragement Designs: Connection to
Missing Data I

We can also interpret assumptions (IV1), (IV2), and (IV3) using
the data table that includes both counterfactuals 𝑌 (𝑎, 𝑧), 𝐴(𝑧)
and observed variables 𝑍, 𝐴, 𝑌 :𝑌 (1, 1) 𝑌 (1, 0) 𝑌 (0, 1) 𝑌 (0, 0) 𝐴(1) 𝐴(0) 𝐴 𝑍 𝑌
Chloe 15 NA NA NA 1 NA 1 1 15
Sally NA NA 20 NA 0 NA 0 1 20
Kate NA NA NA 18 NA 0 0 0 18
Julie NA 25 NA NA NA 1 1 0 25



Randomized Encouragement Designs: Connection to
Missing Data II

The variables 𝑍 and 𝐴 both serve as missingness indicators. But,
we only make assumptions about the missingness indicator 𝑍 via
(IV2) and (IV3); we don’t make any assumptions about the
missingness indicator 𝐴.▶ In other words, assumptions (IV2) and (IV3) say that the

missingness in the columns 𝐴(1) and 𝐴(0) are completely at
random (MCAR) as the missingness in these columns are
completely determined by 𝑍, which is random by (IV2).▶ But, the missingness of the four 𝑌 (⋅) columns may not be
MCAR because (IV2) and (IV3) do not imply MCAR for 𝐴.▶ For these columns, the missingness is determined by 𝑍 and 𝐴.▶ For these columns’ missingness to be MCAR, we need𝐴, 𝑍 ⟂ 𝑌 (1, 1), 𝑌 (1, 0), 𝑌 (0, 1), 𝑌 (0, 0).



Randomized Encouragement Designs: Connection to
Missing Data III

Because the entries of the columns of 𝐴(⋅) are MCAR, we can
identify the column means of 𝐴(⋅) by simply taking the mean of
the observed entries of 𝐴(⋅), i.e.,𝔼[𝐴(1)] = 𝔼[𝐴 ∣ 𝑍 = 1]
In contrast, we cannot directly identify all four column means of𝑌 (⋅) with the means of the observed entries as the missingness in
these columns are not MCAR.▶ But from the ITT slides above, we can identify a particular

“mixture” of columns of 𝑌 (⋅) so long as the missingness in
this “mixture column” is MCAR (via 𝑍).



Randomized Encouragement Designs: Connection to
Missing Data IV

𝐴(1) 𝐴(0) 𝑌 (𝐴(1), 1) 𝑌 (𝐴(0), 0) 𝑍 𝑌
Chloe 1 NA 15 NA 1 15
Sally 0 NA 20 NA 1 20
Kate NA 0 NA 18 0 18
Julie NA 1 NA 25 0 25



Randomized Encouragement Designs: Connection to
Missing Data V

The two new columns 𝑌 (𝐴(1), 1) and 𝑌 (𝐴(0), 0) essentially
combine the four columns 𝑌 (1, 1), 𝑌 (1, 0), 𝑌 (0, 1), and 𝑌 (0, 0)
so that the missingness in the two new columns only depend on 𝑍
The column 𝑌 (𝐴(1), 1) “fuses” the columns 𝑌 (1, 1) and 𝑌 (0, 1)
(i.e., 𝑧 = 1)▶ In words, this column represents a mixture of two

sub-population of mothers under the encouragement
intervention:

1. mothers who decided to stop smoking after the encouragement
(i.e., 𝐴(1) = 1)

2. mothers who continued smoking after the encouragement (i.e.,𝐴(1) = 0)▶ The average of this column represents the birth weight of
infants from two sub-population of mothers.



Randomized Encouragement Designs: Connection to
Missing Data VI

The column 𝑌 (𝐴(0), 0) “fuses” the columns 𝑌 (1, 0) and 𝑌 (0, 0)
(i.e., 𝑧 = 0)▶ In words, this column represents a mixture of two

sub-population of mothers under the usual care:
1. mothers who decided to stop smoking after the usual care (i.e.,𝐴(0) = 1)
2. mothers who continued smoking after the usual care (i.e.,𝐴(0) = 0)▶ The average of this column represents the birth weight of

infants from two sub-population of mothers.
As mentioned earlier, for the two columns 𝑌 (𝐴(1), 1) and𝑌 (𝐴(0), 0), their missingness pattern is MCAR as the missingness
only depends on 𝑍.



Randomized Encouragement Designs: Connection to
Missing Data VII

▶ Thus, we can identify the column mean of 𝑌 (𝐴(𝑧), 𝑧) for𝑧 ∈ {0, 1} by simply taking the mean of the observed values,
i.e., 𝔼[𝑌 (𝐴(𝑧), 𝑧)] = 𝔼[𝑌 ∣ 𝑍 = 𝑧]▶ This matches the identification result for the intent-to-treat
effect.



Stratified Randomized Encouragement Designs I
Similar to previous lectures where we generalized a completely
randomized experiment into a stratified randomized experiment
based on covariates 𝑋, we can generalize a randomized
encouragement design into a stratified randomized experiment
design.
For example, consider again the smoking and birth weight example
above.▶ Instead of completely randomizing who gets the

encouragement intervention or the usual care, we randomize
the encouragement intervention within blocks of mothers.▶ Each block is defined by mothers’ measurable characteristics
(e.g., age)▶ Within each block, some mothers get randomized to the
encouragement intervention while others get the usual care.
Note that the probability of getting the encouragement can
differ across blocks.



Stratified Randomized Encouragement Designs II

▶ Among mothers who are older than 40, the probability of
getting the encouragement intervention is 90%▶ Among mothers who are between 25 to 30 years old, the
probability of getting the encouragement intervention is 80%

Formally, we can rewrite (IV2) and (IV3) as follows:▶ (IV2): 𝑍 ⟂ 𝑌 (1, 0), 𝑌 (0, 1), 𝑌 (0, 0), 𝐴(1), 𝐴(0) ∣ 𝑋▶ (IV3): 0 < ℙ(𝑍 = 1 ∣ 𝑋 = 𝑥) < 1 for all 𝑥
Notice that this is nearly identical to a stratified randomized
experiment from the previous lecture, except the randomization is
done on 𝑍 instead of 𝐴.



Monotonicity-Based IV Assumptions I
Under a randomized encouragement design, we can formalize the
assumptions about the instrument 𝑍. This is broadly referred to as
“monotonicity-based” IV assumptions.▶ (IV4, Instrument relevance): 𝔼[𝐴(1) − 𝐴(0)] ≠ 0▶ (IV5, Exclusion restriction): 𝑌 (𝑎, 1) = 𝑌 (𝑎, 0) = 𝑌 (𝑎) for all𝑎▶ (IV6, Monotonicity/No Defiers): ℙ(𝐴(1) − 𝐴(0) ≥ 0) = 1
Assumption (IV4) states that the instrument has a non-zero,
causal effect on the treatment receipt.▶ In the maternal smoking example, (IV4) states that the

encouragement intervention caused more mothers to quit
smoking during pregnancy.▶ Under (IV1)-(IV3), this assumption can be re-written based
on the observed data,
i.e. 𝔼[𝐴(1) − 𝐴(0)] = 𝔼[𝐴 ∣ 𝑍 = 1] − 𝔼[𝐴 ∣ 𝑍 = 0] ≠ 0.



Monotonicity-Based IV Assumptions II▶ This means that we can directly test (IV4) with the observed
data by testing whether 𝔼[𝐴 ∣ 𝑍 = 1] − 𝔼[𝐴 ∣ 𝑍 = 0] is zero
or not.

Assumption (IV5) states that the counterfactual outcomes are
identical between 𝑧 = 1 and 𝑧 = 0 once the treatment receipt
status 𝑎 is fixed.▶ In the maternal smoking example, (IV5) states that after

fixing the mother’s smoking status, whether the mother was
encouraged or not does not affect the birth weight of the
newborn.▶ Unlike (IV4), (IV5) cannot be written as a function of the
observed data as it requires observing both 𝑌 (𝑎, 1) and𝑌 (𝑎, 0) and from (IV1, SUTVA), this is not possible.▶ In other words, (IV5) cannot be directly tested with the

observed data.



Monotonicity-Based IV Assumptions III▶ But, testable implications exist, i.e., if (IV5) holds, the
observed data must satisfy certain constraints. See page 1173
in Balke and Pearl (1997) and Theorem 1 of Wang, Robins,
and Richardson (2017) for some examples when the instrument
is binary.▶ (IV5) is the most controversial assumption as the other

assumptions (IV1)-(IV4) and (IV6) can be plausibly satisfied
by the experimental design (e.g., (IV1)-(IV3), (IV6)) or be
directly tested with the observed data (e.g., (IV4)).▶ This assumption is referred to as the exclusion restriction
(Imbens and Angrist (1994), Angrist, Imbens, and Rubin
(1996)).

Assumption (IV6) states that the instrument has a non-negative,
causal effect on the treatment receipt for everyone.



Compliance Types (Angrist, Imbens, and Rubin (1996)) I

To interpret assumption (IV6), it’s useful to partition individuals
based on their counterfactuals 𝐴(0), 𝐴(1). Because each 𝐴(𝑧)
takes on two values, there are four possible subgroups of
individuals based on the joint values of 𝐴(0), 𝐴(1):𝐴(0) 𝐴(1) Type

1 1 Always-Takers
0 1 Compliers
1 0 Defiers
0 0 Never-Takers



Compliance Types (Angrist, Imbens, and Rubin (1996)) II
The names associated with each 𝐴(0), 𝐴(1) (e.g. always-takers,
compliers) come from Table 1 of Angrist, Imbens, and Rubin
(1996). In the maternal smoking example,▶ Always-takers are mothers who never smoke irrespective of

whether they were under the encouragement intervention or
the usual care.▶ Compliers are mothers who do not smoke when they were
under the encouragement intervention, but would smoke if
they were under the usual care.▶ Defiers are mothers who do not smoke when they are under
the usual care, but smokes when they are under the
encouragement intervention.▶ Never-takers are mothers who always smoke irrespective of
whether they were under the encouragement intervention or
the usual care.



Compliance Types (Angrist, Imbens, and Rubin (1996)) III
Assumption (IV6) rules out the existence of defiers in the study
population, i.e. individuals who would not take the treatment if
randomly assigned to the treatment, but take the treatment if
randomly assigned to the control.
Also, we cannot classify everyone in the study population as
always-takers, compliers, and never-takers from the observed
data▶ Why? Because this requires observing both 𝐴(1) and 𝐴(0),

which is not possible from (IV1, SUTVA).▶ But, as discussed above, we can identify the means 𝔼[𝐴(1)]
and 𝔼[𝐴(0)] from (IV1)-(IV3):𝔼[𝐴(1)] = 𝔼[𝐴 ∣ 𝑍 = 1], 𝔼[𝐴(0)] = 𝔼[𝐴 ∣ 𝑍 = 0]

Under the compliance type framework, these means can be
interpreted as follows.



Compliance Types (Angrist, Imbens, and Rubin (1996)) IV▶ 𝔼[𝐴(1)] = ℙ(𝐴(1) = 1) represents the proportion of
always-takers and compliers as they both have 𝐴(1) = 1.▶ 𝔼[𝐴(0)] = ℙ(𝐴(0) = 1) represents the proportion of
always-takers and defiers as they both have 𝐴(0) = 0▶ With (IV1)-(IV3), we can identify the proportion of mixtures
of subgroups.

With (IV6) where defiers do not exist, we can▶ identify the proportion of always-takers via𝔼[𝐴(0)] = 𝔼[𝐴 ∣ 𝑍 = 0].▶ identify the proportion of compliers via𝔼[𝐴(1) − 𝐴(0)] = 𝔼[𝐴 ∣ 𝑍 = 1] − 𝔼[𝐴 ∣ 𝑍 = 0].▶ identify the proportion of never-takers via 1 − 𝔼[𝐴 ∣ 𝑍 = 1]▶ Note that the proportion of always-takers, compliers, and
never-takers have to sum to 1.



Compliance Types (Angrist, Imbens, and Rubin (1996)) V

This concept of dividing up the population into sub-types based on
the joint distribution of the post-treatment variables (e.g., 𝐴(1)
and 𝐴(0)) is referred to as principal stratification (Frangakis and
Rubin (2002)).



One-Sided, Randomized Encouragement Designs
In some experimental designs, we can enforce (IV6) by blocking
access to treatment for all individuals who are randomized to the
control 𝑍 = 0, i.e.,▶ (IV6.One, One-Sided Noncompliance): 𝐴(0) = 0
One-sided non-compliance is plausible when 𝑍 represents a new
program under evaluation and 𝐴 represents the actual enrollment
into the new program.▶ In these settings, those who are not randomized into the new

program (i.e., 𝑍 = 0) usually cannot enroll into the new
program (i.e., 𝐴 = 0).▶ But, those who are randomized into the new program (i.e.,𝑍 = 1) can choose to enroll (i.e 𝐴 = 1) or not enroll (i.e.,𝐴 = 0) into the program.

Note that (IV6.One) implies (IV6).



Causal Estimand: The Local Average Treatment Effect
(LATE) I

Under (IV1)-(IV6), we can identify the average treatment effect
among the compliers.▶ This quantity is sometimes referred to the local average

treatment effect (LATE) (Imbens and Angrist
(1994),Angrist, Imbens, and Rubin (1996)).

LATE = 𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴(1) = 1, 𝐴(0) = 0⏟⏟⏟⏟⏟⏟⏟⏟⏟
Compliers

]
▶ In the maternal smoking example, the LATE is the average

causal effect of smoking during pregnancy on newborn’s birth
weight among complying mothers (i.e. mothers who stop
smoking if they were under the encouragement intervention,
but smoke if they were under the usual care intervention).



Causal Estimand: The Local Average Treatment Effect
(LATE) II

The LATE is not the same as the ATE 𝔼[𝑌 (1) − 𝑌 (0)], which
represents the average causal effect of smoking during pregnancy
on newborn’s birth weight among all mothers.

The complier effect also differs from other “local” effects, such as
the average causal effect of smoking on newborn’s birth weight
among never-takers: 𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴(1) = 0, 𝐴(0) = 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

Never-takers

]



Causal Estimand: The Local Average Treatment Effect
(LATE) III

▶ However, suppose the local effects are identical across the four
subgroups, i.e.,𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴(1) = 0, 𝐴(0) = 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

Never-takers

]=𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴(1) = 1, 𝐴(0) = 0⏟⏟⏟⏟⏟⏟⏟⏟⏟
Compliers

]=𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴(1) = 1, 𝐴(0) = 1⏟⏟⏟⏟⏟⏟⏟⏟⏟
Always-takers

]=𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴(1) = 0, 𝐴(0) = 1⏟⏟⏟⏟⏟⏟⏟⏟⏟
Defiers

],



Causal Estimand: The Local Average Treatment Effect
(LATE) IV▶ Then, we can identify the ATE with one of the local effects:𝔼[𝑌 (1) − 𝑌 (0)]= ∑𝑎1∈{0,1},𝑎0∈{0,1} 𝔼[𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴(1) = 𝑎1, 𝐴(0) = 𝑎0]]ℙ(𝐴(1) = 𝑎1, 𝐴(0) = 𝑎0)=𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴(1) = 1, 𝐴(0) = 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

Compliers

] ∑𝑎1∈{0,1},𝑎0∈{0,1} ℙ(𝐴(1) = 𝑎1, 𝐴(0) = 𝑎0)=𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴(1) = 1, 𝐴(0) = 0⏟⏟⏟⏟⏟⏟⏟⏟⏟
Compliers

].
▶ In other words, if the causal effect is homogeneous across the

four subgroups, the local effect equals the (global) effect for
the entire population.



Causal Estimand: The Local Average Treatment Effect
(LATE) V

From the discussion above, we cannot use the observed data to
classify all individuals into the four sub-types (i.e. compliers,
always-takers, and never-takers).▶ In other words, LATE identifies the average treatment effect

among a subgroup of individuals that are defined by latent
classes.▶ This is in contrast to the conditional average treatment effect
(CATE, 𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝑋 = 𝑥]), which identifies the
average treatment effect among a subgroup of individuals that
are defined by observed 𝑋.

Because the subgroup of individuals are impossible to identify from
the data, there is a healthy debate about whether the LATE is a
useful estimand:



Causal Estimand: The Local Average Treatment Effect
(LATE) VI

▶ Some references: M. A. Hernán and Robins (2006),Deaton
(2010),Imbens (2010), Imbens (2014),Baiocchi, Cheng, and
Small (2014),Swanson and Hernán (2014)▶ I personally think the identification of the LATE provides one
clear illustration about the difficulty of studying the average
treatment effect when strong ignorability fails to hold.



Proof of Identification of the LATE with (IV1)-(IV6) I
We will show that under (IV1)-(IV6), we have

LATE = 𝔼[𝑌 (1) − 𝑌 (0)|𝐴(1) − 𝐴(0) = 1]= 𝔼[𝑌 ∣ 𝑍 = 1] − 𝔼[𝑌 ∣ 𝑍 = 0]𝔼[𝐴 ∣ 𝑍 = 1] − 𝔼[𝐴 ∣ 𝑍 = 0]
We first begin with the numerator of the above ratio.𝔼[𝑌 ∣ 𝑍 = 1]=𝔼[𝑍𝑌 (𝐴(1), 1) + (1 − 𝑍)𝑌 (𝐴(0), 0) ∣ 𝑍 = 1] (IV1, SUTVA)=𝔼[𝑌 (𝐴(1), 1) ∣ 𝑍 = 1]=𝔼[𝑌 (1, 1)𝐴(1) + 𝑌 (0, 1)(1 − 𝐴(1)) ∣ 𝑍 = 1]=𝔼[𝑌 (1, 1)𝐴(1) + 𝑌 (0, 1)(1 − 𝐴(1))] (IV2, Ignorable 𝑍)=𝔼[𝑌 (1)𝐴(1) + 𝑌 (0)(1 − 𝐴(1))] (IV5, Exclusion restriction)



Proof of Identification of the LATE with (IV1)-(IV6) II
Note that (IV3, Positivity of 𝑍) is needed to ensure that the
conditional expectation that conditions on {𝑍 = 1} is well-defined.
By a similar argument, we have𝔼[𝑌 ∣ 𝑍 = 0] = 𝔼[𝑌 (1)𝐴(0) + 𝑌 (0)(1 − 𝐴(0))].
Second, we take the difference between the two expectations of𝔼[𝑌 ∣ 𝑍 = 1] and 𝔼[𝑌 ∣ 𝑍 = 0], we get𝔼[𝑌 ∣ 𝑍 = 1] − 𝔼[𝑌 ∣ 𝑍 = 0]=𝔼[{𝑌 (1)𝐴(1) + 𝑌 (0)(1 − 𝐴(1))} − {𝑌 (1)𝐴(0) + 𝑌 (0)(1 − 𝐴(0))}]=𝔼[𝑌 (1){𝐴(1) − 𝐴(0)} − 𝑌 (0){𝐴(1) − 𝐴(0)}]=𝔼[{𝑌 (1) − 𝑌 (0)}{𝐴(1) − 𝐴(0)}]=𝔼[{𝑌 (1) − 𝑌 (0)}𝐼(𝐴(1) − 𝐴(0) = 1) + {𝑌 (1) − 𝑌 (0)}𝐼(𝐴(1) − 𝐴(0) = −1)]=𝔼[𝑌 (1) − 𝑌 (0)|𝐴(1) − 𝐴(0) = 1]ℙ(𝐴(1) − 𝐴(0) = 1) (IV6, Monotonicity)

The last equality also uses the definition of conditional expectation.



Proof of Identification of the LATE with (IV1)-(IV6) III
Third, we can rewrite the denominator of the ratio above as
follows: 𝔼[𝐴 ∣ 𝑍 = 1] − 𝔼[𝐴 ∣ 𝑍 = 0]=𝔼[𝐴(1) − 𝐴(0)] (IV1)-(IV3)=ℙ(𝐴(1) − 𝐴(0) = 1) (IV6).
Finally, under (IV4, Instrument relevance), we can take the ratio of
the two differences and the denominator of this ratio is non-zero:𝔼[𝑌 ∣ 𝑍 = 1] − 𝔼[𝑌 ∣ 𝑍 = 0]𝔼[𝐴 ∣ 𝑍 = 1] − 𝔼[𝐴 ∣ 𝑍 = 0]=𝔼[𝑌 (1) − 𝑌 (0)|𝐴(1) − 𝐴(0) = 1]ℙ(𝐴(1) − 𝐴(0) = 1)ℙ(𝐴(1) − 𝐴(0) = 1)=𝔼[𝑌 (1) − 𝑌 (0)|𝐴(1) − 𝐴(0) = 1]



Instrument Under the No-Additive Interaction Assumption I
As seen above, one way to identify causal effects of treatment 𝐴
when it does not satisfy (A2) is by restricting the heterogeneity of
the treatment effect across latent/unobservable variables.▶ Under the monotonicity framework, we “restricted” treatment

effect heterogeneity in the latent space by simply removing
defiers (i.e., (IV6)).▶ In a separate line of work by Robins (1994) (see M. A. Hernán
and Robins (2006) for a more refined version), an instrument
was defined to restrict treatment effect heterogeneity through
the no additive interaction assumption.▶ As you’ll see below, the same ratio that identified the LATE
also identifies the average treatment effect on the treated
(ATT) if an instrument is defined in another way that restricts
treatment effect heterogeneity.

Roughly speaking, the no additive interaction framework assumes
the following conditions:



Instrument Under the No-Additive Interaction Assumption
II ▶ (JV1, Causal consistency): 𝑌 = 𝑌 (𝐴, 𝑍)▶ (JV2, Exhcangeable instrument):𝑍 ⟂ 𝑌 (1, 1), 𝑌 (1, 0), 𝑌 (0, 1), 𝑌 (0, 0)▶ (JV3, Positivity): 0 < ℙ(𝑍 = 1) < 1▶ (JV4, Instrument relevance): 𝔼[𝐴 ∣ 𝑍 = 1] ≠ 𝔼[𝐴 ∣ 𝑍 = 0]▶ (JV5, Exclusion restriction) 𝑌 (𝑎, 1) = 𝑌 (𝑎, 0) = 𝑌 (𝑎) for all𝑎▶ (JV6, No additive interaction) Suppose (JV5) holds. We have𝔼[𝑌 (1) − 𝑌 (0)|𝑍 = 1, 𝐴 = 1] = 𝔼[𝑌 (1) − 𝑌 (0)|𝑍 = 0, 𝐴 =1]. Note that there is an implicit assumption that0 < ℙ(𝑍 = 𝑧, 𝐴 = 1) < 1 for all 𝑧.

Some remarks about the assumptions.▶ The framework does not assume the existence of
counterfactuals 𝐴(1), 𝐴(0).



Instrument Under the No-Additive Interaction Assumption
III ▶ Assumption (JV1) and (JV2) are similar to assumptions (IV1)

and (IV2), except that assumptions about the counterfactuals𝐴(1), 𝐴(0) are no longer present.▶ Assumption (JV3) and (IV3) are identical.▶ Similar to (IV2) and (IV3) above, we can create conditional
versions of (JV2) and (JV3) that conditions on 𝑋:𝑍 ⟂ 𝑌 (1, 1), 𝑌 (1, 0), 𝑌 (0, 1), 𝑌 (0, 0) ∣ 𝑋, 0 < ℙ(𝑍 = 1 ∣ 𝑋 = 𝑥) < 1 for all 𝑥▶ Assumption (JV4) states that the instrument is associated
with 𝐴. In contrast to assumption (IV4), we do not
necessarily need to have a causal effect of 𝑍 on 𝐴.▶ Assumption (JV5) is identical to (IV5).



Interpreting the No-Additive Interaction Assumption (JV6)
I

Assumption (JV6) can be interpreted by writing out a saturated
model of the conditional expectation in (JV6).𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝑍 = 𝑧, 𝐴 = 1] = 𝛽0 + 𝛽1𝑧▶ A saturated model simply means that all of the variations on

the left-hand side of the equality (i.e. the conditional
expectation) can be explained by the model on the right-hand
side of the equality.▶ The term 𝛽0 represents the ATT among individuals with𝑍 = 0 and the term 𝛽0 + 𝛽1 represents the ATT among
individuals with 𝑍 = 1.

Then, assumption (JV6) implies 𝛽1 = 0.



Interpreting the No-Additive Interaction Assumption (JV6)
II ▶ In other words, the no additive interaction effect says that the

“ATT effect” (i.e., the average difference of 𝑌 (1) − 𝑌 (0)
conditional on 𝐴 = 1) is the same among individuals with𝑍 = 0 and 𝑍 = 1.▶ Note that (JV6) only restricts the effect of 𝑍 on the outcome
conditional on 𝐴 = 1.▶ For example, even under (JV6), it’s possible that𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝑍 = 1] ≠ 𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝑍 = 0]

In the context of the maternal smoking example, (JV6) states that:▶ The effect of smoking on birth weight among mothers that
smoked during pregnancy is the same between mother under
the encouragement intervention and mothers under the usual
care.



Proof of Identification of the ATT with (JV1)-(JV6) I
Now, we are ready to show that the ratio that was used to identify
the LATE can also identify the ATT under (JV1-JV6):

ATT = 𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴 = 1] = 𝔼[𝑌 ∣ 𝑍 = 1] − 𝔼[𝑌 ∣ 𝑍 = 0]𝔼[𝐴 ∣ 𝑍 = 1] − 𝔼[𝐴 ∣ 𝑍 = 0]
We begin with the numerator of this ratio.𝔼[𝑌 ∣ 𝑍 = 𝑧]=𝔼[𝑌 (𝐴, 𝑍) ∣ 𝑍 = 𝑧] (JV1, Consistency)=𝔼[𝑌 (𝐴) ∣ 𝑍 = 𝑧] (JV5, Exclusion restriction)=𝔼[𝑌 (1)𝐴 + 𝑌 (0)(1 − 𝐴) ∣ 𝑍 = 𝑧]=𝔼[(𝑌 (1) − 𝑌 (0))𝐴 ∣ 𝑍 = 𝑧] + 𝔼[𝑌 (0) ∣ 𝑍 = 𝑧]=𝔼[(𝑌 (1) − 𝑌 (0))𝐴 ∣ 𝑍 = 𝑧] + 𝔼[𝑌 (0)] (JV2, Exchangeable instrument)=𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝑍 = 𝑧, 𝐴 = 1]ℙ(𝐴 = 1 ∣ 𝑍 = 𝑧) + 𝔼[𝑌 (0)]



Proof of Identification of the ATT with (JV1)-(JV6) II
Note that assumption (JV3, Positivity on 𝑍) is used to have a
well-defined conditional event {∣ 𝑍 = 𝑧}. Taking the difference𝔼[𝑌 ∣ 𝑍 = 1] − 𝔼[𝑌 ∣ 𝑍 = 0] yields𝔼[𝑌 ∣ 𝑍 = 1] − 𝔼[𝑌 ∣ 𝑍 = 0]=𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝑍 = 1, 𝐴 = 1]ℙ(𝐴 = 1 ∣ 𝑍 = 1)− 𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝑍 = 0, 𝐴 = 1]ℙ(𝐴 = 1 ∣ 𝑍 = 0)=𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴 = 1] (ℙ(𝐴 = 1 ∣ 𝑍 = 1) − ℙ(𝐴 = 1 ∣ 𝑍 = 0)) (JV6, No additive interaction)

The last equality utilizes the fact that (JV6) implies𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝑍 = 1, 𝐴 = 1] = 𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝑍 = 0, 𝐴 =1] = 𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴 = 1].
Dividing the above expression byℙ(𝐴 = 1 ∣ 𝑍 = 1) − ℙ(𝐴 = 1 ∣ 𝑍 = 0), which must be non-zero
by assumption (JV4, Instrument relevance) gives us the desired
result.



Proof of Identification of the ATT with (JV1)-(JV6) III

Recent works have relaxed (JV6) to allow identification of the ATT
(or the ATE); see Wang and Tchetgen Tchetgen (2018) and Cui
and Tchetgen Tchetgen (2021).
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