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Concepts Covered Today

▶ Three causal identifying assumptions: (a) SUTVA/consistency,
(b) strong ignorability, and (c) positivity/overlap.▶ Motivation of assumptions based on missing data (MCAR,
MAR)▶ Motivation of assumptions based ona randomized experiment▶ Covariance balance▶ References▶ Chapter 2 of Hernán and Robins (2020)



Review from Last Week I
We are interested in the causal effect of a treatment (versus no
treatment/control) on an outcome.
We used the counterfactual/potential outcomes to define causal
effects.▶ 𝑌 (1): the counterfactual outcome if, contrary to fact, the

study unit was treated.▶ 𝑌 (0): the counterfactual outcome if, contrary to fact, the
study unit was not treated (i.e., control)𝑌 (1) 𝑌 (0)

John 0.54 0.94
Sally 0.91 0.91
Kate 0.81 0.60
Jason 0.60 0.84



Review from Last Week II

From the fundamental problem of causal inference, we generally
cannot observe both 𝑌 (1), 𝑌 (0).
Also, the counterfactual outcomes differ from the observed
outcomes 𝑌 in that the observed outcome is a realization for a
particular value of the treatment assignment 𝐴.𝑌 𝐴

John 0.94 0
Sally 0.91 0
Kate 0.81 1
Jason 0.60 1



Review from Last Week III

How do we learn about 𝑌 (1), 𝑌 (0) from the observable data 𝑌 , 𝐴?



Our First Assumption for Causal Identification:
SUTVA/Causal Consistency I

First, let’s make the following assumption known as stable unit
treatment value assumption (SUTVA) (Rubin (1980)) or
causal consistency (page 4 of Hernán and Robins (2020)):𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0).
It’s also common to rewrite the above assumption as𝑌 = 𝑌 (𝐴), or if 𝐴 = 𝑎, then 𝑌 = 𝑌 (𝑎).
The latter version covers the case when the treatment 𝐴 is not
binary (e.g., discrete, continuous)



Our First Assumption for Causal Identification:
SUTVA/Causal Consistency II

In words, SUTVA states the observed outcome 𝑌 is one realization
of the counterfactual outcomes 𝑌 (𝑎) based on the observed value
of the treatment 𝐴.

More subtly, SUTVA implies two “mini” assumptions.▶ There are no multiple versions of treatment.▶ There is no interference, a term coined by Cox (1958).



No Multiple Versions of Treatment I

It’s useful to understand this assumption by studying the case
when the assumption is violated.
Let’s go back to the smoking example from the first lecture where
we defined the causal effect of daily smoking (i.e., treatment)
versus never smoking (i.e., control) on lung function.
Daily smoking may include different type of daily smokers.

a. Is a daily smoker a person who smokes at least one cigarette
per day?

b. Is a daily smoker a person who smokes at least one pack of
cigarettes per day?

c. Is a daily smoker a person who smokes during all time in their
lives, including during pregnancy?

d. Is a daily smoker a person who vapes every day?
e. …



No Multiple Versions of Treatment II

We can define counterfactual outcomes for all types of daily
smokers:▶ 𝑌 (1): counterfactual outcome under definition (a) of a daily

smoker▶ 𝑌 (2): counterfactual outcome under definition (b) of a daily
smoker▶ …▶ 𝑌 (𝑘): counterfactual outcome under definition (k) of a daily
smoker

By assuming SUTVA, we eliminate these variations in the
counterfactuals. Formally,𝑌 (1) = 𝑌 (2) = … = 𝑌 (𝑘).



No Multiple Versions of Treatment III
In words, SUTVA implies that the lung function of a daily smoker
who smokes at least one cigarette per day (i.e., 𝑌 (1)) is equal to
the lung function of the same daily smoker living in the same
environment except that he/she smokes at least one pack of
cigarettes per day (i.e., 𝑌 (2)).▶ No multiple versions of treatment assumption does not imply

that the counterfactual outcome of the control, 𝑌 (0), is equal
to the counterfactual outcome for the treatment , i.e.,𝑌 (1) = 𝑌 (0).▶ But, the assumption implies that there are no multiple
versions of control.▶ In the data example, the counterfactual outcomes of different

types of “never-smokers” are identical.▶ For example, a never-smoke could be someone who never
smoked since birth or someone who only smokes “rarely.”▶ Formally, 𝑌 (0) = 𝑌 (0′) = 𝑌 (0″) where 0, 0′, 0″ represent
different types of never-smokers.



No Multiple Versions of Treatment IV
There are settings where no multiple versions of treatment is
plausible. For example,▶ The casual effect of taking Wegovy/semaglutides weight loss

drug (i.e., treatment). Taking this drug is a well-define
intervention. Similarly, not taking the drug (i.e., control) is
also a well-defined intervention.▶ In general, randomized controlled trials (RCTs) usually
have unambiguous definitions of treatment and control.▶ The causal effect of increasing graduate student’s stipends in
Fall 2024 (i.e., the treatment). The increase is a well-defined
policy (e.g., 5% increase).

Broadly speaking, SUTVA forces you to define meaningful 𝑌 (𝑎);
see the first lecture.▶ Some authors restrict counterfactual outcomes to be based on

well-defined interventions or “no causation without
manipulation”



No Multiple Versions of Treatment V

▶ See Holland (1986),Hernán and Taubman (2008),Cole and
Frangakis (2009), VanderWeele (2009), and first lecture notes
on the “causal effect” of race.



No Interference I

It is useful to understand this assumption with a counterexample.

Suppose we want to study the causal effect of getting the varicella
vaccine (i.e., chickenpox vaccine) on getting the chickenpox. Let’s
define the following counterfactual outcomes:▶ 𝑌 (1): John’s counterfactual chickenpox status if John gets

vaccinated.▶ 𝑌 (0): John’s counterfactual chickenpox status if John doesn’t
get vaccinated.▶ If 𝑌 (0) = 0, John did not get the chickenpox in the universe

where he’s not vaccinated against it.▶ If 𝑌 (0) = 1, John got the chickenpox in the universe where
he’s not vaccinated against it.



No Interference II
If the chickenpox vaccine is 100% effective for everyone, it’s likely
that 𝑌 (1) = 0.
Now, suppose John has a sibling Sally and let’s consider John’s
counterfactual universe where he is not vaccinated and Sally’s
vaccination status varies.

a. John’s counterfactual chickenpox status when John is not
vaccinated, but Sally is vaccinated.

b. John’s counterfactual chickenpox status when John and Sally
are both unvaccinated.

We can redefine the counterfactual outcomes to incorporate Sally’s
vaccination status.

a. 𝑌 (0, 1): John’s counterfactual chickenpox status where the
first 0 refers to John’s vaccination status (i.e., not vaccinated)
and the second 1 refers to Sally’s vaccination status (i.e.,
vaccinated)



No Interference III
b. 𝑌 (0, 0): John’s counterfactual chickenpox status where the

first 0 refers to John’s vaccination status (i.e., not vaccinated)
and the second 0 refers to Sally’s vaccination status (i.e., not
vaccinated)

SUTVA implies that John’s counterfactual outcome only depends
on John’s vaccination status, not Sally’s vaccination status.
Formally, 𝑌 (0, 1) = 𝑌 (0, 0) = 𝑌 (0)▶ From our understanding of chickenpox and how contagious it

is, no interference is an implausible assumption.▶ For example, if Sally is vaccinated, John will be less likely to
get the chickenpox compared to when Sally is not vaccinated.▶ We can express this as 𝑌 (0, 1) ≤ 𝑌 (0, 0)▶ Remember, the study unit’s outcome is 1 if the unit gets the

chickenpox and 0 otherwise.



No Interference IV▶ In general, no interference is unlikely to hold in vaccine studies
and studies of peer/neighborhood/carryover effects.▶ Rosenbaum (2007) has a nice set of examples of when the no

interference assumption is implausible.▶ There is a lot of ongoing work on this topic (e.g., Li and
Wager (2022), Sävje, Aronow, and Hudgens (2021)).

There are settings where the no interference assumption is
plausible.▶ The causal effect of taking Lipitor/atorvastatin cholesterol

drug (i.e., treatment) on total cholesterol levels (i.e.,
outcome).▶ John’s cholesterol level will unlikely be affected by whether

Sally takes the drug or not.▶ The causal effect of enrolling in a job training program (i.e.,
treatment) on employment.▶ John’s employment status will unlikely be affected by whether

Sally enrolls in the training program or not.



Motivating the Other Assumptions for Causal
Identification: A Missing Data Perspective

Once we assume SUTVA (i.e. 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)), the
other assumptions for causal identification can be motivated by a
connection to a missing data problem.𝑌 (1) 𝑌 (0) 𝑌 𝐴

John NA 0.94 0.94 0
Sally NA 0.91 0.91 0
Kate 0.81 NA 0.81 1
Jason 0.60 NA 0.60 1

Under SUTVA, we only see one of the two counterfactual
outcomes based on 𝐴.▶ 𝐴 serves as the “missingness” indicator where 𝐴 = 1 implies𝑌 (1) is observed and 𝐴 = 0 implies 𝑌 (0) is observed.▶ 𝑌 is the “observed” value.



Assumption on Missingness Pattern
Suppose we are interested in the causal estimand 𝔼[𝑌 (1)] (i.e. the
mean of the first column).
One approach to study it is to take the average of the “complete
cases” (i.e., Kate and Jason’s 𝑌 (1)s).▶ Formally, we would identify 𝔼[𝑌 (1)] with 𝔼[𝑌 |𝐴 = 1], the

population mean of the observed outcome 𝑌 among 𝐴 = 1.▶ This approach is valid if the entries of the first column are
missing completely at random (MCAR).▶ For each row, the missingness of 𝑌 (1) depends on a

missingness indicator 𝐴 where the value of this indicator is
based on the result of a random, independent, and identical
coin flip.▶ Someone essentially had a blindfold on and randomly erased
some values of 𝑌 (1) values; the entries of 𝑌 (1) are missing
completely by chance.

See here for an introduction to missing data.

https://onlinelibrary.wiley.com/doi/book/10.1002/9781119013563


Formal Statement of MCAR
Formally, MCAR can be stated as𝐴 ⟂ 𝑌 (1) and 0 < ℙ(𝐴 = 1)▶ 𝐴 ⟂ 𝑌 (1) states that missingness is independent of 𝑌 (1)

i. Missingness occurs completely at random in the rows of the
first column, say by a flip of a random coin.

ii. Missingness doesn’t occur more frequently for lower values of𝑌 (1); this would violate 𝐴 ⟂ 𝑌 (1).
iii. Used in the context of causal inference, this assumption is

sometimes referred to as (complete) exchangeability or
ignorabiltiy or complete randomization▶ 0 < ℙ(𝐴 = 1) states that you have a non-zero probability of

observing some entries of the column 𝑌 (1)
i. If ℙ(𝐴 = 1) = 0, then all entries of the column 𝑌 (1) are

missing and we can’t learn anything about its column mean.
ii. Used in the context of causal inference, this assumption is

sometimes referred to as positivity or overlap.



Formal Proof of Causal Identification of 𝔼[𝑌 (1)]
Suppose SUTVA and MCAR hold:▶ (A1, SUTVA): 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)▶ (A2, Complete randomization): 𝐴 ⟂ 𝑌 (1)▶ (A3, Positivity): 0 < ℙ(𝐴 = 1)
Then, we can identify the causal estimand 𝔼[𝑌 (1)] by writing it as
the following function of the observed data 𝔼[𝑌 |𝐴 = 1]:𝔼[𝑌 ∣ 𝐴 = 1] = 𝔼[𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0) ∣ 𝐴 = 1] (A1)= 𝔼[𝑌 (1) ∣ 𝐴 = 1] Algebra= 𝔼[𝑌 (1)] (A2)

(A3) is used to ensure that 𝔼[𝑌 |𝐴 = 1] is a well-defined quantity.



Causal Identification of the ATE

In a similar vein, to identify the ATE 𝔼[𝑌 (1) − 𝑌 (0)], a natural
approach would be to use 𝔼[𝑌 |𝐴 = 1] − 𝔼[𝑌 |𝐴 = 0].
This approach would be valid under the following variation of the
MCAR assumption:𝐴 ⟂ 𝑌 (0), 𝑌 (1), 0 < ℙ(𝐴 = 1) < 1▶ The first part states that the treatment 𝐴 is independent of𝑌 (1), 𝑌 (0). This is also referred to (complete)

exchangeability, ignorability, or complete randomization
in causal inference.▶ 0 < ℙ(𝐴 = 1) < 1 states that there is a non-zero probability
of observing some entries from the columns of 𝑌 (1) and 𝑌 (0).
This is (again) referred to positivity or overlap in causal
inference.



Formal Proof of Causal Identification of the ATE
Suppose SUTVA and MCAR hold:▶ (A1, SUTVA): 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)▶ (A2, Igornability): 𝐴 ⟂ 𝑌 (1), 𝑌 (0)▶ (A3, Positivity): 0 < ℙ(𝐴 = 1) < 1
Then, we can identify the ATE from the observed data via:𝔼[𝑌 |𝐴 = 1] − 𝔼[𝑌 |𝐴 = 0]=𝔼[𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)|𝐴 = 1]− 𝔼[𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)|𝐴 = 0] (A1)=𝔼[𝑌 (1)|𝐴 = 1] − 𝔼[𝑌 (0)|𝐴 = 0] Algebra=𝔼[𝑌 (1)] − 𝔼[𝑌 (0)] (A2)

(A3) ensures that the conditioning events in 𝔼[⋅|𝐴 = 0] and𝔼[⋅|𝐴 = 1] are well-defined.



Interpreting the Causal Identification of the ATE I

𝔼[𝑌 |𝐴 = 1] − 𝔼[𝑌 |𝐴 = 0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Measure of Association

= 𝔼[𝑌 (1)] − 𝔼[𝑌 (0)]⏟⏟⏟⏟⏟⏟⏟
Measure of Causation

This equality implies that under (A1,SUTVA), (A2, Ignorability),
and (A3, Positivity), a measure of association between 𝐴 and 𝑌
based on difference in means (i.e., the left-hand-side ) is equal to a
measure of causation based on difference in counterfactual means
(i.e., the right-hand side).▶ More concretely, suppose the difference in the population

means of 𝑌 is 0.5 (i.e., 𝔼[𝑌 |𝐴 = 1] − 𝔼[𝑌 |𝐴 = 0] = 0.5)▶ Then the difference in the means of the counterfactual
outcomes is also 0.5 (i.e., 𝔼[𝑌 (1)] − 𝔼[𝑌 (0)] = 0.5)▶ In other words, under (A1,SUTVA), (A2, Ignorability), and
(A3, Positivity), association can imply causation.



Interpreting the Causal Identification of the ATE II
We can take this result a bit further by considering the setting
where there is no association between 𝐴 and 𝑌 .▶ No association is equivalent to 𝐴 ⟂ 𝑌 .▶ This implies that there is no (linear) correlation between 𝐴 and𝑌 (i.e., the population corr(𝐴, 𝑌 ) = 0)▶ In general, there is no dependence of any kind (linear or

non-linear) between 𝐴 and 𝑌 .▶ An implication of 𝐴 ⟂ 𝑌 is that𝔼[𝑌 |𝐴 = 1] = 𝔼[𝑌 |𝐴 = 0] = 𝔼[𝑌 ]▶ By the result above, if (A1,SUTVA), (A2, Ignorability), and
(A3, Positivity) hold, 𝔼[𝑌 (1)] = 𝔼[𝑌 (0)].▶ In short, under (A1,SUTVA), (A2, Ignorability), and (A3,
Positivity), no association implies no causation.

More broadly, as illustrated by both examples, association can
imply certain causal claims if additional assumptions hold (e.g.,
(A1,SUTVA), (A2,Ignorability), and (A3, Positivity)).



Interpreting the Causal Identification of the ATE III

▶ Importantly, if SUTVA does not hold, there is no way to link
the observed values 𝐴, 𝑌 to the counterfactual outcomes𝑌 (1), 𝑌 (0)▶ Thus, as the old saying goes, association may not imply
causation unless additional assumptions hold.



Motivating the Other Assumptions for Causal
Identification: A Randomized Experiment I

Consider an ideal, completely randomized trial/experiment (RCT)
to assess the causal effect of a new drug (versus a control/placebo)
on an outcome of interest.

1. Enroll individuals to the experiment based on some enrollment
criterion.

2. Randomly assign some individuals to treatment (i.e., 𝐴 = 1)
and others to control (i.e., 𝐴 = 0)

3. Observe outcomes 𝑌 from both groups.



Motivating the Other Assumptions for Causal
Identification: A Randomized Experiment II

RCTs have been referred to as the gold standard to study causal
effects of a treatment on an outcome of interest. But why?▶ At a high level, RCTs recreates the parallel universe analogy.



Motivating the Other Assumptions for Causal
Identification: A Randomized Experiment III▶ Specifically, by randomization, all features about the study

units are similar between the treated and the control groups.▶ The two groups are similar with respect to their measurable
traits (𝑋)▶ The two groups are also similar with respect to their
unmeasurable traits (𝑈)▶ Then, any difference in the outcome between the two groups

can only be attributed to a difference in the treatment status,
thus recreating the parallel universe analogy from our first
lecture.

This was the “big” idea from Fisher in 1935 where he used
randomization as the “reasoned basis’ ’ for causal inference. Paul
Rosenbaum explains this more beautifully than I do in Chapter 2.3
of Rosenbaum (2020).



Formalizing RCTs with Counterfactual Outcomes I

Consider the following data table.

𝑌 (1) 𝑌 (0) 𝑌 𝐴 X (Mea-
sured;
age)

U (Unmeasured;
environment)

John NA 0.94 0.94 0 23 𝑈John
Sally NA 0.91 0.91 0 27 𝑈Sally
Kate 0.81 NA 0.81 1 32 𝑈Kate
Jason 0.60 NA 0.60 1 30 𝑈Jason



Formalizing RCTs with Counterfactual Outcomes II
If the treatment 𝐴 is completely randomized (as in an RCT), we
would also have 𝐴 ⟂ 𝑋, 𝑈 . More generally, we have

(A2, Ignorability) 𝐴 ⟂ 𝑌 (1), 𝑌 (0), 𝑋, 𝑈
.
Also, because there is at least one control unit and treated unit in
an RCT, we have

(A3, Positivity) 0 < ℙ(𝐴 = 1) < 1
.
Even with the change in (A2, Ignorability) from before, the proof
to identify the ATE in an RCT remains the same as before, i.e.,𝔼[𝑌 (1)] − 𝔼[𝑌 (0)] = 𝔼[𝑌 |𝐴 = 1] − 𝔼[𝑌 |𝐴 = 0]. This is because
only need 𝐴 ⟂ 𝑌 (1), 𝑌 (0) for identification.



Covariate Balance I

An important implication from randomization of treatment
assignment is covariate balance.
Roughly speaking, we say that covariate 𝑋 (measured or
unmeasured) is “balanced’ ’ between treated and control groups ifℙ(𝑋|𝐴 = 1) = ℙ(𝑋|𝐴 = 0)▶ In words, covariate balance states that the treated group and

the control group have similar distribution of covariates.▶ Suppose measured and unmeasured covariates are balanced
between the treated group and the control group.▶ Then on average, any difference in the outcome between the
two groups can be attributed to the difference in their
treatment status.



Covariate Balance II
From the RCT motivation, it’s very obvious that covariate balance
holds for both 𝑋 and 𝑈 , i.e.ℙ(𝑋, 𝑈|𝐴 = 1) = ℙ(𝑋, 𝑈|𝐴 = 0)
.
In general, covariates should be balanced between treated and
control groups to make causal claims about the relationship
between the outcome and the treatment.▶ As a result, it’s common to check for covariate balance in

causal inference by comparing the means of 𝑋s among treated
and control units (e.g. two-sample t-test of the mean of 𝑋).▶ It’s also common to do this for RCTs to verify that the
randomization was done successfully.



Note About Pre-treatment Covariates

We briefly mentioned that covariates 𝑋 must precede treatment
assignment, i.e.

1. We collect 𝑋 (i.e. baseline covariates)
2. We assign treatment/control 𝐴
3. We observe outcome 𝑌

If they are post-treatment covariates, then the treatment can have
a causal effect on both the outcome 𝑌 and the covariates 𝑋.
In this case, it’s not unclear whether 𝑌 has a causal effect because
of a causal effect in 𝑋. Studying this type of question is called
causal mediation analysis.
In general, we don’t want to condition on post-treatment
covariates 𝑋 when the goal is to estimate the average treatment
effect of 𝐴 on 𝑌 .
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