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Review: Causal Identification Under Complete Randomized
Experiment I

Suppose we are interested in identifying the average treatment
effect (ATE), 𝔼[𝑌 (1) − 𝑌 (0)]. Under an ideal, complete
randomized experiment, the following assumptions are satisfied:

▶ (A1,SUTVA): 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)
▶ (A2, Randomization of 𝐴): 𝐴 ⟂ 𝑋, 𝑌 (1), 𝑌 (0)
▶ (A3, Positivity): 0 < 𝑃 (𝐴 = 1) < 1

Assumptions (A2) and (A3) can also be interpreted as
consequences of missing at completely random (MCAR) in the
missing data literature.

We have illustrated both approaches to motivate (A2) and (A3)
using the following table:



Review: Causal Identification Under Complete Randomized
Experiment II

𝑌 (1) 𝑌 (0) 𝑌 𝐴 𝑋Age

John NA 0.94 0.94 0 23
Sally NA 0.91 0.91 0 27
Kate 0.81 NA 0.81 1 32
Jason 0.60 NA 0.60 1 30



Review: Causal Identification Under Complete Randomized
Experiment III

This lecture discusses a popular set of identifying assumptions to
identify causal effects known as strong ignorability.



Motivating Strong Ignorability: Stratified Randomized
Experiments I

In most randomized experiments, treatment is not randomized
completely at random.

▶ Often, treatment is randomized within a pre-defined block of
individuals.

▶ The blocks are defined by covariates 𝑋.

This type of randomized experiment is broadly known as
stratified/blocked experiments. Some examples include

▶ From the above table, suppose we partition individuals into
two blocks: those who are less than 30 years old and those
who are greater than or equal to 30 years old. Treatment is
randomly assigned within each block.



Motivating Strong Ignorability: Stratified Randomized
Experiments II

▶ Consider a hypothetical randomized experiment to assess the
causal effect of a new drug on reducing blood pressure.
Suppose we recruit identical twins and we randomly assign
treatment within each twin. Here, each twin defines a block.

The treatment probabilities can differ across blocks.
▶ Individuals in block one has 70% chance of getting treated
▶ Individuals in block two has 50% chance of getting treated
▶ …
▶ But, within each block, the treatment is assigned randomly.



Formalizing Strong Ignorability I

We can formalize the assumptions of a stratified randomized
experiment as follows:

▶ (A1, SUTVA): 𝑌 = 𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)
▶ (A2, Conditional randomization of 𝐴): 𝐴 ⟂ 𝑌 (1), 𝑌 (0)|𝑋
▶ (A3, Positivity/Overlap): 0 < ℙ(𝐴 = 1|𝑋 = 𝑥) < 1 for all 𝑥

where 𝑓(𝑥) > 0 and 𝑓(⋅) denotes the density of 𝑋.

Assumptions (A2) states that 𝐴 is now conditionally independent
of 𝑌 (1), 𝑌 (0) given 𝑋.

Assumption (A3) states that the treatment probability depends on
𝑋 and the probability of getting treated must be between 0 and 1.

For example, if 𝑋 is age:
▶ (A2) states that conditional on the age group, treatment 𝐴 is

randomly assigned to individuals within that age group.



Formalizing Strong Ignorability II

▶ (A3) states that conditional on the age group, each person
has a non-zero probability of receiving treatment or control.

▶ Note that the treatment probability may be different across age
groups, like a stratified randomized experiment example above.

Other remarks about the assumptions:
▶ The function ℙ(𝐴 = 1|𝑋 = 𝑥) is so famous that it’s called

the propensity score (Rosenbaum and Rubin (1983)).
▶ It gets its name because it quantifies the propensity for an

individual with covariates 𝑋 to get treated.
▶ We’ll discuss the propensity score in greater detail later.

▶ Assumptions (A2) and (A3) are known as strong ignorability
(Rosenbaum and Rubin (1983)).



Connection to Missing Data: MAR I

Similar to the case under a complete randomized experiment, (A2)
and (A3) have connection to the missing at random (MAR)
assumption in the missing data literature.

To illustrate, let’s consider the table below:

𝑌 (1) 𝑌 (0) 𝑌 𝐴 𝑋Under 30 years

John NA 0.94 0.94 0 1
Sally NA 0.91 0.91 0 1
Sarah 0.70 NA 0.70 1 1
Kate 0.81 NA 0.81 1 0
Jason 0.60 NA 0.6 1 0
Jack NA 0.88 0.88 0 0



Connection to Missing Data: MAR II

Assumption (A2) states that within the rows of the table where 𝑋s
are identical (i.e. conditional on 𝑋), the missingness indicator 𝐴 is
completely independent of the columns 𝑌 (1), 𝑌 (0).
Assumption (A3) states that within the rows of the table where 𝑋s
are identical, some values of 𝑌 (1) (or 𝑌 (0)) are observed and this
holds for every value of 𝑋.



Identification Under Strong Ignorability: CATE I

Under strong ignorability, it’s relatively straightforward to identify
the ATE among a subgroup defined by 𝑋:

𝔼[𝑌 (1) − 𝑌 (0)|𝑋 = 𝑥]

This is referred to as the conditional average treatment effect
(CATE).

Intuitively, to identify the CATE:
▶ We consider a smaller table where we only have individuals

with 𝑋 = 𝑥.
▶ Then, similar to a completely randomized experiment, we can

identify 𝔼[𝑌 (1)|𝑋 = 𝑥] by taking the average of the observed
𝑌 (1).



Identification Under Strong Ignorability: CATE II

More formally, for any 𝑥, we have

𝔼[𝑌 |𝐴 = 1, 𝑋 = 𝑥]
=𝔼[𝐴𝑌 (1) + (1 − 𝐴)𝑌 (0)|𝐴 = 1, 𝑋 = 𝑥] (A1)
=𝔼[𝑌 (1)|𝐴 = 1, 𝑋 = 𝑥] Algebra
=𝔼[𝑌 (1)|𝑋 = 𝑥] (A2)

Assumption (A3) ensures that the conditioning event
𝔼[𝑌 |𝐴 = 1, 𝑋 = 𝑥] is well-defined.



Identification Under Strong Ignorability: ATE I

Once we identified the CATE, we can immediately identify the
average treatment effect 𝔼[𝑌 (1) − 𝑌 (0)] from the law of total
expectations.

For the unconditional mean 𝔼[𝑌 (1)], we have

𝔼[𝑌 (1)] = 𝔼[𝔼[𝑌 (1)|𝑋]] Law of total expectation
= 𝔼[𝔼[𝑌 |𝐴 = 1, 𝑋]] Argument from above

Repeating the above argument identifies
𝔼[𝑌 (0)] = 𝔼[𝔼[𝑌 |𝐴 = 0, 𝑋]] and thus, the ATE is identified via

𝔼[𝑌 (1) − 𝑌 (0)] = 𝔼[𝔼[𝑌 |𝐴 = 1, 𝑋]] − 𝔼[𝔼[𝑌 |𝐴 = 0, 𝑋]]



Identification of the Average Treatment Effect Among the
Treated (ATT) I

In addition to the ATE, there is another popular causal estimand
called the average treatment effect among the treated (ATT),
or formally

ATT = 𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴 = 1]
In words, ATT is the average treatment effect among individuals
who received treatment.

Alternatively, consider the data table below.

𝑌 (1) 𝑌 (0) 𝑌 𝐴 𝑋Age

John NA 0.94 0.94 0 23
Sally NA 0.91 0.91 0 27
Kate 0.81 NA 0.81 1 32
Jason 0.60 NA 0.60 1 30



Identification of the Average Treatment Effect Among the
Treated (ATT) II

▶ The ATT represents the average of the differences of
𝑌 (1) − 𝑌 (0) among Kate and Jason, both of whom were
treated.

▶ Note that the ATT is different than the ATE, which
represents the average of the differences of 𝑌 (1) − 𝑌 (0) for
both treated and untreated individuals.

A feature of the ATT is that you can identify the causal effect by a
weaker version of strong ignorability, i.e.

▶ (A2.ATT): 𝐴 ⟂ 𝑌 (0)|𝑋
▶ (A3.ATT): ℙ(𝐴 = 1 ∣ 𝑋 = 𝑥) < 1 for all 𝑥 where 𝑓(𝑥) > 0

and 0 < ℙ(𝐴 = 1)
▶ Remember that 𝑓 denotes the density function.

Comparing the “original” strong ignorability (A2) with the weaker
versions (A2.ATT):



Identification of the Average Treatment Effect Among the
Treated (ATT) III

▶ ATT identification does not need conditional independence
between 𝐴 and𝑌 (1).

▶ In the context of missing data, we only need the missingness
indicator 𝐴 to be independent of the column 𝑌 (0), not
necessarily with the column 𝑌 (1).

▶ From my experience, the practical difference between
(A2.ATT) and (A2) and the discussions about the plausibility
of the identifying assumptions in an observational study is
minor.

Comparing the “original” positivity (A3) with the weaker version
(A3.ATT),

▶ (A3.ATT) requires that there are some controls for all values
of 𝑋.

▶ Another way to say this is that there cannot be a region in the
space of covariates where everyone gets treated



Identification of the Average Treatment Effect Among the
Treated (ATT) IV

This weaker version of strong ignorability is often attributed to
Heckman, Ichimura, and Todd (1997). But, I cannot find the exact
page where (A3.ATT) is actually mentioned…

To prove identification with the weaker assumption, the term
𝔼[𝑌 (1) ∣ 𝐴 = 1] in the ATT can be identified with just assumption
(A1, SUTVA) and (A3.ATT):

𝔼[𝑌 (1) ∣ 𝐴 = 1] = 𝔼[𝑌 ∣ 𝐴 = 1] (A1)

The second part of (A3.ATT) ensures that the conditional
expectation is well-defined.

In contrast, the term 𝔼[𝑌 (0) ∣ 𝐴 = 1] in the ATT must be
identified with (A1), (A2.ATT), and (A3.ATT).



Identification of the Average Treatment Effect Among the
Treated (ATT) V

𝔼[𝑌 (0) ∣ 𝐴 = 1] = 𝔼[𝔼[𝑌 (0) ∣ 𝐴 = 1, 𝑋]|𝐴 = 1] Law of total expectation and (A3.ATT)
= 𝔼[𝔼[𝑌 (0) ∣ 𝐴 = 0, 𝑋]|𝐴 = 1] (A2.ATT)
= 𝔼[𝔼[𝑌 ∣ 𝐴 = 0, 𝑋]|𝐴 = 1] (A1)

▶ The second part of (A3.ATT) ensures that the conditional
expectation on the left-hand-side of the first equality is
well-defined.

▶ All of (A3.ATT) ensures that the conditional expectation on
the right-hand-side of the first equality is well-defined.

▶ (A3.ATT) implies that there is a region of 𝑋 where
ℙ(𝐴 = 1 ∣ 𝑋 = 𝑥) > 0 is positive because

0 < ℙ(𝐴 = 1) = ∫
𝑥,𝑓(𝑥)>0

ℙ(𝐴 = 1 ∣ 𝑋 = 𝑥)𝑓(𝑥)𝑑𝑥



Identification of the Average Treatment Effect Among the
Treated (ATT) VI

Technically, the inner expectation 𝔼[𝔼[𝑌 (0) ∣ 𝐴 = 1, 𝑋]|𝐴 = 1] is
taken with respect to regions of 𝑋 where 𝑓(𝑥|𝐴 = 1) > 0, i.e.,

𝔼[𝔼[𝑌 (0) ∣ 𝐴 = 1, 𝑋]|𝐴 = 1]

= ∫
𝑦

∫
𝑥,𝑓(𝑥∣𝐴=1)>0

𝑦𝑓(𝑦 ∣ 𝐴 = 1, 𝑋 = 𝑥)𝑓(𝑥 ∣ 𝐴 = 1)𝑑𝑥𝑑𝑦

Hence, under (A1), (A2.ATT), and (A3.ATT), we can identify the
ATT via

𝔼[𝑌 (1) − 𝑌 (0) ∣ 𝐴 = 1]
=𝔼[𝑌 ∣ 𝐴 = 1] − 𝔼[𝔼[𝑌 ∣ 𝐴 = 0, 𝑋] ∣ 𝐴 = 1]



Identification of Other Measures of Causal Effects: Causal
Relative Risk (CRR) and Causal Odds Ratio (COR) I

We list some popular causal estimands when the outcome is binary
and prove that they can be identified under (A1) and strong
ignorability

Under a binary outcome, some popular causal estimands are the
causal relative risk (CRR) and the causal odds ratio (COR):

CRR = 𝔼[𝑌 (1)]
𝔼[𝑌 (0)] = ℙ(𝑌 (1) = 1)

ℙ(𝑌 (0) = 1)

COR =
ℙ(𝑌 (1)=1)

1−ℙ(𝑌 (1)=1)
ℙ(𝑌 (0)=1)

1−ℙ(𝑌 (0)=1)



Identification of Other Measures of Causal Effects: Causal
Relative Risk (CRR) and Causal Odds Ratio (COR) II

▶ Despite their popularity, there are some issues with defining
causal odds ratios (or more generally odds ratios) due to
non-collapsibility issues; see Greenland, Pearl, and Robins
(1999) and M. A. Hernán, Clayton, and Keiding (2011).

▶ I would recommend using CRRs instead of CORs unless the
scientific question is expressed in terms of odds ratios.

▶ Note that the original ATE 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)], or a linear
contrast of the outcomes, also works for binary outcomes.

Identification of the CRR and the COR proceeds by identifying
𝔼[𝑌 (𝑎)] for 𝑎 ∈ {0, 1}, which make up the CRR and the COR. In
particular, we have

𝔼[𝑌 (𝑎)] = 𝔼[𝔼[𝑌 (𝑎) ∣ 𝑋]] Law of total expectation
= 𝔼[𝔼[𝑌 (𝑎) ∣ 𝐴 = 𝑎, 𝑋]] (A2) and (A3)
= 𝔼[𝔼[𝑌 ∣ 𝐴 = 𝑎, 𝑋]] (A1)



Identification of Other Measures of Causal Effects: Causal
Relative Risk (CRR) and Causal Odds Ratio (COR) III

We need (A3) to ensure that the conditioning event {𝐴 = 𝑎, 𝑋} is
well-defined. Then, under (A1), (A2), and (A3), the CRR and the
COR are identified as

CRR = 𝔼[𝔼[𝑌 ∣ 𝐴 = 1, 𝑋]]
𝔼[𝔼[𝑌 ∣ 𝐴 = 0, 𝑋]]

COR =
𝔼[𝔼[𝑌 ∣𝐴=1,𝑋]]

1−𝔼[𝔼[𝑌 ∣𝐴=1,𝑋]]
𝔼[𝔼[𝑌 ∣𝐴=0,𝑋]]

1−𝔼[𝔼[𝑌 ∣𝐴=0,𝑋]]



Policy Learning: Single, Static, Optimal Treatment Rule
(OTR) I

In personalized medicine, the goal is to operationalize how doctors
assign treatment to patients. This is done by defining an optimal
treatment assignment rule, which takes in patients’ covariates 𝑋
and outputs either treatment (i.e., 1) or control (i.e., 0) that
maximizes the patient’s outcome (in expectation).

▶ Consider a policy function 𝜋 ∶ 𝒳 → {0, 1} which assigns
either treatment (i.e 1) or control (i.e 0) based on the
individual’s characteristic 𝑋 ∈ 𝒳.

▶ The goal is to find the best 𝜋, denoted as 𝜋OTR, that
maximizes the expected counterfactual outcome under that
policy:



Policy Learning: Single, Static, Optimal Treatment Rule
(OTR) II

𝜋OTR = argmax
𝜋∶𝒳→{0,1}

𝔼[𝑌 (𝜋(𝑋))]

The term 𝑌 (𝜋(𝑋)) is the counterfactual outcome if treatment is
assigned based on the policy 𝜋 and can be written as

𝑌 (𝜋(𝑋)) = 𝑌 (1)𝐼(𝜋(𝑋) = 1) + 𝑌 (0)𝐼(𝜋(𝑋) = 0)

The term 𝔼[𝑌 (𝜋(𝑋))], which takes an average of the
counterfactual outcome under policy 𝜋 is frequently referred to as
the value of the policy function 𝜋. For example,

▶ The value of a policy that always assigns treatment,
i.e. 𝜋(𝑋) = 1, is 𝔼[𝑌 (𝜋(𝑋))] = 𝔼[𝑌 (1)]

▶ The value of a policy that always assigns control,
i.e. 𝜋(𝑋) = 0, is 𝔼[𝑌 (𝜋(𝑋))] = 𝔼[𝑌 (0)]



Identifying the Value Function

Given any policy 𝜋, we can identify its value under assumptions
(A1), (A2), and (A3).

𝔼[𝑌 (𝜋(𝑋))]
=𝔼[𝑌 (1)𝐼(𝜋(𝑋) = 1) + 𝑌 (0)𝐼(𝜋(𝑋) = 0)] Definition
=𝔼[𝔼[𝑌 (1)𝐼(𝜋(𝑋) = 1) + 𝑌 (0)𝐼(𝜋(𝑋) = 0) ∣ 𝑋]] Law of total expectation
=𝔼[𝐼(𝜋(𝑋) = 1)𝔼[𝑌 (1) ∣ 𝑋] + 𝐼(𝜋(𝑋) = 0)𝔼[𝑌 (0) ∣ 𝑋]] Property of expectations
=𝔼[𝐼(𝜋(𝑋) = 1)𝔼[𝑌 ∣ 𝐴 = 1, 𝑋] + 𝐼(𝜋(𝑋) = 0)𝔼[𝑌 ∣ 𝐴 = 0, 𝑋]] (A1), (A2), and (A3); see proof of ATE



Identifying the Optimal Treatment Rule (OTR) (i.e., the
Optimal Policy) I

Once we identified the value for any policy with (A1)-(A3),
identifying the optimal rule 𝜋OTR does not involve more identifying
assumptions.

Let 𝜇𝑎(𝑥) = 𝔼[𝑌 ∣ 𝐴 = 𝑎, 𝑋 = 𝑥]. Then, we can rewrite 𝜋OTR as

𝜋OTR

=argmax
𝜋

𝔼[𝑌 (𝜋(𝑋))]

=argmax
𝜋

𝔼[𝐼(𝜋(𝑋) = 1)𝜇1(𝑋) + 𝐼(𝜋(𝑋) = 0)𝜇0(𝑋)] From above

=argmax
𝜋

𝔼[𝜋(𝑋)𝜇1(𝑋) + (1 − 𝜋(𝑋))𝜇0(𝑋)] Because 𝜋(𝑋) is either 1 or 0

=argmax
𝜋

𝔼[𝜋(𝑋)(𝜇1(𝑋) − 𝜇0(𝑋))] Dropped 𝔼[𝜇0(𝑋)] since it’s a constant

=𝐼(𝜇1(𝑋) − 𝜇0(𝑋) ≥ 0) See explanation in lecture notes



Identifying the Optimal Treatment Rule (OTR) (i.e., the
Optimal Policy) II

In words, the optimal treatment rule for a person with
characteristic 𝑋 is to check whether the expected outcome among
those with characteristic 𝑋 is larger under treatment (i.e. 𝜇1(𝑋))
or under control (i.e. 𝜇0(𝑋)).

▶ If 𝜇1(𝑋) > 𝜇0(𝑋), the optimal rule states that the person
should be treated.

▶ If 𝜇1(𝑋) < 𝜇0(𝑋), the optimal rule is to assign the control to
the person.

For more information on this topic, see NC State’s course on
Dynamic Treatment Regimes.

https://dtrcourse.wordpress.ncsu.edu/lecture-notes/
https://dtrcourse.wordpress.ncsu.edu/lecture-notes/


Observational Studies and Strong Ignorability I

A large number works in causal inference frame study of causal
effects from observational studies as a version of a stratified
randomized experiment where assumptions (A1)-(A3) are satisfied.

▶ These works assume that given the measured pre-treatment
covariates 𝑋, the treatment 𝐴 can be considered “as-if”
random, akin to a stratified randomized experiment.

▶ For more discussions about examining observational studies
from the lens of a randomized experiment, see Cochran and
Chambers (1965),Rubin (2007), and Small (2024).

▶ A major takeaway from these readings is that investigators
should blind themselves to the outcome, akin to a randomized
experiment where the investigator does not see the outcome
during the “design stage” of the experiment.



Observational Studies and Strong Ignorability II
Also, one of the key differences between a stratified randomized
experiment (or in general, any randomized experiment) and an
observational study is about the knowledge of the propensity score
𝑒(𝑥) = ℙ(𝐴 = 1 ∣ 𝑋 = 𝑥) (i.e., the treatment assignment
probability)

▶ In a randomized experiment, 𝑒(𝑋) is known by the
investigator

▶ In contrast, in an observational study, 𝑒(𝑋) is usually not
known since individual’s selection into treatment cannot be
controlled by the investigator.

▶ We’ll discuss the implications of this in later lectures on
estimation.

Some other interpretations of this approach to studying
observational studies are based on the presence (or absence) of
confounding or selection based on observables.



Observational Studies and Strong Ignorability III

▶ We measured all the confounders of the treatment-outcome
relationship (i.e. 𝑋) and these variables satisfy (A2) and (A3)
above.

▶ There are no unmeasured confounders, denoted as 𝑈 , that
affect the treatment-outcome relationship. A bit more
formally, we do not have the case where

𝐴 ⟂ 𝑌 (1), 𝑌 (0)|𝑋, 𝑈

▶ The self-selection into treatment (or control) does not depend
on anything except the observables 𝑋.

In my opinion, these are strong assumptions for an observational
study and in later lectures, we’ll discuss identification when strong
ignorability does not hold.



Central Role of the Propensity Score ℙ(𝐴 = 1|𝑋) I

Rosenbaum and Rubin (1983) showed that the propensity score
𝑒(𝑋) = ℙ(𝐴 = 1|𝑋) ∈ (0, 1) plays a critical role in identification
and estimation of causal effects. Here, we highlight some
important properties of the propensity score.

Consider any function 𝑏(𝑋) of the covariates. This function 𝑏 is
called a balancing score if conditional on 𝑏(𝑋), the treatment is
independent of 𝑋, i.e.

𝐴 ⟂ 𝑋|𝑏(𝑋)

A couple of remarks:
▶ A trivial function 𝑏 that satisfies this condition is the identity

function 𝑏(𝑋) = 𝑋.
▶ Theorem 1 of Rosenbaum and Rubin (1983) showed that the

propensity score 𝑒(𝑋) is a balancing score.



Central Role of the Propensity Score ℙ(𝐴 = 1|𝑋) II
Rosenbaum and Rubin (1983) proved two very interesting results
about the propensity score.

Theorem 2 of Rosenbaum and Rubin (1983): 𝑏(𝑋) is a
balancing score if and only if 𝑏(𝑋) is finer than the propensity
score 𝑒(𝑋), i.e. if there exists a function 𝑔 where 𝑒(𝑋) = 𝑔(𝑏(𝑋)).
Some remarks

▶ The propensity score contains the “smallest’ ’ amount of
information to achieve 𝐴 ⟂ 𝑋|𝑏(𝑋) or the propensity score
is the coarsest balancing score.

▶ Another way to say this is that the propensity score is the
“best” dimension reducing score of 𝑋.

▶ To intuitively check Theorem 2, consider setting 𝑏(𝑋) = 𝑋.
▶ 𝑏(𝑋) = 𝑋 is not only a balancing score, but also provides

much more information (i.e. finer information) than the
propensity score 𝑒(𝑋), which is a number between 0 and 1.



Central Role of the Propensity Score ℙ(𝐴 = 1|𝑋) III
▶ Also, the function 𝑔 is simply the propensity score, i.e., we

have 𝑒(𝑋) = 𝑒(𝑏(𝑋)) where 𝑔() = 𝑒().
Theorem 3 of Rosenbaum and Rubin (1983): Let
𝑒(𝑋) = ℙ(𝐴 = 1|𝑋). If conditions (A1), (A2), and (A3) hold, we
have

𝐴 ⟂ 𝑌 (1), 𝑌 (0)|𝑒(𝑋) and 0 < ℙ(𝐴 = 1|𝑒(𝑋)) < 1

Technically, Rosenbaum proved this for all balancing scores, not
just the propensity score. But, the implications for propensity score
is more useful.

▶ Recall that (A1)-(A3) held for the entire 𝑋. The above
theorem shows that these assumptions also hold for a scalar
summary of 𝑋 in the form of the propensity score 𝑒(𝑋).



Central Role of the Propensity Score ℙ(𝐴 = 1|𝑋) IV

▶ If we look at the proof of identification for the ATE, we can
identify the ATE via

𝔼[𝑌 (1)−𝑌 (0)] = 𝔼[𝔼[𝑌 ∣ 𝐴 = 1, 𝑒(𝑋)]]−𝔼[𝔼[𝑌 ∣ 𝐴 = 1, 𝑒(𝑋)]]

▶ The proof of this follows directly from the proof of the
identification of the ATE where we replace 𝑋 with 𝑒(𝑋).

▶ A version of this equality is in Theorem 4 of Rosenbaum and
Rubin (1983).
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