
A Tree Based Router Search Engine Architecture
With Single Port Memories

Florin Baboescu
�
, Dean M. Tullsen

�
, Grigore Rosu

�
, Sumeet Singh

�
�
Department of Computer Science and Engineering

�
Department of Computer Science

University of California, San Diego University of Illinois, Urbana-Champaign�
baboescu, tullsen, susingh� @cs.ucsd.edu grosu@cs.uiuc.edu

Abstract
Pipelined forwarding engines are used in core routers

to meet speed demands. Tree-based searches are pipelined
across a number of stages to achieve high throughput, but
this results in unevenly distributed memory. To address this
imbalance, conventional approaches use either complex dy-
namic memory allocation schemes or over-provision each of
the pipeline stages. This paper describes the microarchitec-
ture of a novel network search processor which provides both
high execution throughput and balanced memory distribution
by dividing the tree into subtrees and allocating each subtree
separately, allowing searches to begin at any pipeline stage.

The architecture is validated by implementing and simulat-
ing state of the art solutions for IPv4 lookup, VPN forwarding
and packet classification. The new pipeline scheme and mem-
ory allocator can provide searches with a memory allocation
efficiency that is within 1% of non-pipelined schemes.

1 Introduction
The rapid growth of the Internet has brought great chal-

lenges in deploying high-speed networks. One particular chal-
lenge is the need to provide high packet forwarding rates
through the router. This paper presents a novel architecture for
a network processor which features a complexity-effective or-
ganization of pipelined computational cores. This architecture
allows the problem to be partitioned in a way that balances
both computation and memory, allowing the entire architec-
ture to compute at high rates.

Network search engines capable of providing IP lookup,
VPN forwarding, or packet classification are a major compo-
nent of every router. With the increase in link speeds, increase
in advertised IP prefixes, and deployment of new network ser-
vices, the demands placed on these network search engines are
increasingly causing them to become a potential bottleneck
for the router. This paper considers the architecture of pro-
grammable network search engines. Other, more expensive,
custom solutions are discussed in Section 5.

Memory access times and costs become dominant factors
in a high-speed network processor. While network processors
have received considerable attention in the commercial [1] and
in the research [23, 6] communities, most of the commercial
implementation have used a collection of multithreaded CPU
cores. This allows a single memory to hold the entire database

(thus no memory balance or fragmentation issues), but do not
scale to the bandwidths required for future processors.

Most algorithmic-based solutions for network searches can
be regarded as some form of tree traversal, where the search
starts at the root node, traverses various levels of the tree,
and typically ends at a leaf node. This computation is eas-
ily pipelined onto multiple computational elements, allowing
different levels of the tree to be partitioned onto private mem-
ories associated with the processing elements – no data shar-
ing is required, except for the state that follows the thread of
computation through the pipeline. Unfortunately, this arrange-
ment results in highly unbalanced memories, to accommodate
databases (trees) that are typically unbalanced in unpredictable
ways. For example, binary tries on typical IP prefix tables are
highly unbalanced. As a result, despite a wide variety of aca-
demic and commercial solutions, only a few solutions do well
in terms of performance, efficiency, and cost, and none of them
provide a general solution for all three types of searches.

0

0 1

1

1

0 1S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

1
1

2
1
3
1

1
4

2

2

2

2

1

2

3

4

3

3

3

3

1

2

3

4

4

4

4

4

1

2

3

4

S S
S S1 2

3 4

Figure 1. An example of a basic tree based search structure.

The tree is split into four subtrees �����
	�	�	
��� . Each subtree has

up to 4 levels. We call ���� the level � into the subtree � � .
Basu et al. [8] identify memory balance as a critical issue

in the design of IP lookup engines. Their technique to re-
duce memory imbalance is to design the tree structure to min-
imize the stage that has the largest memory. Even with their
new algorithm, the memory allocated to one stage varies from
nearly 0 to 150Kbytes for various IP tables (of sizes 100,000 to
130,000 prefixes). The worst case bound for a million prefixes
is 11 Mbytes per stage (88 Mbytes across all eight stages).
This more than doubles the total amount of memory that is
used in a non-pipelined implementation.

To address this imbalance, conventional approaches use ei-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

ther complex dynamic memory allocation schemes (dramat-
ically increasing the hardware complexity) or over-provision
each of the pipeline stages (resulting in memory waste). The
use of large, poorly utilized memory modules results in high
system cost and high memory latencies, which can have a dra-
matic effect on the speed of each stage of the pipelined com-
putation, and thus on the throughput of the entire architecture.

By contrast, this paper describes a novel memory alloca-
tion algorithm that allows searches to logically start fromany
stage in the pipeline. This eliminates the memory imbalance,
because any subtree of the search structure can be allocated
across the pipeline starting at any stage. This degree of free-
dom greatly reduces memory imbalance compared to prior
schemes and enables smaller, cheaper, faster processing ele-
ments. Thus, while previous schemes had virtually unbounded
imbalance, we present one scheme that is within 1% of perfect
balance, even for highly imbalanced trees.

The rest of this paper is organized as follows. Section 2 in-
troduces our solution for solving the memory allocation prob-
lem for each pipeline stage without generating access con-
flicts. We introduce a linear algorithm for subtree allocation
which we show can allocate the subtrees with at most 1%
memory waste; however, as shown in Appendix B, the prob-
lem of optimallyallocating subtrees on a pipeline ring is NP-
complete. Section 3 provides an overview of network search
applications: IP lookup, VPN forwarding, and packet classi-
fication. In Section 4 we evaluate our solution on all three
application types introduced in Section 3, using both real life
and synthetically generated routing tables and classifiers. Sec-
tion 5 presents related work in the pipeline design of network
processors as well as in network search applications. Section 6
concludes.

2 Towards a Balanced Memory Distribution in
a Pipelined Search Architecture

Memory distribution per pipeline stage varies widely in the
case of a conventional tree based search implementation of
IP lookups and VPN searches (as shown by Basu et. al [8],
and by our results in Figure 3). Further, the results show no
correlation between the position of a particular pipeline stage
and the amount of memory that needs to be allocated to that
stage.

Prior pipelined network search algorithms require all
searches to start from the first pipeline stage, going next to
the second, and so on. Instead, we introduce our first contribu-
tion: an additional degree of freedom for the search operation.
We allow the search to start atany stage in the pipeline. For
every search, the starting position is picked using a hash func-
tion based on information in the packet header. For IP lookups
the hash function is made up of a set of variable length IP pre-
fixes. For decision-tree based packet classification, the hash
function may use some of the most significant bits in two or
three different fields of the packet header.

Figure 1 shows a tree based search structure. To keep the
explanation simple, let us assume that the tree has four sub-
trees, called������������� . Furthermore, the depth of each subtree

is four levels. We assume that this search structure is imple-
mented on a four stage pipeline. The stages of the pipeline are
called � � ������� � . The first level of the subtree� � , called � �� ,
is stored and processed by the pipeline stage� � . The second
level, ���� , is stored and processed by the pipeline stage� � , and
so on. The second subtree is processed starting with stage� � ,� �� on � � , � �� on � � , � �� on � � and � �� on � � , respectively.

Similarly, the third subtree� � starts on pipeline stage� � ,
while the fourth subtree��� starts on pipeline stage�!� . This
allocation scheme tries to balance the load on each of the
pipeline stages. By doing so, the pipeline allocates nearly
equal amounts of memory to each stage, by virtually allocating
a “subtree” in each of the stages. E.g., the first pipeline stage
stores the first level in the first subtree (� ��), the second level
in the fourth subtree (� ��), the third level in the third subtree
(� ��), and the fourth level in the second subtree (� ��).

In practice, we relax these two simplifications in this il-
lustration. We allow more subtrees than pipeline stages (pro-
cessing elements), thus implying multiple subtrees may have
the same start node. We also allow the maximum depth of
each subtree to be less than or equal to the number of pipeline
stages.

However, introducing this new degree of freedom that al-
lows search tasks to start execution from any pipeline stage im-
pacts the throughput of the system. This is because of potential
conflicts between the new tasks and the ones that are in exe-
cution. In theory, the number of conflicts can be unbounded.
However, next we will present an alternative to the conven-
tional pipelined organization that eliminates all conflicts.

2.1 Our Solution to Guarantee Pipeline Throughput

IN

OUTP P P P
1 2 3 4

data path active during odd slots

data path active during even slots

Figure 2. A random ring pipeline architecture with two data

paths: first path is active during the odd clock cycles, used dur-

ing the first traversal of the pipeline; second path is active during

the even cycles to allow a second traversal of the pipeline.

We need to deal with two problems that create conflicts: (1)
since levels are assigned to our pipelined processing elements
in a circular fashion, most threads must wrap around to the be-
ginning of the pipeline to complete execution; (2) computation
for a new task can start at any processor.

We want to guarantee that for any stream of tasks, in each
interval of time " the tasks that are already present in the
pipeline progress to the next stage while ensuring that the next
incoming task can also be accommodated.

Our solution, which represents the second contribution of
this paper, is shown in Figure 2. It modifies the regular
pipeline structure and behavior as follows.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Each pipeline stage works at a frequency#%$'&)(+* , where
* is the maximum throughput of the input. All tasks traverse
the pipeline twice and are inserted at the first pipeline stage, ir-
respective of their starting stage (for execution) in the pipeline.

Each pipeline stage accommodates two data paths (virtual
data paths – they can share the same physical wires). The
first data path (represented by the top lines) is active during
the odd clock cycles and it is used for a first traversal of the
pipeline. During this traversal a task,.- traverses the pipeline
until its starting stage/ and continues the execution until the
last stage of the pipeline. The execution of a task always starts
on the first traversal through its start processor. The second
data path is traversed during even cycles and allows the task
to continue its execution on the pipeline stages that are left.
Once a task finishes executing, its results are propagated to the
output through the final stage.

The number of stages in the pipeline must be at least equal
to the maximum number of stages that are required for the
execution of any task.

For example, consider the four stage pipeline in Figure 2.
A task that must start executing in pipeline stage0 is inserted
in pipeline stage1 . It traverses the pipeline only in the odd
cycles until it reaches stage0 where it starts executing. Its
results are forwarded to pipeline stage2 also during an odd
cycle. However, the results of the execution on stage2 are
moved forward to pipeline stage1 for execution during the
next even cycle. The task finishes its execution on pipeline
stage& . The final results are moved to the output via pipeline
stages0 and 2 during even cycles.

Our solution guarantees the following features:1)an output
rate equal to the input rate,2) all the tasks exit in order, and3)
all the tasks have a constant latency through the pipeline equal
to 34(�5 where 3 is the total number of pipeline stages.

In summary, we provide a new pipeline architecture that al-
lows the injection and removal of tasks each from a single pro-
cessor, while communication between processors occurs only
between neighbors in a linear ordering of the processors; this
eliminates (1) the need for a scheduler for both input and out-
put of the task and (2) the communication complexity. We also
address the memory imbalance between the pipeline stages
by allowing the execution of the tasks to start at any position
in the pipeline. Section 4 evaluates how our new allocation
scheme reduces the memory imbalance in the implementation
of different network search applications.

This architecture requires that the time per processing step
be half that of a more conventional pipelined configuration to
maintain the same throughput. We show in Section 4 that the
reduction in memory size easily allows those gains.
2.2 Selecting the Subtrees

To apply this new allocation scheme we need to first par-
tition the tree into subtrees. Ideally, the subtrees to be al-
located should have relatively equal size (approximately the
same number of nodes).

We provide an iterative algorithm that takes as input the
original trie 1 and at each step identifies one subtrie that con-

1A trie is a binary prefix tree.

tains a number of nodes which is the closest to a desired value
(threshold). The subtrie is entirely eliminated from the origi-
nal trie and saved into a list together with the prefix associated
with its root node. The algorithm continues until the number
of nodes left in the trie is less than the threshold.

The result of the algorithm is a list of tuples. Each tuple is
made up of the root node of a subtrie together with the longest
matching prefix of this node.
2.3 The Allocation of the Subtrees

The algorithm above splits the original tree into subtrees of
relatively equal size. The next step is to allocate these subtrees
to the circular pipeline such that the amount of memory used
by each of the pipeline stages is relatively equal. As shown
in Appendix B, the problem of finding anoptimal allocation
of each of the subtrees on the pipeline stages is intractable.
Therefore, the best one can do is to develop heuristics for
“good enough” subtree allocation on pipeline stages.

We propose a simplelinear time solution for the alloca-
tion problem. In Section 4 we experimentally show that our
solution leads to a very small memory waste, within176 of
the total memory size. Our heuristic considers one subtree at a
time, randomly picked from the set of subtrees identified using
the algorithm described in the previous section, and allocates
it such that the level in the new subtree that requires the mini-
mum amount of memory corresponds to the pipeline stage that
already uses the largest amount of memory.

3 Network Search Applications
We evaluate our new pipeline architecture and task allo-

cation algorithm using state of the art solutions for different
types of network searches that are typically done in a router:
IP lookups, VPN forwarding and packet classification. The
features of these searches are summarized in Table 1.

In Appendix A we give details of each of the IP lookup al-
gorithms that we implement and evaluate in Section 4. The
VPN forwarding algorithms use the same data structures as in
the case of IP lookup. In essence a router that provides VPN
forwarding must execute two IP lookup operations for each
search, as is given in RFC2547 [20]. It first executes an IP
lookup based on the source IP field. The result of this deter-
mines the routing table that is used for the second IP lookup
based on the destination IP field.

In packet classification each packet is matched against a
prioritized set of rules made up using two or more fields (e.g.
IP source and destination fields, port fields, etc.). A packet
can be matched by several rules. The search determines the
highest priority rule that matches each packet.

Decision-tree based packet classification algorithms [28,
15, 26] appear to be the most promising category of algorith-
mic solutions to the packet classification problem. We imple-
ment HyperCuts [26], a recent decision tree based packet clas-
sification algorithm introduced by Singh, et al. The scheme
is based on a pre-computed decision tree which is traversed
for each packet that needs to be classified. The computation
at each stage in the tree uses several bits in the packet header
as an index into an array of child pointers to identify the next
child node to be traversed.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Application Number of Entries Number of fields Type of Matches

IP Lookup 891;:7<!= 1 >?�A@
VPN Forwarding 8B:7<7<!= & CD@FEG>H�A@
Packet Classification IJ1K<�L�<M<7< 8B& CD@FEG>H�A@NE'OP@

Table 1. Network Search Applications. Q R+S stands for “longest prefix match”, TUS for “exact match”,a nd V�S for “range match”.

4 Evaluation

In this section we evaluate our Ring Pipeline architecture
using the network search algorithms described in the previous
section. Our architecture uses private single port memories for
each of the pipeline stages. This contributes to an increase in
the amount of memory needed due to increased fragmentation.
We seek to balance memory for two reasons, to minimize cost
(memory waste) and to maximize performance (minimize the
access time of the largest memory). Thus, this section focuses
on the following two critical questions:1) What is the overall
waste in the memory space due to our new model?2) What
is the maximum throughput and expected latency our scheme
can provide? We start with the latter question.

4.1 Search Latency and Throughput

Each pipeline stage requires a computation phase and a
memory access phase. Although the memory is uniport, our
design allows two words located at a small distance one from
another to be read in one memory access, as in [4]. The mem-
ory access time is similar to the access time of a regular uniport
memory. We first investigate the relationship between per-
stage memory allocation and the memory access time. Ta-
ble 2 shows that the memory access time increases signifi-
cantly with the size of memory. When our balanced allocation
algorithm is applied, we find that all searches analyzed in this
research, except one, can be implemented with memory la-
tency less than&XW?Y . The one exception corresponds to a VPN
forwarding application that contains a large number of small
destination IP routing tables. Even in this case the memory
access time is less than0ZW?Y .

Memory Size(Kbits) Area([]\ �) Access Time(ns)
1K&7^ <!� <M<7: <!� :M_7:
&M:7_ <!� <M<7` <!� _M: 1
:�1;& <!� <M&7< <!� ^M&7^
1;<M&72 <!� <M0 a <!� `�1;`
&7<M27^ <!� <M_7` 1Z� &M27&
27<M`7_ <!�
1K072 1Z� :M&7<
^ 1K`7& <!� &�a;: &!� 2M^ a

Table 2. The memory access time and area estimates for dif-
ferent sizes of on-chip SRAM using bM	 b;cKd7e technology. The
estimates are obtained using the memory generator application
CACTI [24].

In order to determine both the search latency as well as the
throughput of the searches using our architecture, we synthe-
sized in Verilog the computational logic for each pipeline stage
for both Eatherton’s IP lookup algorithm and the HyperCuts

algorithm using<!�
1K0Xf�\ technology. The longest path delay
in the computation of the next node address in both algorithms
is smaller than1UW?Y . This combines with a&)W?Y memory ac-
cess time to a allow a0gW?Y execution delay per pipeline stage.
The size of all the computation logic for all 8 stages is smaller
than <��h1;&M:X\%\ � .

Given the architecture of Section 2, a pipeline running at070M<�@9ikj (3 ns per stage) achieves a search throughput of_UW?Y
per packet. This value is adequate for OC-768 (40Gbps) links
that require a throughput of^lW?Y per packet for a minimum
size (27< bytes) packet.

All the searches through the pipeline have a latency that is
constant and is double the latency of a one way pipeline traver-
sal. The overall latency of a search operation using the Eather-
ton algorithm [11] for the IPv4 lookup is^P(.&P(.0gW?Y)$'27^mW?Y
assuming an eight-stage pipeline with0XW?Y per stage. We mea-
sured the mean packet latency for different loads on a CISCO
GSR router. In our evaluation the smallest mean packet la-
tency was approximately:7<Zf?Y . Thus our search latency is less
than <!�
1M6 of the total mean packet latency. Consequently we
conclude that the search latency of our solution has virtually
no impact on the overall packet latency.
4.2 Memory Distribution per Pipeline Stage

We next evaluate the efficiency of our pipeline scheme to
equally distribute memory across pipeline stages. We do this
by simulating the behavior of our architecture for all three
types of applications: IP lookups, VPN based lookups, and
packet classification. We evaluate these models using both real
life routing tables and classifiers, as well as synthetically gen-
erated ones that allow us to simulate large configurations. In
the figures that follow all the memory values are expressed in=on]/qp�Y .
4.2.1 Evaluation of IP Lookup

We first evaluate our pipeline architecture by a software
simulation of the memory requirements for Eatherton’s IP
lookup algorithm [11]. The real life routing tables were ex-
tracted using instances of the BGP routing tables available
at RIPE [21] and RIR [16] on Sept. 22, 2003 and parsed
using the (r�s�" p�t n]p�sXu) software available at [17]. We ex-
tracted the routing tables associated with ATT (AS7018),
Sprint (AS1239), Level 3 Communications (AS3356) and
France Telecom (AS5511). Because the results are very simi-
lar, we only display the results for ATT. To test the scalability
of the algorithm we synthetically generate tables using two
different models of routing table growth: one developed by
the Network Processing Forum (NPF) [2], and one developed
by Narayan, et al. [18].

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

The graph on the left in Figure 3 shows the results of us-
ing the Eatherton algorithm with a regular pipeline in which
the search starts with the first pipeline stage, continues with
the second, and so on. These results motivate our scheme by
showing that one cannot identify a clear pattern of memory
size allocation per pipeline stages.

Table 3 and Figure 3 show that our pipeline scheme has a
double benefit. It eliminates the need for dynamic memory al-
location per pipeline stage and it provides a better throughput.
For example, an IP prefix table with about:7<M<�L
<7<7< entries
requires almost1M1X@9nv/vp�Y of memory for one stage (the sixth
pipeline stage). As a result the memory access time increases
to about0�� :XW?Y . In comparison, our new pipeline scheme has
a maximum of&�� `�@9n]/qp�Y of memory allocated per stage. As a
result the memory access time is reduced to1Z� 2ZW?Y .

In all these simulations we use a relatively naive split of the
original search trie into07& subtries (using the first: bits in the
IP address field). These subtries are allocated to the pipeline
stages starting from various positions. In this case the total
memory across the pipeline stages is within0M< 6 of the ideal
memory allocation space (Table 3). Note that in the case of
a conventional pipeline with statically allocated memory the
total amount of memory to be used increases 206% over the
non-pipelined implementation.

IP Table Total BPW CPW
ATT aZLwaK& aX= 0M< 6 &7<M_ 6
A100K 2!L�:M:7<�= _!� &M: 6 &7<M_ 6
A200K 1K<�L�_�a;2!= 1K: 6 &7<M_ 6
A300K 1K0�L�:M^7:!= ^�� ^ 6 &7<M_ 6
A400K 1K^�L�2M27<!= 2�� ` 6 &7<M_ 6
A500K &M0�L�&M&7_!= ` 6 &7<M_ 6
NPF &M0�L�:M^70!= 1K<�� 2 6 &7<M& 6

Table 3. Eatherton Algorithm on a random access pipeline
model - Total memory utilization and the percentage of wasted
memory if each of the pipeline stages has allocated the maxi-
mum amount of memory that is required by the pipeline stages.
The third column shows our balanced pipeline waste (BPW)
while the fourth column shows the memory waste in a conven-
tional pipeline (CPW).

Reducing the waste due to over-provisioning:Although
our results above show that the total memory across the
pipeline stages is within07<�6 of the ideal memory allocation
space, we would like to provide even tighter bounds on the
amount of memory that is wasted due to over-provisioning.

Our allocation algorithm assumes the trie is made up of a
number of relatively equal subtries. Finding the perfect combi-
nation for allocating each of the subtries on the pipeline stages
has an exponential complexity as we show in Appendix B. In-
stead, we propose a much simpler linear solution in which at
each step one subtrie is considered for allocation. The sub-
trie is allocated such that the level in the subtrie that requires
the minimum amount of memory corresponds to the pipeline
stage that currently uses the largest amount of memory.

To reduce the degree of waste, we find it is sufficient to in-
crease the number of subtrees, allowing finer-grain placement

into memory. Thus, there are two question to be asked:1) how
to split the trie into relatively equal sized subtries and2) what
is a sufficient number of subtries such that the amount of waste
due to over-provisioning is less than, for example,1M6 .

We split the original trie into subtries of relatively equal
size using the algorithm described in Section 2.2. We de-
termine the minimum number of subtries that are required to
achieve an overall waste due to over-provisioning that is less
than 176 through a series of evaluations using both real life
routing tables as well as synthetically generated ones. In the
case of a balanced trie this number is small and it is equal
to the depth of the trie. This number increases when the trie
shape becomes more irregular. The multi-bit trie, with strides
of size 2 that is used in the Eatherton algorithm has a more
regular structure than a regular unibit trie. Therefore, for this
experiment, we use the unibit trie search structure, which we
expect to have the largest degree of irregularity. Our results
shown in Table 4 can be directly extended to the equivalent
multi-bit tries. We use a 24-stage pipeline to accommodate
the larger depth of the unibit trie. The third column repre-
sents the number of subtries that we create. The subtries are
distributed among the 24 stages of the pipeline. The maxi-
mum number of nodes allocated for a pipeline stage is given
in the 4th column. The 5th and 6th columns represent the aver-
age and maximum percentage of memory wasted due to over-
provisioning. This over-provisioning is a result of allocating
for each pipeline stage the amount of memory needed by the
largest stage.

The results show that, in the worst case, the original trie
needs to be split into2�L
<7<7< subtries to reduce the overall waste
to below 1M6 .

Update Operations. This analysis assumes a static
database, but balance will be impacted over time by update
operations. We next consider the effect of these update opera-
tions on the overall memory balance per pipeline stage. In our
evaluation we use the same worst-case uni-bit trie data struc-
tures.

We consider a routing table associated with AS9177 (NEX-
TRANET, Switzerland), collected by RIPE rrc00 [21]. The
original routing table is collected at the beginning of Aug. 9th,
2003. Updates are recorded through the end of Aug 15th. at
00:00 UTC.

The routing table is represented using a trie which is split
into 2�Lx1;<M& subtries that were allocated to a&72 stage pipeline
using our algorithm. During the update process&M& a new sub-
tries were created. Each subtrie was associated with a new
branch in the trie. Each new subtrie is inserted into the pipeline
in such a way as to try to avoid having any memory alloca-
tion in the pipeline stage with the largest number of entries al-
ready allocated. Our results show that at any moment in time
the maximum “waste” per pipeline stage remains smaller than
<�� : 6 .

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

M
em

or
y

S
iz

e
(K

bi
ts

)

y

Pipeline Stage

Memory Distribution Per Pipeline Stage (Regular Model) - IP Forwarding

ATT
A100K

ATT200K
ATT300K
ATT400K
ATT500K

NPF
 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

M
em

or
y

S
iz

e
(K

bi
ts

)

Pipeline Stage

Memory Distribution Per Pipeline Stage (Random Model) - IP Forwarding

ATT
A100K

ATT200K
ATT300K
ATT400K
ATT500K

NPF

Figure 3. The memory utilization per pipeline stage using the Eatherton Algorithm [11] on a conventional pipeline architecture (left) and
our balanced architecture (right). The values represent the amount of memory in bits that is used in each pipeline stage. A100K - A500K
are synthetically generated routing tables using the model described by Narayan et al [18] while NPF is a 500K entries synthetic routing
table generated using the model proposed by the NPF Forum.

IP Table No. of Prefixes No. of Subtries Max. No. Nodes AMW MMWz ,g, 1K&7&�L
70M 2�L�<M`7< 1;2�L
_70M& <�� &70 % <�� 0 a %

*{, 1K&70�L
^ aK: 2�L�<�a7a 1;2�Lxa;_M0 <��h1;` <!� &�a
>�0�| 1K&70�L
& aM1 2�Lw1K<7: 1;2�Lxa;<M< <�� &7: <!� 0M`
�?�AO?}�3~, 1K&7&�Lxa;:M< 2�L�<M` a 1;2�L
_7_M& <�� &7< <!� 0M0z :7<!= :M0�L
07&70 2�Lw1K&7< _�Lxa;07` <�� <7` <!�
1K^z 1;<M<�= 1K<7<�L
0 1K& 2�L�&M0 1 1;&�L
_7_M2 <��h1;^ <!� 0M:z &7<M<�= &�171XL
<70M0 2�L�&�a;& &7_�L
70M: <�� 27 <!� _M&z 07<M<�= &M`7<�L
`7`M: 2�L�<�17a 07_�L
`7^M: <�� :7` <!� ^M_z 27<M<�= 2�171XL
27_M` 2�L�&�a7a : 1XL
_70M2 <�� &7^ <!� 0M`z :7<M<�= :�171XL
_70M2 0�L�`M:7< _72�L
&7^M2 <�� 070 <!� :M2
3o�A* :M&72�L
& 1K^ 2�Lw1K27_ :7`�L
07&M< <�� 07: <!� _�1

Table 4. IP lookup using a single-bit trie search structure. The trie is split into a number of subtries, each subtrie with a number of
nodes close to a given threshold. The number of subtries is shown in column 3. The maximum number of nodes allocated for a pipeline
stage is given in column 4. Columns 5 and 6 show the average memory waste (AMW) and maximum memory waste (MMW) due to
over-provisioning.

4.2.2 Evaluation of VPN Forwarding

We simulate a VPN forwarding engine using a similar search
structure as in regular IP lookup. The only difference in this
case is that the driver of the search engine must compute a
hash function based on a tag value that is provided by the
VPN application. The computed value determines the pipeline
stage from which the search starts. The search structure and
the search itself is implemented using the same algorithm de-
signed by Eatherton [11].

No publicly available VPN forwarding tables exist. As a re-
sult, we do the evaluation using a set of synthetic tables that are
generated using similar techniques to the ones used to generate
the IP lookup tables. Our results shown in Table 5 correspond
to three different cases:1) all the sets of tables contain about
1;<M<7< entries per set (AllSmall),2) all the sets of tables contain
about 1;<!L�<7<M< entries per set (AllLarge) and3) the set contains
a mix of small size tables and large size tables (Mixed). Each

set contains about one million prefix entries.

VPN Set Total BPW CPW
AllSmall :7:!L�:M`7`�L
: 1K& 2!� ^�6 ^7&�6
AllLarge 2 1ZL�2M27<�L
^72M^ aZ� &�6 ^7`�6
Mixed 27^!L�_�a;2�L
:7:M& 0!� &�6 1K&7`�6

Table 5. VPN forwarding using a random access pipeline
model - Total memory utilization and the percentage of wasted
memory for our balanced pipeline (BPW) and conventional
pipeline (CPW).

Our results in Table 5 show that by using our new pipeline
architecture for VPN applications, the total amount of wasted
memory does not exceedaX� & 6 . It corresponds to a situation in
which the set contains only a small number of relatively large
VPN tables. In contrast a conventional pipeline architecture
contributes to an increase in the memory of up to1;&M` 6 .

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

4.2.3 Evaluation of the Packet Classification Algorithm
(HyperCuts)

We next evaluate how a decision tree based classification
scheme behaves on our new pipeline scheme using five-
dimensional classifiers. We simulate the HyperCuts algo-
rithm [26] on synthetically generated classifiers with up to
20,000 rules. The classifiers that we use are generated us-
ing the methodology described by Singh, et al. [26]. We con-
sider classifiers with 5,000 (L5K), 10,000 (L10K) and 20,000
(L20K) rules.

Unlike in IP lookup, in tree based packet classification
the largest amount of memory is allocated toward the earlier
stages in the pipeline. Also the memory allocation per pipeline
stage varies widely. For example, in the case of a 20,000 rules
classifier the amount of memory allocated per stage varies
from 2M^7<!=onv/vp�Y to 1X=on]/qp . Our new pipeline scheme brings
down the maximum amount of memory that needs to be al-
located per pipeline stage by a factor greater than two. For
example in the case of a&M<�L
<7<7< rules classifier, the maximum
amount of memory that is allocated per pipeline stage drops
to &�1;:�=�nv/vp�Y from 2M^7<�=�nv/vp�Y . In our simulation we used the
subtrees originated in the second level nodes (the root node is
at level 0).

The results in Table 6 show that a conventional pipeline ar-
chitecture implementation may require more than three times
the amount of memory used by the non-pipelined version. In
contrast our pipelined scheme increases the memory usage
by only 30%. This amount of wasted memory due to over-
provisioning may be further reduced by using a larger number
of subtrees.

DB Total BPW CPW
>.:!= 1ZLw1;^M^�= 07<�6 :7: 6
>{1K<�= &!L�27`M_�= 07&�6 &M07^ 6
>.&M<�= &!L�:7`M&�= 07&�6 &M07^ 6

Table 6. HyperCuts algorithm using a random access pipeline
model - Total memory utilization and the percentage of wasted
memory for our balanced pipeline (BPW) and conventional
pipeline (CPW).

5 Related Work

Extensive work has been done on processor ring commu-
nication [9, 10, 7, 3, 19]. Hierarchical ring buses as an al-
ternative to the scalability and cost problems of the crossbar
switches are addressed in [3, 19]. In both cases each ele-
ment in their architecture is capable of controlling the inser-
tion of data on the ring through a system of FIFOs. Coffman,
et al. [10] further analyze the features of the processor-ring
communication for large rings and prove boundary conditions
for the task waiting times.

Packet forwarding in high speed routers has been a well
studied area. There has been extensive research both in the IP
lookup problem [11, 22] as well as packet classification [5, 14,
15, 28, 26, 27]. Most of this work deals with non-pipelined

architectures, and the focus is to minimize the depth of the
search structures.

Basu and Narilkar [8], in the context of a specific lookup
algorithm that uses fixed stride multi-bit tries, show that the
memory in some stages varies dramatically across databases,
even in the face of their proposed algorithms to minimize the
variation. For example, assuming an eight stage pipeline, their
results show cases in which for two different databases the
memory space to be allocated to a pipeline stage varies from
almost < up to 1;:M<�=o� while in the case of another pipeline
stage the memory space varies from about1;:M<�=�� to up to
07<M<�=�� .

There is little work that addresses the memory limitation in
the case of network search engines. The problem was intro-
duced by Sikka, et.al [25] in the context of tries where it was
left as an open problem. Basu and Narilkar [8] propose an ap-
proximate solution to the problem of trie memory allocation
across stages, but they are less than successful at solving it.
They propose a way to reduce the memory imbalance by min-
imizing the stage that has the largest memory. Baer, et al. [6]
propose a cache based solution to reduce the memory capac-
ity and the amount of memory multibanking. However, their
solution can not provide deterministic throughput for any pat-
tern of input packets and can not provide tight bounds for the
worst case. Sherwood, et.al. [23] investigate the use of wide
word pipelined memory that allows concurrent accesses. None
of these architectures pipeline the computation across multiple
processors.

Hardware based solutions based on Ternary CAMs provide
an attractive solution to ASIC-based designs that implement
tree based algorithmic solutions for searches. TCAMs are con-
tent addressable memories in which each bit is allowed to store
a < , 1 or a “don’t care” value. A TCAM essentially compare
each packet address with every address the search engine holds
in its database, using parallel lookups on associative memory.
However TCAMs have limitations:��17� large cell size (about
1;_ transistors per bit),��& � high power consumption�
1;<���1;:��
at 1;070!@9Y
� YZ� , �h0 � very high cost per chip�
�;&7<M<����;0M<7< � and�h2�� can not provide a general, efficient, single chip solution for
all of the algorithms our solution addresses [13].

6 Conclusion

In this paper we propose a general, pipelined, multiproces-
sor architecture for tree based algorithmic solutions. This ar-
chitecture can be implemented using equal sized memories for
each pipeline stage, limiting the need for over provisioning.
This allows computation, even on highly unbalanced trees, to
be partitioned into pieces that equalize both computation and
memory allocation. This results in minimized memory cost
and maximized packet throughput.

This solution achieves very low communication complexity
because each pipeline stage communicates only with its imme-
diate neighbors and all tasks enter and exit the pipeline through
a single stage. It does not require any centralized schedul-
ing mechanism. Our architecture also provides tight latency
bounds for searches.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

We evaluate our pipeline task allocation algorithm and
our new multiprocessor pipeline architecture by implement-
ing state-of-the-art tree-based network search algorithms for
IP lookup, VPN forwarding, and packet classification. We
demonstrate a memory allocation heuristic which can, in lin-
ear time, allocate subtrees with only 1% waste.

Our implementation can be used on high speed routers with
OC-768 links that run at 40Gbps and require a throughput
of ^ZW?Y per packet. We show that we can provide IP lookup,
VPN forwarding, and packet classification at a rate of_XW?Y per
packet while the overall latency is constant at2M^XW?Y .
Acknowledgments

The authors would like to thank the reviewers for helpful
feedback, Alexander Tudor for significant help with the simu-
lation tools, and George Varghese for helpful discussions. This
research was funded in part by NSF grant CCR-0311683 and
by joint NSF/NASA grant CCR-0234524.

References
[1] Network processor forum. http://www.npforum.org.
[2] Network processor forum benchmark working group.

http://www.npforum.org/benchmarking/index.shtml.
[3] C. Amerijckx and J. Legat. A low-power multiprocessor archi-

tecture for embedded reconfigurable systems.
[4] F. Baboescu, S. Rajgopal, N. Richardson, and L.-B. Huang. A

scalable ip lookup low-power implementation for oc-768 links.
Workshop for Application Specific Processors(WASP), 2004.

[5] F. Baboescu and G. Varghese. Scalable packet classification. In
Proc of ACM Sigcomm 2001, september 2001.

[6] J.-L. Baer, D. Low, P. Crowley, and N. Sidhwaney. Memory
hierarchy design for a multiprocessor look-up engine. InIEEE
PACT, 2003.

[7] L. A. Barroso and M. Dubois. The Performance of Cache-
Coherent Ring-based Multiprocessors. In20th Annual Inter-
national Symposium on Computer Architecture, pages 268–277,
May 1993.

[8] A. Basu and G. Narlikar. Fast incremental updates for pipelined
forwarding engines. InProc. of Infocom, march 2003.

[9] E. Coffman, L. Flatto, E. N. Gilbert, and A. G. Greenberg.
An approximate model of processor communication rings un-
der heavy load.Information Processing Letters, 64(2):61–67,
1997.

[10] E. Coffman, N. Kahale, and F. T. Leighton. Processor-ring com-
munication: A tight asymptotic bound on packet waiting times.
1996.

[11] W. Eatherton. Hardware-based internet protocol prefix lookups.
In Eatherton, Will. Hardware-Based Internet Protocol Prefix
Lookups. Washington University Electrical Engineering De-
partment, MS thesis, may 1999.

[12] M. R. Garey and D. S. Johnson. Computers and intractability -
a guide to the theory of np-completeness. pages 213–224. W.H.
Freeman and Company, New York, 1979.

[13] P. Gupta. Algorithmic search solutions: Features and benefits.
In NPC-West 2003, october 2003.

[14] P. Gupta and N. McKeown. Packet classification on multiple
fields. InProc of ACM Sigcomm 1999, september 1999.

[15] P. Gupta and N. McKeown. Packet classification using hier-
archical intelligent cuttings. InProc of Hot Interconnects VII,
august 1999.

[16] D. Mayer. University of oregon route views project. 2003.
ftp://ftp.routeviews.org/pub/routeviews.

[17] U. Michigan. Multi-threaded routing toolkit. 2003.
http://www.mrtd.net/.

[18] H. Narayan, R. Govindan, and G. Varghese. The impact of ad-
dress allocation and routing on the structure and implementation
of routing tables. InProc. of ACM Sigcomm 2003, august 2003.

[19] Ravindran and Stumm. A performance comparison of hierar-
chical ring- and mesh-connected multiprocessor networks. In
3rd International Symposium on High-Performance Computer
Architecture. IEEE Computer Society, 1997.

[20] E. Rosen and Y. Rekhter. BGP/MPLS VPNs. RFC 2547, 1999.
[21] RRC. Routing information service raw data. 2003.

http://data.ris.ripe.net/.
[22] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxon-

omy of ip address lookup algorithms. InIEEE Network Maga-
zine, vol. 15, no. 2, 2001.

[23] T. Sherwood, G. Varghese, and B. Calder. A pipelined memory
architecture for high throughput network processors. 2003. 30th
Annual International Symposium on Computer Architecture.

[24] P. Shivakumar and N. Jouppi. Cacti.
http://research.compaq.com/wrl/people/jouppi/CACTI.html.

[25] S. Sikka and G. Varghese. Memory-efficient state lookups with
fast updates. InProc of ACM Sigcomm 2000, september 2000.

[26] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet clas-
sification using multidimensional cutting. InProc. of ACM Sig-
comm 2003, august 2003.

[27] V. Srinivasan and al. Fast and scalable layer 4 switching. In
Proc of ACM Sigcomm 1998, september 1998.

[28] T. Woo. A modular approach to packet classification: Algo-
rithms and results. InProc. of Infocom, 2000.

A IP Lookup

�{r�tw#�/v� ��u���"+t
��� <7<7<M<7<M< 1Z(
� � <7<7<M<7<M<7<7<M<!(
�!� < 171K< 1M1;<7< (
�!� < 171K< 1M1;< 1K<7< (
�!� < 171K< 1M1;< 1K< 17(
�!� 171;<M< 17(
�!� 17171M1;<�1;<7<M<!(
�!� 17171M1;<�1;< 17(
�!� 17171M1;<�1;< 1M171K<!(
� ��� < 171K<7< (
�+��� < 171K< 1M1Z(
� � � (

Table 7. A simple example of a routing table with �q� prefixes.

The IP lookup operation requires a longest matching prefix
computation at wire speeds. In IPv4 for example, at every hop
(router), for each packet the 32 bit IP destination address is
matched against a databases of IP prefixes. Each prefix entry
consists of a prefix and a next hop value. For a better under-
standing of the problem, let’s consider the following toy exam-
ple based on an IP lookup database consisting of the following
12 prefixes shown in Table 7. If the router receives a packet
with the destination address that starts with1M171M1;< 1K< 1M171;< then
the next hop value associated with the prefix� � is selected.

There are many solutions in the literature for the IP lookup
problem ranging from binary search to trie lookup [22]. In the

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

11

1

1

1

0

0

0

0

0

0

0

0

1

0

P1

P2
P3

P4 P5

P7

P9

P6

P8

T0

T1
T4

T5
T6

T7

T8 T9

T3
T2

0 1

1

0

0 1

P11

P10

P12

Figure 4. The trie lookup structure associated with the routing

table given in Table 7.

evaluation of our new pipeline scheme we use the algorithm
invented by Eatherton [11]. This algorithm offers both excel-
lent throughput as well as fast update rates.

Eatherton’s algorithm uses a trie as the basic search struc-
ture. The trie is organized into subtries with fixed depth(for
example2) marked with dotted lines in Figure 4. As a result,
the initial trie is now represented as a tree in which each node
is associated with a subtrie in the original representation.

PBV

CBV

Next Hop Table Ptr.

Child Node Array Ptr.

0 1

1

10

0

P10

P3

P

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

11

Figure 5. Each subtrie in the original trie may be represented

as it is shown here. This picture shows the representation of the

subtrie ��� from Figure 4.

Each subtrie is represented with the help of two bit vectors.
Figure 5 shows the representation of the subtrie, � from Fig-
ure 4 and two arrays that store the child nodes and the next hop
information associated with the current node.

A first bit vector that we call�A��� describes the distribu-
tion of the nodes associated with valid prefixes inside of the
subtrie. This bit vector represents a linearized format of the
original subtree: each row of the subtree is captured top-down
from left to right. Each bit is associated in order with the pre-
fixes: *, 0*, 1*, 00*, 01*, 10*, 11*, ����� , 111*. Two bits are
set in PBV; they correspond to the valid prefixes� ��� and � �
�
existent in the subtrie as it is shown in Figure 5 (The node
associated with the prefix� � does not belong in this subtrie.
Instead it is the root node of one of its child subtrie). The next

hop information associated with each of the valid prefixes is
kept in a table.

The second bit vector which we call|A��� describes the
child distribution. There are at most& � children and a bit is set
whenever a child exists at the end of that path through the trie.
Thus, in Figure 5 we only have two bits set corresponding to
two child subtries associated with the prefixes1M1;<M< and 171;<�1 ,
respectively.

In summary, the search structure in the Eatherton algorithm
is a tree which in every node stores: two bit vectors, a pointer
to the block of child nodes, and a pointer to an array of next
hop data. In order for the scheme to work efficiently all child
nodes of a given parent must be stored contiguously in mem-
ory, to maximize locality, and minimize memory access time.
Similarly, all the next hop information associated with valid
prefix nodes in the associated subtrie is stored as a contiguous
block in memory.

A search operation executes as follows. Assume that we
need to identify the longest matching prefix associated with
a destination address< 1M1;<�171;<�1;<�1;< . The algorithm considers
strides of 4 bits of address at a time. It starts by reading the
child bit vector associated with the root node and it determines
if there is a child subtrie with the root at the position< 171K< .
This corresponds to the seventh bit in the CBV being set. This
bit is set which means that the search continues to the next
node by using the next four bits of the address. In parallel
it determines if there is any matching prefix in this node. If
there is a match, the algorithm remembers it and continues
the search recursively by going to the next child node. When
the search fails, the last matching prefix represents the longest
matching prefix for the search.

B Optimally Allocating Subtrees on a Pipeline
Ring is an NP-Complete Problem

We here show the intractability of the problem of optimal
placement of subtrees on a pipeline ring. In fact, we show
that the simpler problem of deciding whether@ given trees
of height i can be allocated on aring of i cells such that
each cell contains an equal number of nodes isNP-complete.
Here the complete tree information, i.e., the parents of each
node, is not needed; only the number of nodes per level is
neccessary to schedule a placement. Therefore, a tree of height
i is encoded asi numbers�����;L�� � L�������L��¡ ¢� in the range1Z��� & .
Hence, one only needs£��]i � � space to store a tree, despite
the fact that theweightof the tree, that is, the total number of
nodes���UE'� � E'¤�¤�¤ME'�¡ , can be exponential ini .

Problem: OPTIMAL -RING-PLACEMENT

Input: A height i¦¥o§?¨ , a number@©¥�§?¨ , and @
binary trees of heighti .

Output: Can these trees be scheduled on aring of i
cells such that each cell contains exactly�«ªMi
nodes, where� is the total weight (number of
nodes) of all the@ trees?

OPTIMAL -RING-PLACEMENT is therefore a decision prob-
lem (outputs “yes” or “no”) taking an input of size£���@9i � � .

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Our goal is to show that OPTIMAL -RING-PLACEMENT is an
NP-completeproblem, thus motivating our focus on search-
ing good practical subtree allocation heuristics, rather than on
finding provably optimal solutions. We therefore need to show
that the problem is in the class ofNP problems and that it is
NP-hard. While the first task is almost immediate, the NP-
hardness is not trivial. We will use a reduction to a modified
version of a known NP-complete problem. The following par-
tition problem is a well-known NP-complete problem, even in
the strong sense, as shown in Garey and Johnson [12]:

Problem: 3-PARTITION

Input: A finite set
z

of 0X\ elements, a bound
�¬¥4§{¨ , and a “size” YZ��u­�k¥4§{¨ for each
u9¥ z

, such that eachYZ�]u�� satisfies the re-
lation �¢ª�2¯®°YX��u��±®²�¢ª�& and such that
³Z´Xµ YZ�]u��+$«\¶� .

Output: Can
z

be partitioned into\ disjoint sets
���;L�� � L�������L��!· such that ³Z´X¸�¹ YZ�]u��'$©�
for each1Pº¶/»º«\ ?2

Unfortunately, the 3-PARTITION problem lets the relationship
between\ and � unspecified, so one may wrongly assume
that the hardness of this problem comes from certainbadclose
relationships between\ and � . To avoid this kind of wrong
assumption and to settle the ground for our main theorem, we
consider a more general version of this problem. Given any
arbitrary but fixed “ratio”r , we define the following problem.

Problem: 3-PARTITION[r]3

Input: A finite set
z

of 0Z\ elements, a bound�¼¥
§?¨ with \¶ªM�¾½¿r and a “size” YZ�]u��~¥À§H¨
for each u'¥ z

, such that eachYZ�]u�� satisfies
the relation��ª�2Á®9YX��u��U®9�¢ª�& and such that
³Z´Xµ YZ�]u��+$«\¶� .

Output: Can
z

be partitioned into\ disjoint sets
���;L�� � L�������L��!· such that ³Z´X¸�¹ YZ�]u��'$©�
for each1Pº¶/»º«\ ?

Lemma 1 For any givenr , 3-PARTITION[r] is NP-complete.

Proof: Since 3-PARTITION[r] differes from 3-PARTITION

by just a more constrained input, 3-PARTITION[r] is also in
NP. We show that 3-PARTITION[r] is NP-hard by reducing it
to 3-PARTITION. Let us consider an input of 3-PARTITION:
a set

z
of 0Z\ elements, a bound�Â¥Ã§?¨ , and a size func-

tion YÅÄ z¬Æ §H¨ . We need to construct an input for 3-
PARTITION[r], consisting of a set

z?Ç
of 0Z\ Ç

elements, bound� Ç ¥È§H¨ such that\ Ç ª7� Ç ½Ãr , and size functionY Ç Ä zHÇmÆ
§?¨ with � Ç ª�2~®ÅYZ�]u Ç �+®J� Ç ª�& for all u Ç ¥ z?Ç

, and then show
that 3-PARTITION has a positive answer on the input\ ,

z
, � ,

Y if and only if 3-PARTITION[r] has a positive answer on the
input \ Ç

,
z?Ç

, � Ç , Y Ç . If \¶ªM�É½«r then one can clearly take\ Ç
,z?Ç

, � Ç , Y Ç to be just\ ,
z

, � , Y , respectively. Suppose now the
difficult case, namely that\«ª7�9®'r .

2Notice that these constraints on the item sizes imply that every such� �
must containexactlythree elements fromÊ .

33-PARTION[Ë] defines a class of problems, one for eachË .

Let � Ç be precisely� . One can build the set
zHÇ

by adding
enough “fresh” elements to

z
, so that their total number,\ Ç

,
has the property\ Ç ª7�Ì½Ér : let us first take\ Ç

to be Í�r��gÎ ,
i.e., the smallest natural number larger than or equal tor�� , and
then lets us take

z Ç
to be the set

z Ï � � L]� � L�������L�� �XÐ ·»Ñ�Ò!·HÓKÔ ,
for some arbitrary elements� � L]� � L������.L]� �XÐ · Ñ Ò!·HÓ which do
not occur in

z
. We now need to construct an appropriate size

function Y Ç Ä zHÇ?Æ §{¨ . The crucial idea here is to build it in
such a way that all the elements of

z
have sizes very close to

��ª�0 while the elements��- have sizes far enough from�¢ª�0 , so
that the only way to get a positive answer to 3-PARTITION[r]
is to actually get a solution to 3-PARTITION and group the ele-
ments��- among themselves. For example, letY Ç ��u­� be defined
as �¢ª�0�E~�]YZ��u­�K�¢�¢ª�0��]ª�1K<7<M< for eachul¥ z

, andY Ç �
� �;Õ ¨ �x�+$Y Ç �
� �;Õ ¨ � �P$Ö�¢ª�0~����ª�1;<7< and Y Ç �
� �;Õ ¨ � �×$4��ª�0~E±��ª�:M< .
It is now easy to see that 3-PARTITION[r] admits a solu-
tion on the input

zHÇ L���L�Y Ç if and only if 3-PARTITION ad-
mits a solution on the input

z L��¢L�Y . That happens because� � L]� � L������.L]� �XÐ · Ñ Ò!·HÓ can only be grouped with themselves in
any solution of 3-PARTITION[r]. Ø

We can now prove our main theorem.

Theorem 2 OPTIMAL -RING-PLACEMENT is NP-complete.

Proof: Let us first note that OPTIMAL -RING-PLACEMENT

is in NP. Indeed, if one is given an input and a placement,
that is a map

Ï 1XL�������L�@ Ô Æ¾Ï 1ZL�������L�i Ô , assigning each tree
to a pipeline(ring) stage from where it starts being allocated,
then the only thing one has to do is to check whether each
pipeline stage has exactly�«ª7i nodes. This can be obviously
accomplished in polynomial time.

We next show that OPTIMAL -RING-PLACEMENT is NP-
hard by reducing it to 3-PARTITION[r] for some appropiate
r . Let us consider an input of 3-PARTITION[r]: some set

z
of 0X\ elements, some bound�Ù¥Ú§?¨ with \«ª7�Ù½±r , and a
size functionY�Ä zÛÆ §H¨ such that��ª�2k®¿YX��u��»®¿��ª�& for
each uÜ¥ z

and such that ³Z´Xµ YZ�]u���$É\«� . We can then
build an input of the OPTIMAL -RING-PLACEMENT problem
as follows. Let i be \ , let @ be 0X\ , and let us consider
one tree,p ³ , for each elementuÚ¥ z

, having 1 node on the
first level, 2 on the second level, 4 on the third,����� , & ·PÒ �
on level \¾�É1 , and YX��u�� on the last level. In other words,
each treep ³ has heightiÝ$±\ , is complete on the firstiÙ�
1 levels and hasYX��u�� nodes on the last level. Our trees are
binary, therefore this can happen only if\ is large enough so
that YZ��u­�lº¿& ·×Ò�� . Since YZ�]u���®Ì��ª�& , we can taker large
enough so that�Éº'& · . Note that, with the abstract view of a
tree as a list of numbers symbolizing the nodes on each level,
p ³ $Ã�h& � L�& � L�& � L�������L�& ·PÒ � L�YZ�]u��
� for eachul¥ z

. Let us now
calculate the total weight of all the trees:

� $ ³Z´Xµ �h& � Ek& � Ek& � EG�����MEo& ·PÒ � E'YZ�]u����$ 0Z\G��& ·PÒ.� �È17��EÞ\¶�¢�
Thus we created in polynomial time an instance of the prob-
lem OPTIMAL -RING-PLACEMENT – the time needed to create

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

all the treesp ³ is indeed polynomial, because& Õ can be repre-
sented on\J��& bits for all <�ºJß~º«\J�D& . The only thing left
is to show that the original input

z L���L�Y of 3-PARTITION[r]
admits a solutionif and only if the created input of OPTIMAL -
RING-PLACEMENT admits a solution. The“only if” part is
easy. Indeed, if there is some partition of

z
into \ disjoint sets

� � L�� � L�������L�� · , each of 3 elements, such that³Z´X¸ ¹�$Ù� ,
then one can allocate the corresponding trees

Ï p ³ Ô ³7´X¸ ¹ of each
partition starting with the same cell. Then each cell will con-
tain 0 groups of 1XL
&�L�������L
& ·PÒ � elements (respectively) plus³Z´X¸�¹ YX��u�� for some 1�½J/D½à\ , that is,0��h& ·PÒ�� �à1M��E��
elements. The ring is balanced with this allocation.

Let us next consider the”if ” part, that is, let us assume
that the input of OPTIMAL -RING-PLACEMENT created above
admits one solution and let us prove that the original input of
3-PATRITION[r],

z L���L�Y , also admits a solution. Note first
that each stage in the balanced pipeline will contain exactly
0 ��& ·PÒ.� �J1M��EÈ� nodes. It is enough then to show that any
allocation of the0X\ trees on the ring requires precisely three
trees to be allocated starting with each stage in the ring. If that
is the case, then we can group together the items in

z
corre-

sponding to each of these trees and obtain a partition satisfying
the input of the 3-PARTITION[r] problem.

Let us assume that the solution to the input of
OPTIMAL -RING-PLACEMENT allocates the trees,�- $Ï p ³Má¹ L]p ³;â ¹ L�������L]p ³7ã ¹¹ Ô starting with the stage/ , for <Ü½à/D½à\ .

Then clearly
·-¡äH� ß - $'0X\ ; all what we need to show is that

ß � $�ß � $������!$àß · $G0 . Since each stage contains precisely
0 ��& ·PÒ.� �å17�XEÁ� nodes, we can write the following equations:

Stage 1: ß��¶EÌ&�ß � E¦& � ß � EÂ������E¦& ·PÒ � ßX·PÒ.�¶EÕwæç äH� YZ�]u ç· �?$«0 ��& ·PÒ.� �È17��E'�
Stage 2:

Õ áç äH� YZ�]u ç � �!E�ß � EÁ&!ß � E������XEè& ·PÒ � ßx·PÒ.��E
& ·PÒ � ßx·Û$«0 ��& ·PÒ.� �È17��E'�

Stage 3: ...

...

Multiplying the equationStage 2by 2 and then subtracting
the equationStage 1from it, we get:

�h&
Õ á
ç äH� YZ�]u

ç � �;�lß � �KE)& ·PÒ.� ß · �
Õwæ
ç ä{� YX��u

ç· �U$G0 ��& ·PÒ.� �é17��E��¢�

Sincer is chosen such that� is much smaller then& · , it fol-
lows that the dominant terms in the two sides of the above
equality are& ·PÒ.� ß · and0P¤ê& ·PÒ.� , respectively. This directly
implies that ß · $ë0 . Iterating the previous steps over the
different stages, we getß � $àß � $±�����!$àß · $G0 . Ø

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

