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Abstract (thus no memory balance or fragmentation issues), but do not

Pipelined forwarding engines are used in core routei@c@le to the bandwidths required for future processors.
to meet speed demands. Tree-based searches are pipelindfost algorithmic-based solutions for network searches can
across a number of stages to achieve high throughput, & regarded as some form of tree traversal, where the search
this results in unevenly distributed memory. To address tifi@ts at the root node, traverses various levels of the tree,
imbalance, conventional approaches use either complex @d typically ends at a leaf node. This computation is eas-
namic memory allocation schemes or over-provision eachibf Pipelined onto multiple computational elements, allowing
the pipeline stages. This paper describes the microarchitébfferent levels of the tree to be partitioned onto private mem-
ture of a novel network search processor which provides bdtfes associated with the processing elements — no data shar-
high execution throughput and balanced memory distributi¢ftd IS required, except for the state that follows the thread of
by dividing the tree into subtrees and allocating each subtré@mputation through the pipeline. Unfortunately, this arrange-
separately, allowing searches to begin at any pipeline stageMent results in highly unbalanced memories, to accommodate

The architecture is validated by implementing and simuldiatabases (trees) that.are typlcally unbglanced in pnpredlctable
ing state of the art solutions for IPv4 lookup, VPN forwardiny/@ys. For example, binary tries on typical IP prefix tables are
and packet classification. The new pipeline scheme and méyghly unbalanced. As a result, despite a wide variety of aca-

) provide a general solution for all three types of searches.
1 Introduction

The rapid growth of the Internet has brought great chal-
lenges in deploying high-speed networks. One particular chal-
lenge is the need to provide high packet forwarding rates
through the router. This paper presents a novel architecture for
a network processor which features a complexity-effectiveor- ./ S N
ganization of pipelined computational cores. This architecture --=: AN 22 ‘ N
allows the problem to be partitioned in a way that balances s/ &€\ &/ &\ S/ \
both computation and memory, allowing the entire architec- ¥ AN e ~on W
ture to compute at high rates. s/ 9\ st =

Network search engines capable of providing IP lookup,

VPN forwarding, or packet classification are a major compo- Figure 1. An example of a basic tree based search structure.

nent of every router. With the increase in link speeds, increaserhe tree is split into four subtrees Si, ... S4. Each subtree has

in advertised IP prefixes, and deployment of new network ser-Up to 4 levels. We call 57 the level j into the subtree S;.

vices, the demands placed on these network search engines aBasu et al. [8] identify memory balance as a critical issue
increasingly causing them to become a potential bottleneokthe design of IP lookup engines. Their technique to re-
for the router. This paper considers the architecture of prauce memory imbalance is to design the tree structure to min-
grammable network search engines. Other, more expensiwgze the stage that has the largest memory. Even with their
custom solutions are discussed in Section 5. new algorithm, the memory allocated to one stage varies from

Memory access times and costs become dominant factoesrly O to 150Kbytes for various IP tables (of sizes 100,000 to
in a high-speed network processor. While network process@®0,000 prefixes). The worst case bound for a million prefixes
have received considerable attention in the commercial [1] asdl1 Mbytes per stage (88 Mbytes across all eight stages).
in the research [23, 6] communities, most of the commerciBlihis more than doubles the total amount of memory that is
implementation have used a collection of multithreaded CRIded in a non-pipelined implementation.
cores. This allows a single memory to hold the entire databaseTo address this imbalance, conventional approaches use ei-
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ther complex dynamic memory allocation schemes (dramat-four levels. We assume that this search structure is imple-
ically increasing the hardware complexity) or over-provisiomented on a four stage pipeline. The stages of the pipeline are
each of the pipeline stages (resulting in memory waste). Tealed P ... P,. The first level of the subtres;, calledS1,
use of large, poorly utilized memory modules results in high stored and processed by the pipeline stBgeThe second
system cost and high memory latencies, which can have a deael, 5%, is stored and processed by the pipeline stagend
matic effect on the speed of each stage of the pipelined cosn-on. The second subtree is processed starting with stage
putation, and thus on the throughput of the entire architectu. on P, S3 on Ps, S3 on P, and.S3 on Py, respectively.
By contrast, this paper describes a novel memory alloca-Similarly, the third subtree; starts on pipeline staggs,
tion algorithm that allows searches to logically start frany while the fourth subtreé&, starts on pipeline stagg;. This
stage in the pipeline. This eliminates the memory imbalan@ocation scheme tries to balance the load on each of the
because any subtree of the search structure can be allocptpdline stages. By doing so, the pipeline allocates nearly
across the pipeline starting at any stage. This degree of frequal amounts of memory to each stage, by virtually allocating
dom greatly reduces memory imbalance compared to prafsubtree” in each of the stages. E.g., the first pipeline stage
schemes and enables smaller, cheaper, faster processingsédees the first level in the first subtreg]§, the second level
ments. Thus, while previous schemes had virtually unboundadhe fourth subtreeq?), the third level in the third subtree
imbalance, we present one scheme that is within 1% of perfésg), and the fourth level in the second subtréé)(
balance, even for highly imbalanced trees. In practice, we relax these two simplifications in this il-
The rest of this paper is organized as follows. Section 2 ilustration. We allow more subtrees than pipeline stages (pro-
troduces our solution for solving the memory allocation prolsessing elements), thus implying multiple subtrees may have
lem for each pipeline stage without generating access ctime same start node. We also allow the maximum depth of
flicts. We introduce a linear algorithm for subtree allocatiomach subtree to be less than or equal to the number of pipeline
which we show can allocate the subtrees with at most 1Stages.
memory waste; however, as shown in Appendix B, the prob- However, introducing this new degree of freedom that al-
lem of optimally allocating subtrees on a pipeline ring is NPlows search tasks to start execution from any pipeline stage im-
complete. Section 3 provides an overview of network searphcts the throughput of the system. This is because of potential
applications: IP lookup, VPN forwarding, and packet classionflicts between the new tasks and the ones that are in exe-
fication. In Section 4 we evaluate our solution on all thremution. In theory, the number of conflicts can be unbounded.
application types introduced in Section 3, using both real lirdowever, next we will present an alternative to the conven-
and synthetically generated routing tables and classifiers. Sganal pipelined organization that eliminates all conflicts.
tion 5 presents related work in the pipeline design of netwo§k

processors as well as in network search applications. Section’% Our Solution to Guarantee Pipeline Throughput

concludes. N 1. 1. 1] ]
2 Towards a Balanced Memory Distribution in ) I R | Pl Pal our.
a Pipelined Search Architecture r_ R — B —

Memory distribution per pipeline stage varies widely in the
case of a conventional tree based search implementation of
IP lookups and VPN searches (as shown by Basu et. al [8],
and by our results in Figure 3). Further, the results show no
correlation between the position of a particular pipeline stageFigure 2. A random ring pipeline architecture with two data
and the amount of memory that needs to be allocated to thapaths: first path is active during the odd clock cycles, used dur-
stage. ing the first traversal of the pipeline; second path is active during

Prior pipelined network search algorithms require all the even cycles to allow a second traversal of the pipeline.
searches to start from the first pipeline stage, going next to
the second, and so on. Instead, we introduce our first contribu\We need to deal with two problems that create conflicts: (1)
tion: an additional degree of freedom for the search operatieimce levels are assigned to our pipelined processing elements
We allow the search to start ahy stage in the pipeline. Forin a circular fashion, most threads must wrap around to the be-
every search, the starting position is picked using a hash fugning of the pipeline to complete execution; (2) computation
tion based on information in the packet header. For IP lookufas a new task can start at any processor.
the hash function is made up of a set of variable length IP pre-We want to guarantee that for any stream of tasks, in each
fixes. For decision-tree based packet classification, the hagirval of timew the tasks that are already present in the
function may use some of the most significant bits in two @ipeline progress to the next stage while ensuring that the next
three different fields of the packet header. incoming task can also be accommodated.

Figure 1 shows a tree based search structure. To keep th©ur solution, which represents the second contribution of
explanation simple, let us assume that the tree has four stitis paper, is shown in Figure 2. It modifies the regular
trees, calledb; ... Sy. Furthermore, the depth of each subtregipeline structure and behavior as follows.

777777777 data path active during odd slots
7777777 data path active during even slots
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Each pipeline stage works at a frequerfcy: 2 « F', where tains a number of nodes which is the closest to a desired value
I is the maximum throughput of the input. All tasks traverdghreshold). The subtrie is entirely eliminated from the origi-
the pipeline twice and are inserted at the first pipeline stage,rigl trie and saved into a list together with the prefix associated
respective of their starting stage (for execution) in the pipelingith its root node. The algorithm continues until the number
Each pipeline stage accommodates two data paths (virtaihodes left in the trie is less than the threshold.
data paths — they can share the same physical wires). Thd&he result of the algorithm is a list of tuples. Each tuple is
first data path (represented by the top lines) is active duringade up of the root node of a subtrie together with the longest
the odd clock cycles and it is used for a first traversal of tlmeatching prefix of this node.
pipeline. During this traversal a tagk traverses the pipeline2.3 The Allocation of the Subtrees
until its starting stage and continues the execution until the The algorithm above splits the original tree into subtrees of
last stage of the pipeline. The execution of a task always staétively equal size. The next step is to allocate these subtrees
on the first traversal through its start processor. The secagdhe circular pipeline such that the amount of memory used
data path is traversed during even cycles and allows the tagkeach of the pipeline stages is relatively equal. As shown
to continue its execution on the pipeline stages that are left.Appendix B, the problem of finding aoptimal allocation
Once a task finishes executing, its results are propagated togheach of the subtrees on the pipeline stages is intractable.
output through the final stage. Therefore, the best one can do is to develop heuristics for
The number of stages in the pipeline must be at least eqtgdod enough” subtree allocation on pipeline stages.
to the maximum number of stages that are required for thewe propose a simplénear time solution for the alloca-
execution of any task. tion problem. In Section 4 we experimentally show that our
For example, consider the four stage pipeline in Figure glution leads to a very small memory waste, withff of
A task that must start executing in pipeline stage inserted the total memory size. Our heuristic considers one subtree at a
in pipeline stagel. It traverses the pipeline only in the oddime, randomly picked from the set of subtrees identified using
cycles until it reaches stagewhere it starts executing. Itsthe algorithm described in the previous section, and allocates
results are forwarded to pipeline stagalso during an odd it such that the level in the new subtree that requires the mini-
cycle. However, the results of the execution on stagge mum amount of memory corresponds to the pipeline stage that
moved forward to pipeline stage for execution during the already uses the largest amount of memory.
next even cycle. The task finishes its execution on pipeline Network Search Applications
stage2. The final results are moved to the output via pipeline
stages3 and4 during even cycles.
Our solution guarantees the following featurgpan output
rate equal to the input rat2) all the tasks exit in order, ar)
all the tasks have a constant latency through the pipeline e

1 : S eatures of these searches are summarized in Table 1.
to N x = whereN is the total number of pipeline stages. : ; .
F : o : In Appendix A we give details of each of the IP lookup al-
In summary, we provide a new pipeline architecture that al-

orithms that we implement and evaluate in Section 4. The

lows the injection and removal of tasks each from a single pr\gx])- . . )
. - N forwarding algorithms use the same data structures as in
cessor, while communication between processors occurs OF
t

. ) . ) R case of IP lookup. In essence a router that provides VPN
between neighbors in a linear ordering of the processors;

IS : .
eliminates (1) the need for a scheduler for both input and Ou(%_rwardlng T““Sft exe_cute two IP lookup o_peratlons for each
L : search, as is given in RFC2547 [20]. It first executes an IP

put of the task and (2) the communication complexity. We al$o ) :
. o ookup based on the source IP field. The result of this deter-

address the memory imbalance between the pipeline stages

. . ... mines the routing table that is used for the second IP lookup
by allowing the execution of the tasks to start at any p05|tl%%sed on the destination IP field

in the pipeline. Section 4 evaluates how our new allocation In packet classification each packet is matched against a

scheme reduces the memory imbalance in the implementation .. ; !
: L prioritized set of rules made up using two or more fields (e.g.
of different network search applications.

) . ; . : P r n ination fiel rt fiel D). A k
This architecture requires that the time per processing S{%Psou ce and destination fields, port fields, etc.) packet

: — ) . n be matched by several rules. The search determines the
be half that of a more conventional pipelined configuration {0 o
|ghest priority rule that matches each packet.

:gzlgézg]ntrnenizmgrg];?zueggzg:itly\:avltlaojvgotvr\ml(;Zesgegitrlgn 4 that th Decision-tree based packet clas§ification algorithms [_28,
. ' 15, 26] appear to be the most promising category of algorith-
2.2 Selectlng the Subtre_es _ mic solutions to the packet classification problem. We imple-
_ To apply this new allocation scheme we need to first pafrent HyperCuts [26], a recent decision tree based packet clas-
tition the tree into subtrees. Ideally, the subtrees to be gffication algorithm introduced by Singh, et al. The scheme
located should have relatively equal size (approximately thepased on a pre-computed decision tree which is traversed
same number of nodes). for each packet that needs to be classified. The computation
We provide an iterative algorithm that takes as input thg each stage in the tree uses several bits in the packet header
original trie* and at each step identifies one subtrie that cogs an index into an array of child pointers to identify the next

1A trie is a binary prefix tree. child node to be traversed.

We evaluate our new pipeline architecture and task allo-
cation algorithm using state of the art solutions for different
types of network searches that are typically done in a router:
IPa,ookups, VPN forwarding and packet classification. The
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[ Application | Number of Entries Number of fields| Type of Matches ||

IP Lookup > 150K 1 LPM
VPN Forwarding > 500K 2 EM + LPM
Packet Classificatior ~ 10,000 > 2 EM + LPM + RM

Table 1. Network Search Applications. LP M stands for “longest prefix match”, EM for “exact match”,a nd RM for “range match”.

4 Evaluation algorithm using0.13.m technology. The longest path delay

. . . L . in the computation of the next node address in both algorithms
In this section we evaluate our Ring Pipeline architectuje .- ar than ns . This combines with & n.s memory ac-

using theonetworhk_ search algorlthms de_scrllbed in the pr?"'%{%s time to a allow & ns execution delay per pipeline stage.
section. Ourarchitecture uses private single port memories9fy i, of |l the computation logic for all 8 stages is smaller

each of the pipeline stages. This contributes to an increas:mgno 195mm2
the amount of memory needed due to increased fragmentationGiVen the architecture of Section 2, a pipeline running at

We seek to balance memory for two reasons, to minimize CasharH » (3 ns per stage) achieves a search throughpitef

(memory waste) and to maximize performanf:e (mipimize U3y packet. This value is adequate for OC-768 (40Gbps) links
access time of the largest memory). Thus, this section focuzes require a throughput & ns per packet for a minimum
on the following two critical questiongt) What is the overall size (10 bytes) packet.

Waf]te in the men;ory srp])ace dude to our Tjelw monIWhath All the searches through the pipeline have a latency that is
Is the ma}gln;uvrc throug .p#tr?nl expecte .atency our sSCheffstant and is double the latency of a one way pipeline traver-
can provide? We start with the latter question. sal. The overall latency of a search operation using the Eather-

4.1 Search Latency and Throughput ton algorithm [11] for the IPv4 lookup i8+ 2 * 3 ns = 48 ns

o , ) assuming an eight-stage pipeline withs per stage. We mea-
Each pipeline stage requires a computation phase and, gaq the mean packet latency for different loads on a CISCO

memory access phase. Although the memory is uniport, QY&R router. In our evaluation the smallest mean packet la-
design allows two v_vords located at a small d|s_tance one frqghcy was approximately0ys. Thus our search latency is less
another to be read in one memory access, as in [4]. The Mgy 1% of the total mean packet latency. Consequently we

ory access time is similar to the access time of aregular unipgg, i de that the search latency of our solution has virtually
memory. We first investigate the relationship between peys impact on the overall packet latency.

stage memory allocation and the memory access time. Jao Memory Distribution per Pipeline Stage

ble 2 shows tha.lt the memory access time increases signifiwe next evaluate the efficiency of our pipeline scheme to
cantly W'th. the size of memary. When our balanced alloc_at| ually distribute memory across pipeline stages. We do this
algorithm is applied, we find thgt all searches apalyzed In t simulating the behavior of our architecture for all three

research, except one, can be implemented with memory ves of applications: IP lookups, VPN based lookups, and

tency less thains. The one exception corresponds to a VP cket classification. We evaluate these models using both real

forwarding application that contains a large number of sm |?e routing tables and classifiers, as well as synthetically gen-

destination IP routing tables. Even in this case the MeMated ones that allow us to simulate large configurations. In

adcess time is less thans. the figures that follow all the memory values are expressed in
Memory Size(Kbits] Arealm?) | Access Time(ns Kbits.
128 0.005 0.565 )
256 0.009 0.651 4.2.1 Evaluation of IP Lookup

512 0.020 0.828 We first evaluate our pipeline architecture by a software

1024 0.037 0.919 simulation of the memory requirements for Eatherton’s IP

2048 0.069 1.242 lookup algorithm [11]. The real life routing tables were ex-
4096 0.134 1.520 tracted using instances of the BGP routing tables available

8192 0.275 2.487 at RIPE [21] and RIR [16] on Sept. 22, 2003 and parsed

_ _ _ using the {oute_btoa) software available at [17]. We ex-
fTe‘";‘sr'nesz_-ezhgf“;ﬁ’EﬁTg access “g_‘negag% Jrea teesctll?:lifgz fOFTdr']Z tracted the routing tables associated with ATT (AS7018),
iz -chi usi .09um Y. . L

estimates are obtained using the memory generator application Sprint (A31239)' Level 3 Communications (A83356) ar_]d_
CACTI [24]. France Telecom (AS5511). Because the results are very simi-

lar, we only display the results for ATT. To test the scalability
In order to determine both the search latency as well as thfethe algorithm we synthetically generate tables using two
throughput of the searches using our architecture, we synttigferent models of routing table growth: one developed by
sized in Verilog the computational logic for each pipeline staglee Network Processing Forum (NPF) [2], and one developed
for both Eatherton’s IP lookup algorithm and the HyperCutsy Narayan, et al. [18].
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The graph on the left in Figure 3 shows the results of usto memory. Thus, there are two question to be askgtdow
ing the Eatherton algorithm with a regular pipeline in whicto split the trie into relatively equal sized subtries &)avhat
the search starts with the first pipeline stage, continues wigha sufficient number of subtries such that the amount of waste
the second, and so on. These results motivate our schemeliny to over-provisioning is less than, for examplg,
showing that one cannot identify a clear pattern of memory
size allocation per pipeline stages. We split the original trie into subtries of relatively equal
Table 3 and Figure 3 show that our pipeline scheme hasize using the algorithm described in Section 2.2. We de-
double benefit. It eliminates the need for dynamic memory &rmine the minimum number of subtries that are required to
location per pipeline stage and it provides a better throughpaghieve an overall waste due to over-provisioning that is less
For example, an IP prefix table with abai0, 000 entries than1% through a series of evaluations using both real life
requires almost 1M bits of memory for one stage (the sixthrouting tables as well as synthetically generated ones. In the
pipeline stage). As a result the memory access time increag@se of a balanced trie this number is small and it is equal
to about3.5ns. In comparison, our new pipeline scheme hdg the depth of the trie. This number increases when the trie
a maximum oR.9M bits of memory allocated per stage. As &hape becomes more irregular. The multi-bit trie, with strides
result the memory access time is reduced.tios. of size4 that is used in the Eatherton algorithm has a more
In all these simulations we use a relatively naive split of tifegular structure than a regular unibit trie. Therefore, for this
original search trie int@2 subtries (using the firgtbits in the experiment, we use the unibit trie search structure, which we
IP address field). These subtries are allocated to the pipek@ect to have the largest degree of irregularity. Our results
stages starting from various positions. In this case the tog#lown in Table 4 can be directly extended to the equivalent
memory across the pipeline stages is witBi¥ of the ideal multi-bit tries. We use a 24-stage pipeline to accommodate
memory allocation space (Table 3). Note that in the casetbg larger depth of the unibit trie. The third column repre-
a conventional pipeline with statically allocated memory trgents the number of subtries that we create. The subtries are
total amount of memory to be used increases 206% over ghstributed among the 24 stages of the pipeline. The maxi-

non-pipelined implementation. mum number of nodes allocated for a pipeline stage is given
in the 4th column. The 5th and 6th columns represent the aver-
IP Table Total | BPW | CPW age and maximum percentage of memory wasted due to over-
ATT 7, 727K 30% | 206% provisioning. This over-provisioning is a result of allocating
A100K 4,550K | 6.25% | 206% for each pipeline stage the amount of memory needed by the
A200K | 10,674K | 15% | 206% largest stage.
A300K 13,585K | 8.8% | 206% ) o )
AZ00K 18, 440K | 4.9% | 206% The results show that, in the worst case, the original trie
AS00K 23, 226K 9% | 206% needs to be split intd, 000 subtries to reduce the overall waste
NPF 23,583K | 10.4% | 202% to below1%.
Table 3. Eatherton Algorithm on a random access pipeline Update Operations. .ThIS _anaIyS|s assumes a static
model - Total memory utilization and the percentage of wasted database, but balance will be impacted over time by update
memory if each of the pipeline stages has allocated the maxi- operations. We next consider the effect of these update opera-
mum amount of memory that is required by the pipeline stages. tions on the overall memory balance per pipeline stage. In our

The third column shows our balanced pipeline waste (BPW) luati th t i-bit trie data st
while the fourth column shows the memory waste in a conven- evalualion we use the same worst-case uni-bit tne data struc-

tional pipeline (CPW). tures.

Reducing the waste due to over-provisioningAlthough We consider a routing table associated with AS9177 (NEX-
our results above show that the total memory across thRANET, Switzerland), collected by RIPE rrc00 [21]. The
pipeline stages is withiB0% of the ideal memory allocation original routing table is collected at the beginning of Aug. 9th,

space, we would like to provide even tighter bounds on tR@03. Updates are recorded through the end of Aug 15th. at
amount of memory that is wasted due to over-provisioning. 00:00 UTC.

Our allocation algorithm assumes the trie is made up of a
number of relatively equal subtries. Finding the perfect combi- The routing table is represented using a trie which is split
nation for allocating each of the subtries on the pipeline stage® 4, 102 subtries that were allocated t24d stage pipeline
has an exponential complexity as we show in Appendix B. lasing our algorithm. During the update proc8% new sub-
stead, we propose a much simpler linear solution in whichtees were created. Each subtrie was associated with a new
each step one subtrie is considered for allocation. The sbbanch in the trie. Each new subtrie is inserted into the pipeline
trie is allocated such that the level in the subtrie that requiressuch a way as to try to avoid having any memory alloca-
the minimum amount of memory corresponds to the pipelitien in the pipeline stage with the largest number of entries al-
stage that currently uses the largest amount of memory.  ready allocated. Our results show that at any moment in time

To reduce the degree of waste, we find it is sufficient to ithe maximum “waste” per pipeline stage remains smaller than
crease the number of subtrees, allowing finer-grain placemer%.
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Figure 3. The memory utilization per pipeline stage using the Eatherton Algorithm [11] on a conventional pipeline architecture (left) and
our balanced architecture (right). The values represent the amount of memory in bits that is used in each pipeline stage. A100K - A500K
are synthetically generated routing tables using the model described by Narayan et al [18] while NPF is a 500K entries synthetic routing
table generated using the model proposed by the NPF Forum.

IP Table No. of Prefixes | No. of Subtries || Max. No. Nodes | AMW | MMW ||

ATT 122,636 4,090 14,632 0.23% | 0.37 % ||
[ FT | 123,875 ] 4,077 | 14,763 | 019 [ 027 |
| L3C [ 123,271 | 4,105 | 14,700 | 025 | 039 ]|
[ SPRINT || 122,750 | 4,097 | 14,662 | 020 | 033 ]
[ A0k [ 53,323 ] 4,120 [ 6,739 [ 009 [ 018 ]
[ A100K || 100,312 | 4,231 | 12,664 | 018 | 035 ]|
[ A200K [ 211,033 ] 4,272 | 26,635 | 046 [ 0.62 |
[ A300K [ 290,995 ] 4,017 [ 36,985 | 059 | 0.86 ]
[ 400K || 411,469 | 4,277 | 51,634 | 028 | 039 ]
[ A500K [ 511,634 ] 3,950 | 64,284 | 033 [ 054 ]
[ NPF [ 524,218 ] 4,146 | 59,320 | 035 [ 0.61 ]

Table 4. IP lookup using a single-bit trie search structure. The trie is split into a number of subtries, each subtrie with a number of
nodes close to a given threshold. The number of subtries is shown in column 3. The maximum number of nodes allocated for a pipeline
stage is given in column 4. Columns 5 and 6 show the average memory waste (AMW) and maximum memory waste (MMW) due to
over-provisioning.

4.2.2 Evaluation of VPN Forwarding

set contains about one million prefix entries.

We simulate a VPN forwarding engine using a similar search
structure as in regular IP lookup. The only difference in this

case is that the driver of the search engine must compute a

hash function based on a tag value that is provided by the
VPN application. The computed value determines the pipeline

stage from which the search starts. The search structure an

VPN Set Total | BPW | CPW
AlISmall | 55,599,512 | 4.8% | 82%
AllLarge | 41,440,848 | 7.2% | 89%
Mixed | 48,674,552 | 3.2% | 129%

(?able 5. VPN forwarding using a random access pipeline

the search itself is implemented using the same algorithm de- e - Total memory utilization and the percentage of wasted
signed by Eatherton [11].
No publicly available VPN forwarding tables exist. As are- Pipeline (CPW).

sult, we do the evaluation using a set of synthetic tables that are

generated using similar techniques to the ones used to generat®ur results in Table 5 show that by using our new pipeline
the IP lookup tables. Our results shown in Table 5 correspaoacthitecture for VPN applications, the total amount of wasted
to three different cased) all the sets of tables contain aboumemory does not exce&®%. It corresponds to a situation in
1000 entries per set (AllISmallR) all the sets of tables containwhich the set contains only a small number of relatively large
aboutl0, 000 entries per set (AllLarge) arg) the set contains VPN tables. In contrast a conventional pipeline architecture
a mix of small size tables and large size tables (Mixed). Eacbntributes to an increase in the memory of up26%.
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4.2.3 Evaluation of the Packet Classification Algorithm architectures, and the focus is to minimize the depth of the
(HyperCuts) search structures.
. ... .. Basu and Narilkar [8], in the context of a specific lookup
We next evaluate how a decision tree based classmcat_‘Lg orithm that uses fixed stride multi-bit tries, show that the

s_cheme_ behaves on our new pipeline scheme using fi emory in some stages varies dramatically across databases,
Q|menS|onaI cIassnﬁer;. We simulate the 'I-!yperC.uts algé?\'/en in the face of their proposed algorithms to minimize the
rithm [26] on synthet|cal!¥ generated classifiers with up t\9ariation. For example, assuming an eight stage pipeline, their
20,000 rules. The classifiers that we use are generated réSilts show cases in which for two different databases the

ing the methodology described by Singh, et al. [26]. We CORemor P, :
. - ; y space to be allocated to a pipeline stage varies from
sider classifiers with 5,000 (L5K), 10,000 (L10K) and 20'Oozglmosto up to 150K B while in the case of another pipeline

(LZOK? rulgs. . .. . Sstage the memory space varies from abtiiK B to up to
Unlike in IP lookup, in tree based packet classificatio B

the largest amount of memory is allocated toward the earlier

stages |n_the p!ge:me':. Also the rlne_morr]y aIIocau?n ggrop(')ge“ e case of network search engines. The problem was intro-
stage varies widely. For example, in the case of a 20, 'Ufied by Sikka, et.al [25] in the context of tries where it was

classifier the amount of memory allocated per stage Varigs s an open problem. Basu and Narilkar [8] propose an ap-
from 480K bits to 1Kbit. Our new pipeline scheme bringE

There is little work that addresses the memory limitation in

q th . t of that ds 1o b Iroximate solution to the problem of trie memory allocation
own the maximum amount of memory that needs 10 be gic,gq stages, but they are less than successful at solving it.
located per pipeline stage by a factor greater than two.

le in th £20. 000 rul lassifier. th ) ey propose a way to reduce the memory imbalance by min-
example in the case of4, rules classilier, the r‘nax'mumimizing the stage that has the largest memory. Baer, et al. [6]
amount of memory that is allocated per pipeline stage dr

10 215 K bits f AS0K bits. | imulati 4 th pose a cache based solution to reduce the memory capac-
0 tts rom tts. In our simulation we used ey, 544 the amount of memory multibanking. However, their

subtrees originated in the second level nodes (the root ”Odeﬁmon can not provide deterministic throughput for any pat-

at level 0). _ ) ... tern of input packets and can not provide tight bounds for the
The results in Table 6 show that a conventional pipeline gl ot case. Sherwood, et.al. [23] investigate the use of wide
chitecture implementation may require more than three ti

MEBrd pipelined memory that allows concurrent accesses. None

the amount of memory used by the non-pipelined version. lay,ase architectures pipeline the computation across multiple
contrast our pipelined scheme increases the memory usﬁQf‘cessors.

by o_nl_y 3.0%' This amount of wasted memory due to over- Hardware based solutions based on Ternary CAMs provide
provisioning may be further reduced by using a larger numb&rﬁ attractive solution to ASIC-based designs that implement
of subtrees. tree based algorithmic solutions for searches. TCAMs are con-
tent addressable memories in which each bit is allowed to store
a0, 1 ora“don’'t care” value. A TCAM essentially compare
each packet address with every address the search engine holds
in its database, using parallel lookups on associative memory.
However TCAMs have limitations(1) large cell size (about
Table 6. HyperCuts algorithm using a random access pipeline 16 transistors per bItX'Z) high power consumpuo(ﬂO— 15W

model - Total memory utilization and the percentage of wasted at133M sps), (3) very high cost per chip$200 — $300) and
memory for our balanced pipeline (BPW) and conventional (4) can not provide a general, efficient, single chip solution for

pipeline (CPW). all of the algorithms our solution addresses [13].

DB Total | BPW | CPW
L5K | 1,188K | 30% | 55%
L10K | 2,496K | 32% | 238%
L20K | 2,592K | 32% | 238%

6 Conclusion

5 Related Work _ o .
In this paper we propose a general, pipelined, multiproces-

Extensive work has been done on processor ring comnsar architecture for tree based algorithmic solutions. This ar-
nication [9, 10, 7, 3, 19]. Hierarchical ring buses as an alhitecture can be implemented using equal sized memories for
ternative to the scalability and cost problems of the crosslesch pipeline stage, limiting the need for over provisioning.
switches are addressed in [3, 19]. In both cases each dlkis allows computation, even on highly unbalanced trees, to
ment in their architecture is capable of controlling the insdpe partitioned into pieces that equalize both computation and
tion of data on the ring through a system of FIFOs. Coffmamemory allocation. This results in minimized memory cost
et al. [10] further analyze the features of the processor-ringd maximized packet throughput.
communication for large rings and prove boundary conditions This solution achieves very low communication complexity
for the task waiting times. because each pipeline stage communicates only with its imme-

Packet forwarding in high speed routers has been a wadithte neighbors and all tasks enter and exit the pipeline through
studied area. There has been extensive research both in the #ihgle stage. It does not require any centralized schedul-
lookup problem [11, 22] as well as packet classification [5, 1#hg mechanism. Our architecture also provides tight latency
15, 28, 26, 27]. Most of this work deals with non-pipelinebounds for searches.
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We evaluate our pipeline task allocation algorithm arfd7] U. Michigan. Multi-threaded routing toolkit. 2003.
our new multiprocessor pipeline architecture by implement- http:/Awww.mrtd.net/. _
ing state-of-the-art tree-based network search algorithms 3l H. Narayan, R. Govindan, and G. Varghese. The impact of ad-
IP lookup, VPN forwarding, and packet classification. We dress allocation and routing on the structure and implementation

. - . A of routing tables. IfProc. of ACM Sigcomm 200Q3august 2003.
demonstrate a memory allocation heuristic which can, in “[1'9] Ravindran and Stumm. A performance comparison of hierar-

ear time, allocate subtrees with only 1% waste. _ chical ring- and mesh-connected multiprocessor networks. In
Our implementation can be used on high speed routers with 3¢ nternational Symposium on High-Performance Computer

OC-768 links that run at 40Gbps and require a throughput Architecture IEEE Computer Society, 1997.

of 8ns per packet. We show that we can provide IP lookufg0] E. Rosen and Y. Rekhter. BGP/MPLS VPNs. RFC 2547, 1999.

VPN forwarding, and packet classification at a raténf per [21] RRC. ~ Routing information service raw data. ~ 2003.

. ; http://data.ris.ripe.net/.
packet while the overall latency is constantats. [22] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxon-
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Figure 4. The trie lookup structure associated with the routing
table given in Table 7.

hop information associated with each of the valid prefixes is
kept in a table.

The second hit vector which we callBV describes the
child distribution. There are at magt children and a bit is set
whenever a child exists at the end of that path through the trie.
Thus, in Figure 5 we only have two bits set corresponding to
two child subtries associated with the prefixé80 and1101,
respectively.

In summary, the search structure in the Eatherton algorithm
is a tree which in every node stores: two bit vectors, a pointer
to the block of child nodes, and a pointer to an array of next
hop data. In order for the scheme to work efficiently all child
nodes of a given parent must be stored contiguously in mem-
ory, to maximize locality, and minimize memory access time.
Similarly, all the next hop information associated with valid
prefix nodes in the associated subtrie is stored as a contiguous

evaluation of our new pipeline scheme we use the algoritthck in memory.
invented by Eatherton [11]. This algorithm offers both excel- A gearch operation executes as follows. Assume that we

lent throughput as well as fast update rates.

need to identify the longest matching prefix associated with

Eatherton’s algorithm uses a trie as the basic search stryigiestination addre$s 101101010. The algorithm considers
ture. The trie is organized into subtries with fixed depth(fQfrides of 4 bits of address at a time. It starts by reading the
examplel) marked with dotted lines in Figure 4. As a resulighilq bit vector associated with the root node and it determines
the initial trie is now represented as a tree in which each no@enere is a child subtrie with the root at the positionL0.

is associated with a subtrie in the original representation.

[010000100000000]| [PBV

[0000000000001100| |CBV

Next Hop Table Ptr.

Child Node Array Ptr.

Figure 5. Each subtrie in the original trie may be represented
as it is shown here. This picture shows the representation of the
subtrie 7% from Figure 4.

Each subtrie is represented with the help of two bit vecto
Figure 5 shows the representation of the sulifkidrom Fig-

ure 4 and two arrays that store the child nodes and the next HE)

information associated with the current node.

This corresponds to the seventh bit in the CBV being set. This
bit is set which means that the search continues to the next
node by using the next four bits of the address. In parallel
it determines if there is any matching prefix in this node. If
there is a match, the algorithm remembers it and continues
the search recursively by going to the next child node. When
the search fails, the last matching prefix represents the longest
matching prefix for the search.

B Optimally Allocating Subtrees on a Pipeline
Ring is an NP-Complete Problem

We here show the intractability of the problem of optimal
placement of subtrees on a pipeline ring. In fact, we show
that the simpler problem of deciding whethi&f given trees
of height H can be allocated on ang of H cells such that
each cell contains an equal number of nodedfscomplete
Here the complete tree information, i.e., the parents of each
node, is not needed; only the number of nodes per level is
neccessary to schedule a placement. Therefore, a tree of height
rlgis encoded a&l numbergy, I, ..., 1) in the rangel .25

ence, one only need3(H?) space to store a tree, despite
%fact that theveightof the tree, that is, the total number of
noded; + ls + - - - + Ly, can be exponential if.

_ A first bit vector that we caIPBV d_escribgs th_e d_iStribu'Problem: OPTIMAL -RING-PLACEMENT
tion of the nodes associated with valid prefixes inside of thelnput: AheightH € Z+, anumbetM € Z*, andM

subtrie. This bit vector represents a linearized format of t

he binary trees of heigh#.

original subtree: each row of the subtree is captured top—dovm,tput Can these trees be scheduled oring of H
from left to right. Each bit is associated in order with the pre- cells such that each cell contains exadtly H

fixes: *, 0*, 1*, 00*, 01*, 10*, 11*, ..., 111* Two bits are
set in PBV;, they correspond to the valid prefixgg and Py,

nodes, wheréV is the total weight (number of
nodes) of all thel! trees?

existent in the subtrie as it is shown in Figure 5 (The node

associated with the prefiR; does not belong in this subtrie.

OPTIMAL -RING-PLACEMENT is therefore a decision prob-

Instead it is the root node of one of its child subtrie). The nelem (outputs “yes” or “no”) taking an input of size(M H?).
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Our goal is to show that ®rimMAL-RING-PLACEMENT is an Let B’ be preciselyB. One can build the set’ by adding
NP-completeproblem, thus motivating our focus on searctenough “fresh” elements td, so that their total numbery/,
ing good practical subtree allocation heuristics, rather thanloas the propertyn’/B > r: let us first taken' to be [rB],
finding provably optimal solutions. We therefore need to shave., the smallest natural number larger than or equaBtcand
that the problem is in the class biP problems and that it is then lets us takel’ to be the sefd | J{x1, 22, ... , 2300 —m) }»
NP-hard While the first task is almost immediate, the NPfor some arbitrary elements;, z2, ... , 234’ —m) Which do
hardness is not trivial. We will use a reduction to a modifieabt occur inA. We now need to construct an appropriate size
version of a known NP-complete problem. The following pafunctions’ : A’ — Z*. The crucial idea here is to build it in
tition problem is a well-known NP-complete problem, even isuch a way that all the elements 4fhave sizes very close to
the strong sense, as shown in Garey and Johnson [12]:  B/3 while the elements; have sizes far enough froi/3, so
that the only way to get a positive answer to 8RPITION[ 7]

Problem: 3-PARTITION is to actually get a solution to 3ARTITION and group the ele-
Input: A finite set A of 3m elements, a bound  entg;. among themselves. For example, d6i) be defined
B € L7, and a "size"s(a) € Z" for each asB/3+(s(a)—B/3)/1000 for eachu € A, ands’(z3j11) =
a € A, such that each(a) satisfies the re- §'(z3p42) = B/3 — B/100 ands’ (z43) = B/3 + B/50.
lation B/4 < s(a) < B/2 and such that It is now easy to see that 3ARTITION[r] admits a solu-
2acasla) =mB. . L tion on the inputd’, B, s’ if and only if 3-PRTITION ad-
Output: Can A be partitioned intom disjoint sets mits a solution on the inputl, B, s. That happens because
S1,52,..., S such thaty;, ¢ s(a) = B T1,T2,... T30 —m) Can only be grouped with themselves in
foreachl <i <m? any solution of 3-BRTITION[r]. O

Unfortunately, the 3-PRTI'.I'I.ON problem lets the relationship  \ye can now prove our main theorem.

betweenm and B unspecified, so one may wrongly assume

that the hardness of this problem comes from cetaifclose  Theorem 2 OPTIMAL -RING-PLACEMENT is NP-complete.
relationships betweem and B. To avoid this kind of wrong _

assumption and to settle the ground for our main theorem, ®&of:  Let us first note that ©TIMAL -RING-PLACEMENT
consider a more general version of this problem. Given aigyin NP. Indeed, if one is given an input and a placement,

arbitrary but fixed “ratio”r, we define the following problem. thatisamagd1,... ,M} — {1,..., H}, assigning each tree
to a pipeline(ring) stage from where it starts being allocated,
Problem: 3-ParTITION[r]® then the only thing one has to do is to check whether each
Input: A finite setA of 3m elements, a bound € pipeline stage has exactj/ H nodes. This can be obviously
Z* with m/B > r and a "size"s(a) € Z* accomplished in polynomial time.
for eacha € A, such that each(a) satisfies We next show that ©TIMAL -RING-PLACEMENT is NP-
the relationB/4 < s(a) < B/2 and such that hard by reducing it to 3-RRTITION[r] for some appropiate
> aca s(a) =mB. r. Let us consider an input of 3ARTITION[r]: some setd
Output: Can A be partitioned intom disjoint sets of 3m elements, some boun € Z* with m/B > r, and a
S1, 82, Sm sUch thaty g, s(a) = B size functions : A — Z* such thatB/4 < s(a) < B/2 for
foreachl <i <m? eacha € A and such tha}",_ , s(a) = mB. We can then

) ) build an input of the ®TIMAL-RING-PLACEMENT problem
Lemma 1 For any giverr, 3-PARTITION[7] is NP-complete. s foliows. LetH bem, let M be 3m, and let us consider

Proof:  Since 3-RRTITION[r] differes from 3-RRTITION ©ON€ Weetq, for each element € A, having 1 pode %‘_ghe
by just a more constrained input, 3¥rITION[r] is also in first level, 2 on the second level, 4 on the third, , 2

NP. We show that 3-#RTITION[] is NP-hard by reducing it On lévelm — 1, ands(a) on the last level. In other words,
to 3-PARTITION. Let us consider an input of 3aRTITION: ©ach tree, has height] = m, is complete on the first/ —
a setA of 3m elements. a boun® € Z+. and a size func- 1 '€vels and has(a) nodes on the last level. Our trees are

tions : A — Z*. We need to construct an input for 3binary, therefore this can happen onlyifis large enough so

PARTITION[r], consisting of a setl’ of 3m’ elements, bound thats(a) < 2™~ Sinces(a) < B/2, we can take: large
B’ € Z such thatn’/B’ > r, and size function’ : A’ — enough so thaB < 2™. Note that, with the abstract view of a

7+ with B'/4 < s(a’) < B'/2foralla’ € A’, and then show tree as a list of numbers symbolizing the nodes on each level,

that 3-RRTITION has a positive answer on the input A, B, ta = (2°,25,2%,...,2""2,5(a)) for eaChC_‘ € A. Letus now
s if and only if 3-PRTITION[r] has a positive answer on thefalculate the total weight of all the trees:

inputm/, A’, B’, . If m/B > r then one can clearly take’,

A",.B’, s’ to be justm, A, B, s, respectively. Suppose nowthe pr — S aea (20421 422 4 2m2 4 5(a))
difficult case, namely that./B < r. = 3m(2™1—1)+mB.

2Notice that these constraints on the item sizes imply that every Sgch . . . .
must contairexactlythree elements fror. Thus we created in polynomial time an instance of the prob-

33-ParTION[r] defines a class of problems, one for each lem OPTIMAL -RING-PLACEMENT —the time needed to create
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all the treeg,, is indeed polynomial, becaugé can be repre-
sented onn — 2 bits for all0 < k£ < m—2. The only thing left
is to show that the original inpud, B, s of 3-PARTITION[7]
admits a solutioiif and only if the created input of ©TIMAL -
RING-PLACEMENT admits a solution. Théonly if” part is
easy. Indeed, if there is some partitiondinto m disjoint sets
S1,85,...,5,,, each of 3 elements, such th@aesi = B,
then one can allocate the corresponding tfgg$,cs, of each
partition starting with the same cell. Then each cell will con-
tain 3 groups of1,2,...,2™~2 elements (respectively) plus
Y aes, s(a) for somel > i > m, thatis,3(2™ ' — 1) + B
elements. The ring is balanced with this allocation.

Let us next consider th&f” part, that is, let us assume
that the input of ® TIMAL -RING-PLACEMENT created above
admits one solution and let us prove that the original input of
3-PaTRITION[r], A, B, s, also admits a solution. Note first
that each stage in the balanced pipeline will contain exactly
3(2™~! — 1) + B nodes. It is enough then to show that any
allocation of the3m trees on the ring requires precisely three
trees to be allocated starting with each stage in the ring. If that
is the case, then we can group together the item$ aorre-
sponding to each of these trees and obtain a partition satisfying
the input of the 3-BRRTITION[r] problem.

Let us assume that the solution to the input of
OPTIMAL-RING-PLACEMENT allocates the treesl; =

{tar taz, ... .t » } starting with the stage for 0 > i > m.
Then clearlyy"." | k; = 3m; all what we need to show is that
k1 = ks = ... =k, = 3. Since each stage contains precisely

3(2m~1 —1)+ B nodes, we can write the following equations:

Stage 1: k1 + 2ks + 2%ks + ... + 2™ %k 1 +
S s(af,) =321~ 1) + B

Stage 2: 3-8 | s(a]) + ko + 23 + ..+ 2" Pk +
2m =2k, =3(2m 1 -1)+ B

Stage 3: ...

Multiplying the equatiorStage 2by 2 and then subtracting
the equatiorStage 1from it, we get:

]Cl k'm,
(2 " s(a])=k)+2™ k=Y s(ad,) = 3(2m 7 —1)+B.
j=1

J=1

Sincer is chosen such tha is much smaller the@™, it fol-
lows that the dominant terms in the two sides of the above
equality are2™ 1k, and3 - 21, respectively. This directly
implies thatk,, = 3. Iterating the previous steps over the
different stages, we gét = ko = ... = ky,, = 3. O
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