RegionScout: Exploiting Coarse Grain Sharing
in Snoop-Based Coherence

Andreas Moshovos
Electrical and Computer Engineering
Univerisity of Toronto
www.eecg.toronto.edu/aenao

Abstract

It has been shown that many requests miss in all remote nodes in
shared memory multiprocessors. We are motivated by the
observation that this behavior extends to much coarser grain
areas of memory. We define a region to be a continuous, aligned
memory area whose size is a power of two and observe that many
requests find that no other node caches a block in the same region
even for regions as large as 16K bytes. We propose RegionScout,
a family of simple filter mechanisms that dynamically detect most
non-shared regions. A node with a RegionScout filter can
determine in advance that a request will miss in all remote nodes.
RegionScout filters are implemented as a layered extension over
existing snoop-based coherence systems. They require no
changes to existing coherence protocols or caches and impose no
constraints on what can be cached simultaneously. Their
operation is completely transparent to software and the operating
system. RegionScout filters require little additional storage and a
single additional global signal. These characteristics are made
possible by utilizing imprecise information about the regions
cached in each node. Since they rely on dynamically collected
information RegionScout filters can adapt to changing sharing
patterns. We present two applications of RegionScout: In the first
RegionScout is used to avoid broadcasts for non-shared regions
thus reducing bandwidth. In the second RegionScout is used to
avoid snoop induced tag lookups thus reducing energy.

1 Introduction

There are workload, technology and cost trends that make
shared memory multiprocessors an increasingly popular
architecture [16,34]. Today there are applications (e.g.,
databases, file and mail servers, multimedia/entertainment
and communications) with sufficient parallelism that shared
memory multiprocessors can exploit. In addition, the
increasing levels of chip integration make single chip/module
multiprocessors viable and an attractive alternative for
utilizing additional on-chip resources [4,14,32]. Also, the
increased cost and complexity of building modern processors
make using multiple identical cores a cost-effective option for
high integration devices. Finally, there is a proliferation of
devices that look increasingly like small-scale shared memory
multiprocessors (e.g., cell phones and game consoles).
Accordingly the focus of this work is on small-scale shared
multiprocessors.

With the increased popularity of shared memory
multiprocessors comes renewed interest in techniques for

improving their efficiency and performance, particularly in
techniques related to coherence and for both small and large
scale systems. This is exemplified by the recent advances in
coherence speculation (e.g., [17,19,22,23,24,28,29]) and in
power-aware coherence [12,27,30]. The same cost and
technology trends that favor using multiple identical cores
also favor techniques that are as little intrusive as possible at
the hardware and software levels. At the same time, the
abundance of on-chip resources creates opportunities for
novel coherence implementations [4].

We propose RegionScout a technique that exploits coarse
grain sharing patterns in snoop-based shared memory
multiprocessors with potential applications in reducing
bandwidth, latency and energy. We observe that many shared
memory requests not only do not find a matching block in any
remote node but also they do not find a block in the same
region (where a region is a continuous, aligned memory area
whose size is a power of two).

RegionScout comprises a family of filters that dynamically
observe coarse grain sharing and allow nodes to detect in
advance that a request will miss in all remote nodes. Such
information is not available in conventional snoop- or
directory-based coherence. With RegionScout when a node
sends a request in addition to block-level sharing information
it receives region-level sharing information. If a region is
identified as not shared subsequent requests for any block
within the region from the same node are identified as non-
shared without having to probe any other node. Normal
coherence activity allows the detection of regions that become
shared preserving correctness. RegionScout filters utilize
imprecise information about the regions that are cached in
each node in the form of a hashed bit vector [5]. For this
reason, they detect many but not all requests that would miss
in all other nodes. This loss in coverage allows RegionScout
to be completely transparent to software and avoids imposing
artificial constraints on what can be cached simultaneously.
RegionScout filters require no changes to the underlying
coherence mechanisms: when possible they simply return a
“not shared” response without having to consult the existing
coherence protocol. Their implementation is flexible allowing
a trade-off between filter storage cost and accuracy. To
demonstrate the utility of RegionScout filters we investigate
two applications. In the first, RegionScout filters are used to
avoid snoop-induced tag lookups thus reducing energy in the
memory hierarchy. In the second, RegionScout filters are
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used to avoid broadcasts for some requests. Techniques for
avoiding broadcasts are becoming important even for small-
scale multiprocessors. This is because technology trends
favor switch-based point-to-point interconnects as opposed to
busses. Avoiding broadcasts improves performance in several
ways: it reduces latency directly since the originating node
does not have to wait for every other node to respond, it
reduces contention on the interconnect thus reducing latency
indirectly and finally it frees bandwidth which may be used
more fruitfully.

The rest of this paper is organized as follows: In Section 2 we
detail our simulation environment and methodology. In
Section 3 we show that many requests do not find a block in
the same region in remote nodes for various shared memory
multiprocessor configurations. We comment on related work
in Section 4. We present the principle of operation for
RegionScout filters in Section 5. We also discuss their
implementation and additional benefits that come “for free”.
We explain how RegionScout fundamentally differs from
directories in Section 5.4. In Section 6, we show
experimentally that RegionScout filters are effective and can
reduce bandwidth and energy. Finally, we summarize this
work in Section 7.

2 Methodology

Our simulator is based on Simplescalar v2.0 [6] with
Manjikian’s shared memory extensions [21]. We made
extensive changes to the simulator and the shared memory
support libraries since Manjikian’s model is limited to direct-
mapped caches, uses pseudo system calls for synchronization
and does not implement all PARMACS macros necessary to
run all the SPLASH2 benchmarks. For synchronization we
modelled the load linked and store conditional MIPS
instructions which we used to implement all synchronization
primitives including MCS locks [25]. We added support for
set-associative caches, shared or private L2 caches and a bus
model. We used a modified version of GNU’s gcc v2.7.2 to
produce optimized PISA binaries for the SPLASH2
benchmarks [33] shown in Table 1. We do not include Water
as a result of a math library bug.

We use the two models of shared multiprocessor systems
shown in Figure 1. Under model LocallL2 each node has
private L1 and L2 caches and there is a shared L3 or main
memory. This is representative of conventional SMPs. Under
model SharedL2 nodes have private L1 caches and there is a
shared L2. This is representative of simple CMPs [14] and to
a lesser extend of processors like Power4 [32] that are popular
as building blocks for larger SMP systems. We include both
models since energy- and bandwidth-wise they behave
differently (with the differences being primarily a function of
block and cache sizes). We use a MESI coherence protocol.
We modelled systems with two, four, eight or 16 processors.
Unless otherwise noted, LocalL2 systems have L2 caches of
the specified size that are eight-way set-associative with 64-
byte blocks and 32Kbyte L1 caches that are four-way set-
associative with 32-byte blocks. In SharedL2 systems the L1
caches use 32-byte blocks and are four-way set-associative
and of the specified size.

Table 1. SPLASH2 applications and input parameters.

Benchmark Input Parameters
barnes 16k particles
cholesky t129.0
fft 256k complex data points
fmm 16k particles

lu (contig.)
ocean (contig.)

512x512 matrix, B=16
258x258 grid w/ defaults

radiosity -batch -room
radix 2M keys
raytrace balls4.env
volrend 256x256x126 voxels

CPU CPU

1 L

Ll Ll

interconnect

L2

Q
= Eil
g
3
=lla

interconnect

main memory or L2

main memory or L3

(a) LocalL.2 (b) SharedL.2

Figure 1: Two shared memory multiprocessor models. (a)
LocalL2: local L1 and L2 caches and a shared L3. (b) SharedL2:
local L1 caches and a shared L2. The interconnect is functionally

a bus but may be implemented via other components [11].

3 Motivation

For clarity, we first define the terms region, region miss and
global region miss. A region is an aligned, continuous section
of memory whose size is a power of two. A request for a
block B in a cache C results in a region miss if C holds no
block in the same region as B including B itself. We were
motivated by the observation that often memory requests
result in region misses in all remote caches, or, in a global
region miss or GRM for short. This is a generalization of
observations made by earlier work in snoop energy reduction.
Specifically, earlier work has shown that this property holds
for cache blocks [27] or pages [12]. Intuitively, one would
expect that this property would apply to other region sizes as
well. This intuition holds true as shown in Figure 2 where we
measure the global region miss ratio for systems with
different number of nodes and cache sizes. The global region
miss ratio is the fraction of all coherent memory requests that
result in a global region miss. We consider regions of 256
bytes up to 16K bytes and systems with two, four, eight and
16 processors. In part (a) the per node L2 cache size is varied
from 512K bytes to four megabytes. In part (b) the per node
L1 cache size is varied from 32Kbytes to 128Kbytes. We do
not model SharedL2 systems with 16 processors since they do
not appear to be a reasonable design (i.e., the L1 caches do
not effectively reduce coherence traffic for such a system).

In general, the average global region miss ratio is inversely
proportional to private cache sizes, node count and region
size. (An anomaly is observed in (a) when the number of
nodes increases from four to eight. This is primarily a result
of our barrier implementation and of the memory allocation of
related structures.) Even if we consider the worst case (four
node LocallL.2 with four Mbyte L2 caches) more than one in
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Figure 2: Average global region miss ratio for various shared memory multiprocessor systems (different curves) and region sizes (X-
axis). (a) Systems with local L1 and L2 caches and shared L3. (b) Systems with local L1 caches and a shared L2. Labels are pN.S where N
is the number of nodes and S is the L2 and L1 cache size for parts (a) and (b) respectively.

three requests results in a global region miss for a region as
large as 16K bytes. For typical organizations the fraction of
global region misses is much higher. For example, for the four
node LocalL2 system with 512K L2 caches, the average
global region miss ratio varies from 74% down to 48%
depending on the region size. For the SharedL2 four node
system with 64K L1 caches the average global region miss
ratio varies from 79% down to 58%. Individual program
behavior varies greatly as we will see in Section 6.1. Global
region misses decrease as the node count increases. But, the
relative decrease gradually diminishes suggesting that
potential may exist even with more nodes.

These results suggest that if we could detect or predict a
priori that a shared memory request would result in global
region miss then we could avoid broadcasts for anywhere
between 88% and 34% of all requests depending on the
specific organization. There are potential energy, latency and
bandwidth benefits:

1. We could reduce the bandwidth requirements by avoiding
the snoops that would result in a global region misses. Such
SNoOps are unnecessary.

2. We could reduce energy by avoiding the tag lookups in all
remote caches similarly to previous work [12,27].
Furthermore, if the interconnect permits it, we could avoid
communicating will all remote nodes reducing energy even
further. For example, in systems where broadcasts are
implemented over a switch-based interconnect this may be
possible [11,22]. This may also be possible in bus-based
CMPs. or systems that use a separate bus for snoops.

3. Finally, by avoiding some snoops we could reduce the
latency of the corresponding memory requests.

Of the aforementioned potential applications we limit our
attention to bandwidth and tag lookup energy reduction.
Previous work has also shown that a significant fraction of
requests that hit in some remote caches rarely hit in all or
even many of them [12,27,30]. In Section 5.3, we validate this
observation for region sizes other than a block or a page and

explain how our techniques can exploit this behavior to avoid
many of these tag lookups.

4 Related Work

Previous work on snoop energy reduction relies on similar
phenomena as RegionScout. In Jerty proposed by Moshovos
et. al., each node avoids many snoop-induced lookups that
would otherwise miss [13]. Nodes maintain two structures
that respectively represent a subset of blocks that are not
cached (exclusive Jetty) and a superset of blocks that are
cached (inclusive Jetty). The key difference is that with
RegionScout a requesting node can determine in advance that
a request would miss in all other nodes. With Jetty every node
still snoops all requests. Advance knowledge of global region
misses allows optimizations (such as reducing bandwidth and
energy in the interconnect) that are impossible with Jetty. As
we explain in Section 5.3, a structure used by RegionScout
can be used as simplified inclusive Jetty avoiding tag-lookups
for requests that hit in some but not all remote caches.
Because RegionScout can use regions that are much larger
than a block, much smaller structures are sufficient to capture
most of the benefits as we demonstrate in Section 6.4.

The Page Sharing Table (PST), proposed by Ekman et. al.,
uses vectors that identify sharing at the page level [12]. It can
be thought of as a partial, distributed page-level directory.
Every node keeps precise information about the pages it is
caching. This information is used to form a page-level sharing
vector in response to coherence requests. Subsequent requests
are snooped only by those nodes that do have blocks within
the same page and thus energy is reduced. Additional bus
lines are required for broadcasting and collecting the sharing
vectors. The PST is tightly coupled with the TLB but its page
size can be smaller (pages of 1K and 4K were considered
since this allows the PST to work with virtual addresses). In
rare cases when it does not have enough space to track all
locally cached pages the PST has to be turned off. Recovering
from this state requires flushing the caches. While the PST
utilizes precise page-level information, RegionScout targets
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the frequent and often the common case of regions that are not
shared at all. For this reason and because it utilizes imprecise
information, RegionScout requires a single additional global
signal as opposed to a sharing vector and requires only
surgical changes to the existing infrastructure. RegionScout
never has to be turned off for correct operation and
disassociates the choice of region size from the rest of the
design provided that physical addresses are used.

Saldanha and Lipasti proposed serial snooping to reduce
energy in shared multiprocessors [30]. Ekman et. al,
evaluated Jetty and serial snooping for chip multiprocessors
demonstrating little or no benefit [13]. Li et. al., proposed the
thrifty barrier to reduce processor energy. It uses wait time
prediction to selectively place a processor into a lower power
state while it waits on a barrier [20].

Recently, several coherence predictors have been proposed
[17,19,22,23,24,28,29]. While some predictors may be able to
capture the same behavior (e.g., by predicting the destination
set or by using an “all or nothing” policy [23]) RegionScout
obviates the need to predict the destination set for many
requests thus freeing bandwidth for more aggressive
optimizations and reducing the working set of accesses that a
predictor will have to track. While the potential for synergy
exists, an investigation of combinining RegionScout with
coherence predictors is beyond the scope of this paper.

A preliminary evaluation of RegionScout appears in [26].
Cantin, Lipast and Smith have also proposed exploiting
coarse sharing for snoop coherence bandwidth reduction [8].

S RegionScout Filters

RegionScout filters allow each node to locally determine that
a request will result in a global region miss and thus avoid the
corresponding remote snoops and transactions. Informally,
whenever a node issues a memory request it also asks all other
nodes whether they hold any block in the same region. If they
do not, it records the region as not shared. Next time the node
requests a block in the same region it knows that it does not
need to probe any other node. Correctness is maintained since
whenever another node requests a block in the same region, it
will broadcast its request invalidating the “not shared” region
records held by other nodes. What allows RegionScout to be
effective yet inexpensive is that it works for most and not all
requests that would result in a global region miss.

Formally, the RegionScout filters comprise two structures
local to each node: (a) a “not shared” region table, or NSRT,
and (b) a cached region hash, or CRH. The NSRT records
non-shared regions. The CRH is a Bloom filter (similar to the
inclusive Jetty [27]) that records a superset of all regions that
are locally cached. Example organizations of CRH and NSRT
are given in Section 5.2.

Here is how RegionScout works: Initially, all caches, CRHs
and NSRTs are empty. Whenever a node N issues a memory
request, the other nodes respond normally via the existing
coherence protocol but in addition, using their CRH, they
report (see Section 5.2.3 for a discussion) whether they cache
any other block in the block’s region. If the region is not
shared node N then record it in its NSRT. Next time node N
requests a block it first checks its NSRT. If a valid record is

found then it knows that no other node holds this block and
can avoid broadcasting this request. To ensure correctness it
is imperative to invalidate NSRT entries whenever any other
node requests a block in the corresponding region. This is
easily done as part of the existing protocol actions.
Specifically, if another node N’ requests a block in the same
region, it too will check its own NSRT and since it will not
find a valid record it will broadcast its request to all other
nodes. The NSRT of node N will then invalidate the
corresponding entry and subsequent requests will be
broadcast as they should.

Key to RegionScout’s success is the ability at each node and
given a block to determine whether there is any other block in
the same region that is locally cached. One possibility would
be to use a table to keep a precise record of all regions that are
locally cached similarly to what is done for pages in PST [12].
The size of the table would artificially limit what can be
cached and special actions would required to avoid exceeding
these limits. RegionScout avoids these issues by using the
CRH, an imprecise record of all locally cached regions.

Without the loss of generality we limit our attention to the
LocalL2 model. CRH works as follows: Whenever a block is
allocated in or evicted from the L2, we use the region part of
its address and hash into the CRH. Because there are much
fewer CRH entries than regions many regions may map onto
the same CRH entry. Each CRH entry counts the number of
locally cached blocks in the regions that hash to it.
Accordingly, when a block is allocated in the L2 we
increment the corresponding CRH entry and when a block is
evicted we decrement it. These updates are local at each node.
Given a remote request for a block, the CRH can be used to
indicate whether it would result in a region miss. If the
corresponding CRH counter is zero then we know for sure
that no block within the region is cached locally . Otherwise,
blocks in the same region may be cached. It is the uncertainty
of the latter response that allows us to use a small structure
effectively. Figure 3 shows an example of RegionScout at
work.

5.1 RegionScout as a Layered Extension

RegionScout can be implemented as a layered extension over
existing coherence protocols and multiprocessor systems. No
changes are required in the underlying coherence protocol,
cache hierarchy and software (with the exception of reporting
clean replacements to the CRH). RegionScout can operate in
parallel with existing structures, inhibiting snoops and
broadcasts by intervening when necessary. To existing
mechanisms it appears as if the coherence protocol reported a
miss. RegionScout is also completely transparent to software
and the operating system. It does not impose any artificial
limits on the choice of region size or on what can be locally
cached. Finally, since it wuses dynamically collected
information it can adapt to changing sharing behavior
identifying regions that are only temporarily not shared. Since
every request has to probe the NSRT prior to being issued on
the interconnect the latency of handling such requests will
increase. The NSRT is comparatively small (we consider
NSRTs of up to 64 entries) and as such its latency will be
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main memory or L3

(a) First request in a region.

N
main memory or L3

(b) Subsequent request in the same region.

— N | M TN
CPU N

|

main memory or L3

(c) Another node requests a block in the region.

Figure 3: An example illustrating how RegionScout works.
Without the loss of generality we use the LocallL2 model and show
only two nodes. (a.1) Node N requests block B in region RB. The
request is broadcast to all nodes (N first checked its NSRT and
since it was empty it found no matching entry for region RB). (a.2)
All remote notes probe their CRH and report that they do not
cache any block in region B. (a.3) Node N records RB as not
shared and increments the corresponding CRH entry. (b.1) Node
N is about to request block B’ in region RB and first checks that its
NSRT. (b.2) Since an entry is found the request is send only to
main memory. (c.1) Node N’ requests block B” in region RB. It
first checks its NSRT. (c.2) Since the region is not recorded in its
NSRT, it broadcasts its request. Node N invalidates its NSRT entry
since now RB is shared.

comparatively small. As we explain in Section 5.3 the CRH
can also be used as a simplified inclusive Jetty filter filtering
many snoop-induced tag lookups that would otherwise miss.

5.2 Structures

5.2.1 NSRT and CRH. Figure 4 illustrates the NSRT and CRH
organization and how physical addresses are used to index
them (we assume a 42 bit physical address space and 16K
regions). NSRT is a simple table with entries comprising a
valid bit (V) and a region tag (the upper part of the address).
The NSRT can be set-associative. Prior to issuing a coherent
request each node checks whether a matching record exists in
its NSRT. If so, it knows that this block is not shared. NSRT
entries are evicted either as a result of limited space or when a
remote node requests a block in a matching region.

address

region
s 17 0
NSRT

region Vv

T A
CRH

| count p |
I |
I |
L - - — = __ -

Figure 4: NSRT and CRH organization for 16Kbyte regions.

CRH is a table whose entries comprise a counter (count) field
and a present bit (p). Essentially it is a inclusive Jetty with
just one array [27] or a Bloom filter implementation [5,18].
The count field counts the number of matching blocks in the
regions that map onto it. In the worst case, all blocks in the
cache would belong to the same region. Hence, the count field
needs Ig(Cache Size/Block Size) bits. The p-bit indicates
whether count is non-zero. We use the p-bits to reduce energy
and delay when probing the CRH [27]. Updating the CRH is
done when blocks are allocated or evicted from the L2 or the
L1 for models LocalL2 and SharedL2 respectively. Only
when a count entry changes value from or to zero the p-bits
are updated.

Small CRHs and NSRTs are sufficient for our purposes. For
example, a 256 entry CRH needs 256 bits for the p-bit array
and less than 4Kbits for the counter array assuming an
1Mbyte cache with 64 byte blocks. A 64 entry NSRT requires
1Kbits.

In principle the choice of the CRH indexing function can
impact how well it manages to differentiate amongst cached
and uncached regions. In this work, we simply use the low
order bits of an address.

5.2.2 Simplified CRH Counter Array. In the inclusive Jetty
design the count fields are updated arithmetically. We
propose a simpler design that replaces the adder with a
reversible linear feedback shift register or LFSR [2].
Appropriately designed n-bit LFSRs generate sequences of
2"-1 states. LFSRs are used as pseudo-random number
generators in many applications including testing and
communications. LFSRs are much simpler, faster and energy
efficient than arithmetic counters. For example, for a 4Mbyte
L2 cache (worst case scenario we considered) we need 216
states or 17 bit LFSRs. Each of these requires just eight XOR
gates or few tens of transistors. The key advantage of the
LFSR-based design is that LFSRs can be embedded in the
SRAM array thus drastically reducing power. Due to space
limitations we do not describe the complete design here.

5.2.3 Communicating Region Sharing Information and

Inhibiting Snoops. In a bus inteconnect, an additional, wired-
OR bus signal, RegionHit, can be used to identify global
region misses. This represents a small overhead compared to
typical bus implementations that use several tens of signals
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(e.g., approximately 90 in MIPS R10000 [1]). Prior to issuing
a request RegionHit is de-asserted. In response, a node whose
CRH reports a region “hit” asserts RegionHit. On global
region misses no node will assert RegionHit. To inhibit
snoops in a true bus implementation RegionHit can be
overloaded as follows: Prior to issuing a request that would
otherwise result in a global region miss (as reported by the
NSRT) a node asserts RegionHit. Other nodes can sample
RegionHit prior to snooping and thus avoid snooping
altogether. For other requests RegionHit is de-asserted as
before so that other nodes can snoop and report region hits.
The information necessary for detecting global region misses
and inhibiting snoops is a single bit. For this reason we expect
that it will represent a small overhead for other interconnect
architectures also. Moreover, it may be possible to embed this
information in the existing protocol (i.e., in the control
information) with no physical overhead.

5.3 Avoiding Tag Lookups for Non-Global Region
Misses

As described RegionScout can avoid broadcasts for those
requests that would result in a global region miss. Additional
benefits are possible “for free” for requests that would result
in region misses in some but not all remote nodes. The CRH
can be used as a simplified inclusive Jetty as follows:
Whenever node N makes a request, all other nodes probe their
CRHs to determine whether they will report a region miss. If
a node N’ determines that it has no matching block in the
same region then it does not need to probe its local L2 or L1
tag array (for LocalL2 and SharedL2 respectively). By
avoiding these lookups we can further reduce tag energy and
tag bandwidth requirements. This comes at the expense of
increased latency while probing the local tag arrays in
response to a remote request. Since, only the small p-bit array
is probed, the latency penalty will be small.

How much potential is there for this optimization? In the
interest of space we limit our attention to the 16K byte region
and to four node LocalL2 and SharedL1 systems with 512K
L2 and 64K L1 caches respectively. Table 2 reports the
remote region hit count distribution. The fist column
corresponds to global regions misses. The fraction of requests
that incur a region miss in some remote caches (columns “1”
and “2”) is significant for all programs. In barnes, radiosity,
radix, raytrace, volrend and to a lesser extend fmm many
requests result in a region hit in all other nodes (column “3”).
This may seem to contradict previous findings that most
requests miss in remote caches but we emphasize that here we
look at much larger regions.

5.4 RegionScout and Directories

RegionScout provides region-level sharing information that is
not available in a conventional directory. It is possible to
track such coarse grain information in a directory and our
results of Section 3 may serve as good motivation for doing
so. But there are bandwidth and complexity trade-offs since
nodes would have to communicate block evictions in addition
to regular coherence traffic. For this reason, even in this case
opting for RegionScout may be preferable offering some of
the benefits of a full-blown region-level directory at a

Table 2. Remote region hit count distribution for four node
LocallL.2 and SharedL.2 systems with 512K 1.2 and 64K L1
caches respectively. The region is 16Kbytes. Column “0”
corresponds to global region misses.

Four Nodes, 16Kbyte Regions
LocalL2 Region Hit Count (%)
0 1 2 3
barnes 9.38 13.89 12.84 63.89
cholesky 87.87 6.22 4.88 1.03
fft 95.22 4.47 0.19 0.12
fmm 35.20 28.22 19.69 16.9
lu 48.78 44.95 3.73 2.55
ocean 85.52 11.77 1.66 1.05
radiosity 37.75 35.56 4.15 22.54
radix 33.32 15.15 25.99 25.54
raytrace 16.01 10.86 28.23 44.90
volrend 30.94 5.07 37.87 26.13
average 47.99 17.61 13.92 20.46
SharedL2 Region Hit Count (%)
0 1 2 3
barnes 15.12 14.03 10.61 60.24
cholesky 89.36 7.88 2.27 0.49
fft 99.14 0.74 0.02 0.09
fmm 47.00 21.32 5.61 26.06
lu 58.45 39.28 1.50 0.77
ocean 94.75 3.73 1.26 0.26
radiosity 31.10 19.07 1.97 47.86
radix 51.55 28.13 15.24 5.09
raytrace 61.16 23.24 9.80 5.80
volrend 33.31 9.72 26.96 30.01
average 58.09 16.71 7.52 17.66

minimal cost. In particular, RegionScout can be used to
inhibit broadcasts for non-shared regions. It is also
straightforward to extend RegionScout by including per node
sharing information similarly to what was done in the PST
[12]. In this case, RegionScout can act as an imprecise,
distributed region-level directory. The results of Section 5.4
serve as motivation for doing so. However, this investigation
is beyond the scope of this paper.

6 Evaluation

In the interest of space and unless otherwise noted we limit
our attention to the LocalL2 and SharedL2 models with 512K
L2 and 64K L1 caches respectively. In Section 6.1 we show
the global region miss behavior of individual programs as a
function of region size. In Section 6.2 we demonstrate that
practical RegionScout filters can capture many global region
misses. We chose a large enough NSRT and focus on region
and CRH size. We identify the trade offs among region size,
detected global region misses and RegionScout filter storage
requirements. In Section 6.3 we demonstrate that
RegionScout can be used to avoid broadcasts in snoop
coherence. In Section 6.4 we show that it can be used to avoid
many snoop induced tag lookups thus reducing tag energy and
also compare it to Jetty. The two applications also serve to
demonstrate that we can tailor the RegionScout filters to meet
different trade-offs. The specific choice depends on what is
the primary consideration: energy or performance. In Section
6.5 we demonstrate that the potential exists for RegionScout
to be useful under commercial workloads.
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6.1 Per Program Global Region Miss Behavior

Since average behavior can be misleading we also look at
individual program behavior. Figure 5 reports the global
region miss ratio per program for regions of 256 through 16K
bytes. Parts (a) and (b) are for models LocalL.2 and SharedL.2
respectively. In the interest of space we restrict our attention
to four node systems. In addition to the intrinsic sharing
characteristics of each program the observed global miss
ratios are mostly inversely proportional to the region and
cache sizes. Programs can be classified in three categories
based on how sensitive they are to the choice of region size.
Cholesky, fft and ocean exhibit high global region miss ratios
and are mostly insensitive to region (and cache) size. In
barnes, fmm, raytrace and volrend the global region miss ratio
decreases almost linearly as the region size increases. Finally,
radix, radiosity and to a lesser extend, lu, exhibit abrupt
changes in their global miss ratio when the region size
increases above 2K, 8K and 4K respectively. For the smallest
region size of 256 bytes the global miss ratio is above 37% for
all programs under both models. With the largest region of
16K bytes the miss ratio remains above 30% for all programs
except barnes and raytrace under the LocalL2 model (and
under the SharedL2 for barnes). This result is important as it
suggests that sufficient global misses occur even when we
look at very coarse grain sharing. Using large regions is
attractive as smaller structures could be used to track them.

6.2 Can Practical RegionScout Filters Detect
Many Global Region Misses?

We have seen that sufficient global region misses occur in the
programs we studied. The question we answer affirmatively
in this section is whether practical RegionScout filters can
capture most of them. For this purpose we use an NSRT with
64 entries (16 sets, 4-way set associative) and measure the
filter rate for different CRHs. We define the filter rate as the
fraction of all requests that are detected as global region
misses by the RegionScout filter. A global region miss is
detected when the originating node finds a matching entry in
its NSRT prior to issuing the request. We found that an NSRT
of 64 entries approximates one with infinite entries. We
consider CRHs of 256 through 2K entries and regions of 2K
through 16K bytes. The resulting average filter rates are
shown in Figure 6. Each of the curves corresponds to a
different region size and to a system with a different number
of nodes. The curves are identified as pN.C.RS where N is the
number of nodes, C is the cache size (L2 for LocalL2 and L1
for SharedL2) and S is the region size. While we have seen
that using smaller regions typically results in higher global
miss ratios here we observe a trade-off between region and
CRH size. In most cases using a larger region results in a
higher filter rate with the difference being greater for the
smaller CRHs (i.e., 256 or 512 entries). The CRH is an
imprecise representation of cached regions. Using larger
regions results in fewer regions and improves the CRH’s
ability to separate among them. Only when the size ratio
“CRH over cache” becomes large enough we see a benefit in
using smaller region sizes. This can be seen under the

SharedL2 model when the local caches are only 64K and for
the 2K entry CRH

Figure 7 shows the per program filter rates for various CRH
sizes. We restrict our attention to the 16K byte regions and to
four node systems with 512K L2 and 64K L1 caches. Under
the SharedL2 model (part (b)) it is conflict misses that
dominate traffic and this results in much higher temporal and
spatial locality in the request stream. For this reason and
given that there are fewer regions per node even the 256 entry
CRH can capture most global region misses. While the filter
rates increase with CRH size these improvements are modest.
Under the LocalL2 model in part (a), the filter rate is more
sensitive to CRH size. This is because a much larger portion
of data and thus more regions remain resident in the caches.
Under LocallL2, larger CRHs result in significantly higher
filter rates for some programs (e.g., ocean, cholesky and
fmm). Lu, barnes and raytrace are mostly insensitive to CRH
size. An anomaly is observed for radiosity where the filter
rate decreases when the CRH entries are increased from 256
to 512. In this case we have thrashing in the NSRT: more
regions are identified as non-shared but their base addresses
are such that they trash few sets in the NSRT. This thrashing
persists for the 2K CRH but the resulting filter rate is higher
since additional non-shared regions are identified which map
to different sets in the NSRT.

In summary, we have found that practical RegionScout filters
can detect most global region misses. While there are more
global region misses for smaller regions, detecting them
requires larger RegionScout filters. For the configurations we
studied using a large region (e.g., 16K) is typically better. For
a given region size, filter rates improve with CRH size.

6.3 Bandwidth Reduction

We demonstrate that RegionScout can reduce the broadcasts
in snoopy coherence systems and hence reduce bandwidth
demand. We use a first-order approximation model to identify
trends in the reduction in average processing time for snoops
in a bus-based system. In lack of an accurate timing model we
do not demonstrate any other tangible benefits.

Emerging technology trade-offs favor point-to-point links
over buses for high performance interconnects [11,22].
Accordingly, we modelled two systems. The first is based on
Sun’s Starfire architecture [9]. It uses a bus for control
information (all requests appear on this bus) and a switch-
based interconnect for data (Starfire, targeted at a much larger
number of processors uses four buses for snoops). The second
model is for a hypothetical system where nodes are connected
via a switch for both data and control. For this application we
can afford to use the larger RegionScout filters as
performance is our primary goal. Accordingly, in all
experiments the NSRT has 64 entries and is four-way set-
associative and the CRH has 2K entries.

Bus-Based Model: Figure 8(a) reports the relative average
traffic ratio (TrafficWithRegionScout)/(TrafficWithoutRegionScout)
on the control bus for the Starfire-like model, for regions of
2K up to 16K and for LocalL2 and SharedL2 systems with
different number of nodes. The systems are identified as pN.C
where N is the number of nodes and C is the cache size (512K
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L2 and 64K L1 for LocalL2 and SharedL.2 respectively). The
reduction is proportional to the filter rate taking into account
the additional traffic due to writebacks. With eight processors
RegionScout reduces traffic to 73% and 65% of the base
system for the LocalL.2 and SharedL.2 models respectively.

We model the control bus as an M/M/1 queue. We restrict our
attention to the 16K region and to four way systems. We
estimate response times for snoop processing latencies of two,
four, eight and 12 processor cycles (labels c2, c4, ¢8 and c12
respectively). These latencies are optimistic given existing
systems and the relative scaling properties of bus vs.
processor cycle times. Using optimistic latencies is acceptable
in this experiment since the slower the bus the higher the
impact of reducing bandwidth demand. To estimate the arrival
rate we used an average IPC value of 1.4 as per published
measurements for scientific applications on commercial
systems [10]. Larger IPC values would have lead to higher
benefits from RegionScout. Figures 8(b) and 8(c) report
results for the LocalL2 and SharedL2 systems respectively.
Shown is the ratio of the average snoop response time with
RegionScout over that without RegionScout. In general, the
slower the bus the higher the benefits with RegionScout. With
the exception of ocean and to a lesser extend cholesky and
raytrace, there is little change in response time for the
LocalL2 system. This suggests that the shared control bus is
under-utilized and hence reducing bandwidth by itself would
not lead to performance improvements. A much higher
reduction in average response time is observed for the
SharedL2 system. With a 12 processor cycle snoop processing
latency a reduction of 15% or more is observed for cholesky,
fft, lu, ocean, radix and raytrace. While we do not report these
results, the reduction in response time in higher for the eight
way SharedL2 system. This result suggests that snoop-based
coherence coupled with RegionScout can be a viable low cost
and high performance alterative for on-chip CMPs.

Point-to-Point Interconnect Model: Under the assumptions
for the point-to-point interconnect a broadcast requires N-/
messages in an N node system (more would have been
required for other interconnects such as a torus). Each link is
capable of transferring 64-bits of data per message plus
address and control information. Transferring a 32 byte block
requires five messages at a minimum (one is for the request
and the other four are for the data). With RegionScout it is not
necessary to probe all other nodes for some requests. We
count the number of messages sent during execution with and
without RegionScout and report the ratio:

MessageCountWithRegionScout
MessageCountWithoutRegionScout

Figure 9(a) reports the message ratio for the point-to-point
interconnect model for the same RegionScout filters as in
Figure 8. We observe a reduction in messages in the range of
6% and up to 34%. The reduction is higher for the SharedL.2
system (grey marks) for two reasons: Coherence messages are
a higher percentage of all messages due to the smaller cache
block size and the filter rates are higher as compared to the
LocalL2 systems. In some cases, using larger regions results

in higher benefits since it allows the CRH to better separate
among the fewer regions. For the configurations we studied
using smaller regions does not result in significantly higher
benefits even though we have seen that there are more global
misses with smaller regions. This suggests that the CRH
configurations we studied are incapable of separating among
many small regions and better suited for larger regions.

For completeness we report per program message ratios for
the four node SharedL2 system in Figure 9(b). Individual
program behavior varies as the resulting behavior is a
function of the filter rate and the fraction of messages used
for coherence. Programs with a higher fraction of coherence
messages are more sensitive to changes in the filter rate. We
do not attempt an analytical model of response time since this
interconnect does not behave as a simple queue.

6.4 Tag Energy Reduction

Previous work has shown that snoop induced tag lookups
represent a significant fraction of cache energy [12,13,27].
We restrict our attention to 16Kbyte regions and the LocalL.2
and SharedL2 systems with 512K L2 and 64K L1 caches.
Since the RegionScout filters consume energy they represent
an overhead which should be amortized by the benefits.
Accordingly, we select small RegionScout filters. The NSRT
has 16 entries and is direct mapped and the CRH has 256
entries. Using larger RegionScout filters resulted in lower
energy benefits and in some cases in an increase in energy.

6.4.1 Comparing to Jetty. We first compare to the previously
proposed JETTY filters [27]. Specifically, we simulated
hybrid Jetty filters comprising an exclusive Jetty of 16 entries
with 32 bit vectors and one out of four inclusive Jetty filters.
The first three inclusive Jetty filters use three tables of 1K,
512 or 256 entries and we will use the acronyms 10x3, 9x3
and 8x3 to refer to them respectively. The fourth inclusive
Jetty filter uses four tables of 128 entries each (acronym 7x4).
We chose these four configurations after experimenting with
several others. The specific sizes are in par with what was
reported in the original Jetty study [27] except in that we use
fewer sub-arrays and hence incur less energy overhead. We
do so since in our simulation environment only the lower 32-
bits of addresses are non-zero. For clarity we use a “pN.filter”
naming scheme where N is the number of nodes and filter is
the snoop filter which can be a Jetty (10x3, 9x3, 8x3 or 7x4)
or the aforementioned RegionScout configuration (RS).
Figure 10(a) reports the average filter rate for SharedL2
configurations with two, four and eight nodes. The filter rate
here is measured as a fraction of all snoop-induced tag
lookups and is different from the filter rate reported in earlier
sections (previously we were concerned with coherence
requests where here we are interested in the tag lookups these
induce in remote nodes). The grey bars correspond to Jetty
filters while the white bars to RegionScout. It can be seen that
the filter rate with RegionScout is comparable to the 8x3
Jetty. The latter utilizes at least three times as much
resources. Figure 10(b) compares the various filters for the
LocalL2 systems. Here RegionScout performs even better
offering filtering rates that are higher than those possible even
with the 9x3 Jetty which uses at least six times as much
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resources than RegionScout. Due to the lack of space we do
not report per program results noting that the trends are
similar for all programs.

6.4.2 Energy Reduction. We measure the energy consumed
during tag lookups in the L2 and L1 caches (all accesses, local
or snoop induced) and report the energy ratio:

TagEnergyWithRegionScout + RegionScoutEnergy
TagEnergyWithoutRegionScout

EnergyRatio =

To measure energy we use the WATTCH models [7]. The L1
and L2 caches were auto-partitioned using CACTI and
modelled as SRAM arrays. We modelled the NSRT and the
CRH as SRAM arrays also. The NSRT comprises a small
SRAM while the CRH comprises two SRAMs, one for the
present bits and one for the LFSR counters. We take into
account the energy overhead of all RegionScout probes and
updates. In the interest of space we not report energy results
for Jetty. In most cases, the Jetty filters did not reduce energy
for the SharedL?2 systems (this corroborates earlier findings
[13]). For the LocalL2 systems, Jetty filters did reduce energy
but the reduction was smaller or comparable to that possible
with RegionScout. Jetty utilizes much larger structures hence
it incurs a much larger overhead than RegionScout.

Figure 11 reports the tag energy ratio per program and for
systems with different number of nodes. The RegionScout
filters energy overhead is included in the ratio and also
reported separately. The resulting energy savings are
primarily a function of (1) the fraction of tag accesses that are
snoop-induced versus those that are generated locally, (2) the
global region miss filter rate and (3) the filter rate of each
CRH for those requests that are not identified as global region
misses. In some cases the energy savings are higher than the
filter rate for global region misses. This suggests that the
CRHs filter some snoops that are not identified as global
region misses by RegionScout. Most of these tag lookups are
for requests that result in region misses in some but not all
nodes (as per the discussion of section 5.3) and the others are
for global region misses that are not identified by the
requestor’s NSRT. The Locall2 systems benefit more from
RegionScout since there snoop-induced tag lookups represent
a higher fraction of overall tag accesses. This result
corroborates  previous findings [12,13]. RegionScout
overhead is typically low.
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Compared to Jetty, RegionScout offers competitive energy
reduction at a fraction of the cost. Moreover, RegionScout
could also save energy on the interconnect. The reduction of
messages reported in Section 6.3 serves as a first order
approximation of the energy savings if we assume that energy
consumption is proportional to the number of messages sent.
We can also save energy in a bus-based CMP implementation
by disabling the bus transceivers of remote nodes (an
optimization not possible with Jetty). The overhead of an
additional control signal would be negligible given typical
bus signal counts.

6.5 Commercial Workloads

We finally, consider a few non-numerical applications and
demonstrate that a large number of global region misses
exists. For this purpose we use traces generated by the
SimFlex full-system simulator [15]. The simulated system has
16 processors. Using these traces we simulated nodes with
512K local L2 caches to gather region miss statistics. All
accesses are included including those from the operating
system. We consider three workloads [31]: (1) SpecWEB99
comprising two web servers Apache and Zeus (2000 client
connections), (2) SpecJBB2000 (Sun HotSpot JVM 1.4.2 with

16 warehouses and 16 clients), and (3) IBM’s db2 (online
transaction processing workload with 100 warehouses and
400 clients with zero think time). The traces include the first
100 million requests after initialization. As it can be seen in
Figure 12 significant potential exists for all the workloads
even with large regions.

7 Summary

We observed that many requests in shared memory
multiprocessors not only do not hit in any remote node but
also do not find any other block in a much larger surrounding
region (global region miss). We proposed RegionScout a
family of small and effective filters that can detect most of the
requests that would result in a global region miss.
RegionScout filters utilize imprecise information about the
regions that are cached at each node in the form of hashed bit
vector. This has several advantages as it requires only
surgical additions over the existing infrastructure of
conventional shared multiprocessors. This is especially
important as the complexity of modern processors and the
variability in behavior amongst different applications favors
building systems out or pre-existing components using glue
logic. RegionScout filters are transparent to software and do
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Figure 12: (a) Global Region Miss ratios for four commercial
application workloads with the LocalL2 model and 512K L2
caches and 16 processors.

not impose any artificial limits on what can be cached and
when. We have demonstrated that RegionScout filters can be
used to reduce bandwidth by avoiding broadcasts for some
requests. Moreover, we have shown that can reduce energy by
avoiding some of the tag lookups for snoops that would miss.
RegionScout filters are fundamentally different than previous
snoop filters and directory-based coherence. We expect that
region-level information tracking and imprecise information
tracking will have applications beyond coherence.
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