
Microarchitecture of a High-Radix Router

John Kim, William J. Dally, Brian Towles1, Amit K. Gupta
Computer Systems Laboratory 1D.E. Shaw Research and Development

Stanford University, Stanford, CA 94305 New York, NY 10036
{jjk12, billd, btowles, agupta}@cva.stanford.edu

Abstract

Evolving semiconductor and circuit technology has
greatly increased the pin bandwidth available to a router
chip. In the early 90s, routers were limited to 10Gb/s of pin
bandwidth. Today 1Tb/s is feasible, and we expect 20Tb/s
of I/O bandwidth by 2010. A high-radix router that provides
many narrow ports is more effective in converting pin band-
width to reduced latency and reduced cost than the alterna-
tive of building a router with a few wide ports. However,
increasing the radix (or degree) of a router raises several
challenges as internal switches and allocators scale as the
square of the radix. This paper addresses these challenges
by proposing and evaluating alternative microarchitectures
for high radix routers. We show that the use of a hierarchical
switch organization with per-virtual-channel buffers in each
subswitch enables an area savings of 40% compared to a
fully buffered crossbar and a throughput increase of 20-60%
compared to a conventional crossbar implementation.

1 Introduction

Interconnection networks are widely used to connect
processors and memories in multiprocessors, as switching
fabrics for high-end routers and switches, and for connect-
ing I/O devices. The interconnection network of a multi-
processor computer system is a critical factor in determining
the performance of the machine. The latency and bandwidth
of the network largely establish the remote memory access
latency and bandwidth.

Advances in signaling technology have enabled new types
of interconnection networks based on high-radix routers.
The trend of increase in pin bandwidth to a router chip is
shown in Figure 1 which plots the bandwidth per router node
versus time. Over the past 20 years, there has been an or-
der of magnitude increase in the off-chip bandwidth approx-
imately every five years. This increase in bandwidth results
from both the high-speed signaling technology [15, 21] as
well as the increase in the number of signals available to a
router chip. The advances in technology make it possible to
build single chips with 1Tb/s of I/O bandwidth today [14],
and by 2010, we expect to be able to put 20Tb/s of I/O band-

0.1

1

10

100

1000

10000

1985 1990 1995 2000 2005 2010

year

ba
nd

w
id

th
 p

er
 r

ou
te

r
no

de
 (G

b/
s)

Torus Routing Chip

Intel iPSC/2

J-Machine

CM-5

Intel Paragon XP

Cray T3D

MIT Alewife

IBM Vulcan

Cray T3E

SGI Origin 2000

AlphaServer GS320

IBM SP Switch2

Quadrics QsNet

Cray X1

Velio 3003

IBM HPS

SGI Altix 3000

Figure 1. Router Scaling Relationship [2,7,9,11,13,16,20,22,

26, 28, 30, 31]. The dotted line is a curve fit to all of the data.

The solid line is a curve fit to the highest performance routers

for a given time period.

width on a chip. This additional bandwidth is most effec-
tively utilized and converted to lower cost and latency by
increasing the radix or degree of the router.

Most implementations have taken advantage of increas-
ing off-chip bandwidth by increasing the bandwidth per port
rather than increasing the number of ports on the chip. How-
ever as off-chip bandwidth continues to increase, it is more
efficient to exploit this bandwidth by increasing the number
of ports — building high-radix routers withthin channels —
than by making the ports wider — building low-radix routers
with fat channels. We show that using a high radix reduces
hop count and leads to a lower latency and a lower cost so-
lution.

High-radix router design is qualitatively different from
the design of low-radix high bandwidth routers. In this pa-
per, we examine the most commonly used organization of a
router, the input-queued crossbar, and the different microar-
chitectural issues that arise when we try to scale them to
high-radix routers such as switch and virtual channel allo-
cation. We present distributed allocator microarchitectures
that can be efficiently scaled to high radix. Using intermedi-
ate buffering, different implementations of the crossbar for a
high radix design are proposed and evaluated. We show that
using a hierarchical switch organization leads to a 20-60%

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

increase in throughput compared to a conventional crossbar
and provides an area savings of 40% compared to a fully
buffered crossbar.

The rest of the paper is organized as follows. Section
2 provides background on the need for high-radix routers.
Sections 3 to 6 incrementally develop the microarchitecture
of a high-radix router, starting with a conventional routerar-
chitecture and modifying it to overcome performance and
area issues. Section 7 discusses additional simulation results.
Section 8 discusses related work, and Section 9 presents con-
clusions.

2 The Need for High Radix Routers

Many of the earliest interconnection networks were de-
signed using topologies such as butterflies or hypercubes,
based on the simple observation that these topologies min-
imized hop count. The analysis of both Dally [8] and Agar-
wal [1] showed that under fixed packaging constraints, lower
radix networks offered lower packet latency. The fundamen-
tal result of these authors still holds — technology and pack-
aging constraints should drive topology design. What has
changed in recent years are the topologies that these con-
straints lead us toward.

To understand how technology changes affect the optimal
network radix, consider the latency (T) of a packet traveling
through a network. Under low loads, this latency is the sum
of header latency and serialization latency. The header la-
tency (Th) is the time for the beginning of a packet to traverse
the network and is equal to the number of hops a packet takes
times a per hop router delay (tr). Since packets are gener-
ally wider than the network channels, the body of the packet
must be squeezed across the channel, incurring an additional
serialization delay (Ts). Thus, total delay can be written as

T = Th + Ts = Htr + L/b (1)

whereH is the number of hops a packet travels,L is the
length of a packet, andb is the bandwidth of the channels.
For anN node network with radixk routers (k input chan-
nels andk output channels per router), the number of hops
must be at least2logkN .1 Also, if the total bandwidth of a
router isB, that bandwidth is divided among the2k input
and output channels andb = B/2k. Substituting this into
the expression for latency from Equation (1)

T = 2tr logk N + 2kL/B. (2)

Then, settingdT/dk equal to zero and isolatingk gives the
optimal radix in terms of the network parameters,

k log2 k =
Btr log N

L
. (3)

1Uniform traffic is assumed and2logkN hops are required for a non-
blocking network.

In this differentiation, we assumeB andtr are indepen-
dent of the radixk. Since we are evaluating the optimal radix
for a givenbandwidth, we can assumeB is independent of
k. Thetr parameter is a function ofk but has only a small
impact on the total latency and has no impact on the opti-
mal radix. Router delaytr can be expressed as the number
of pipeline stages (P) times the cycle time (tcy). As radix
increases,tcy remains constant andP increases logarithmi-
cally. The number of pipeline stagesP can be further broken
down into a component that is independent of the radix (X)
and a component which is dependent on the radix (Y log2 k).
Thus router delay (tr) can be rewritten as

tr = tcyP = tcy(X + Y log2 k).

If this relationship is substituted back into Equation (2) and
differentiated, the dependency on radixk coming from the
router delay disappears and does not change the optimal
radix.2 Intuitively, although a single router delay increases
with a log(k) dependence, the effect is offset in the net-
work by the fact that the number of hop count decreases as
1/ log(k) and as a result, the router delay does not effect the
optimal radix.

In Equation (2), we ignore time of flight for packets to
traverse the wires that make up the network channels. The
time of flight does not depend on the radix(k) and thus has
minimal impact on the optimal radix. Time of flight isD/v
whereD is the total physical distance traveled by a packet
andv is the propagation velocity. As radix increases, the dis-
tance between two router nodes(Dhop) increases. However,
thetotal distance traveled by a packet will be approximately
equal since a lower-radix network requires more hops.

From Equation (3), we refer to the quantityA = Btr log N
L

as theaspect ratioof the router. This aspect ratio completely
determines the router radix that minimizes network latency.
A high aspect ratio implies a “tall, skinny” router (many, nar-
row channels) minimizes latency, while a low ratio implies a
“short, fat” router (few, wide channels).

A plot of the minimum latency radix versus aspect ratio,
from Equation (3) is shown in Figure 2. The points along the
line show the aspect ratios from several years. These particu-
lar numbers are representative of large supercomputers with
single-word network accesses3, but the general trend of the
radix increasing significantly over time remains.

Figure 3(a) shows how latency varies with radix for 2003
and 2010 technologies. As radix is increased, latency first
decreases as hop count, and henceTh, is reduced. However,
beyond a certain radix serialization latency begins to domi-

2If this detailed definition oftr is used,tr is replaced withXtcy in
Equation (3).

3The 1991 data is from J-Machine [26] (B=3.84Gb/s, tr=62ns,
N=1024,L=128bits), the 1996 data is from the Cray T3E [30] (64Gb/s,
40ns, 2048, 128), the 2003 data is from SGI Altix 3000 [31] (0.4Tb/s, 25ns,
1024, 128) 2010 data is estimated(20Tb/s, 5ns, 2048, 256).

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

1996

2003

2010

1991

1

10

100

1000

10 100 1000 10000

Aspect Ratio

O
p

ti
m

a
l
R

a
d

ix
 (

k
)

Figure 2. Relationship between optimal latency radix and

router aspect ratio. The labeled points show the approximate

aspect ratio for a given year’s technology

0

50

100

150

200

250

300

0 50 100 150 200 250

radix

la
te

n
c

y
 (

n
s

e
c

)

2003 technology 2010 technology

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250
radix

c
o

s
t

(
#
 o

f
1
0
0
0
 c

h
a
n

n
e
ls

)

2003 technology 2010 technology

(a) (b)

Figure 3. (a) Latency and (b) cost of the network as the radix

is increased for two different technologies.

nate the overall latency and latency increases. As bandwidth,
and hence aspect ratio, is increased, the radix that gives min-
imum latency also increases. For 2003 technology (aspect
ratio = 554) the optimum radix is 40 while for 2010 technol-
ogy (aspect ratio = 2978) the optimum radix is 127.

Increasing the radix of the routers in the network
monotonically reduces the overall cost of a network. Net-
work cost is largely due to router pins and connectors and
hence is roughly proportional to total router bandwidth: the
number of channels times their bandwidth. For a fixed net-
work bisection bandwidth, this cost is proportional to hop
count. Since increasing radix reduces hop count, higher
radix networks have lower cost as shown in Figure 3(b).4

Power dissipated by a network also decreases with increas-
ing radix. Power is roughly proportional to the number of
router nodes in the network. As radix increases, hop count
decreases, and the number of router nodes decreases. The
power of an individual router node is largely independent of

42010 technology is shown to have higher cost than 2003 technology
because the number of nodes is much greater.

the radix as long as the total router bandwidth is held con-
stant. Router power is largely due to I/O circuits and switch
bandwidth. The arbitration logic, which becomes more com-
plex as radix increases, represents a negligible fraction of
total power [33].

3 Baseline Router Architecture

The next four sections incrementally explore the micro-
architectural space for a high-radix virtual-channel (VC)
router. We start this section with a baseline router design,
similar to that used for a low-radix router [24, 30]. We see
that this design scales poorly to high radix due to the com-
plexity of the allocators and the wiring needed to connect
them to the input and output ports. In Section 4, we over-
come these complexity issues by using distributed allocators
and by simplifying virtual channel allocation. This results in
a feasible router architecture, but poor performance due to
head-of-line blocking. In Section 5, we show how to over-
come the performance issues with this architecture by adding
buffering at the switch crosspoints. This buffering eliminates
head-of-line blocking by decoupling the input and output al-
location of the switch. However, with even a modest number
of virtual channels, the chip area required by these buffers
is prohibitive. We overcome this area problem, while retain-
ing good performance, by introducing a hierarchical switch
organization in Section 6.

Switch
Allocator

VC
Allocator

Output k

Crossbar switch

RouterRouting
computation

Output 1

VC 1

VC 2

VC v

VC 1

VC 2

VC v

Input 1

Input k

Figure 4. Baseline virtual channel router.

A block diagram of the baseline router architecture is
shown in Figure 4. Arriving data is stored in the input
buffers. These input buffers are typically separated into sev-
eral parallel virtual channels that can be used to prevent
deadlock, implement priority classes, and increase through-
put by allowing blocked packets to be passed. The input

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

RC VA SA STHead Flit

Body Flit SA ST

Tail Flit SA ST

1 2 3 4 5 6Cycle

(b)(a)

Head flit Body flit Tail flit

Packet

Figure 5. (a) Packets are broken into one or more flits (b)

Example pipeline of flits through the baseline router.

buffers and other router resources are allocated in fixed-size
units calledflits and each packet is broken into one or more
flits as shown in Figure 5(a).

The progression of a packet through this router can be
separated into per-packet and per-flit steps. The per-packet
actions are initiated as soon as theheader flit, the first flit of
a packet, arrives:

1. Route computation (RC) - based on information stored
in the header, the output port of the packet is selected.

2. Virtual-channel allocation (VA) - a packet must gain ex-
clusive access to a downstream virtual channel associ-
ated with the output port from route computation. Once
these per-packet steps are completed, per-flit schedul-
ing of the packet can begin.

3. Switch allocation (SA) - if there is a free buffer in its
output virtual channel, a flit can vie for access to the
crossbar.

4. Switch traversal (ST) - once a flit gains access to the
crossbar, it can be transferred from its input buffers to
its output and on to the downstream router.

These steps are repeated for each flit of the packet and
upon the transmission of thetail flit , the final flit of a packet,
the virtual channel is freed and is available for another
packet. A simple pipeline diagram of this process is shown
in Figure 5(b) for a three-flit packet assuming each step takes
a single cycle.

4 Extending the baseline to high radix

As radix is increased, a centralized approach to allocation
rapidly becomes infeasible — the wiring required, the die
area, and the latency all increase to prohibitive levels. Inthis
section, we introduce distributed structures for both switch
and virtual channel allocation that scale well to high radices.
In achieving this scalability, these structures compromise on
performance.

4.1 Switch Allocation

We address the scalability of the switch allocator by using
a distributed separable allocator design as shown in Figure6.
The allocation takes place in three stages: input arbitration,

local output arbitration, and global output arbitration. Dur-
ing the first stage all ready virtual channels in each input
controller request access to the crossbar switch. The win-
ning virtual channel in each input controller then forwards
its request to the appropriate local output arbiter by driving
the binary code for the requested output onto a per-input set
of horizontal request lines.

At each output arbiter, the input requests are decoded and,
during stage two, each local output arbiter selects a request
(if any) for its switch output from among a local group of
m (in Figure 6,m = 8) input requests and forwards this
request to the global output arbiter. Finally, the global output
arbiter selects a request (if any) from among thek/m local
output arbiters to be granted access to its switch output. For
very high-radix routers, the two-stage output arbiter can be
extended to a larger number of stages.

At each stage of the distributed arbiter, the arbitration de-
cision is made over a relatively small number of inputs (typ-
ically 16 or less) such that each stage can fit in a clock cycle.
For the first two stages, the arbitration is also local - select-
ing among requests that are physically co-located. For the
final stage, the distributed request signals are collected via
global wiring to allow the actual arbitration to be performed
locally. Once the winning requester for an output is known,
a grant signal is propagated back through to the requesting
input virtual channel. To ensure fairness, the arbiter at each
stage maintains a priority pointer which rotates in a round-
robin manner based on the requests.

4.2 Virtual Channel Allocation

Virtual channel allocation (VA) poses an even more dif-
ficult problem than switch allocation because the number
of resources to be allocated is multiplied by the number of
virtual channelsv. In contrast to switch allocation, where
the availability of free downstream buffers is tracked with
a credit count, with virtual channel allocation, the availabil-
ity of downstream VCs is unknown. An ideal VC allocator
would allow all input VCs to monitor the status of all out-
put VCs they are waiting on. Such an allocator would be
prohibitively expensive, withv2k2 wiring complexity.

Building off the ideas developed for switch allocation,
we introduce two scalable virtual channel allocator architec-
tures. Crosspoint virtual channel allocation (CVA) maintains
the state of the output virtual channels at each crosspoint and
performs allocation at the crosspoints. In contrast, output
virtual channel allocation (OVA) defers allocation to the out-
put of the switch. Both CVA and OVA involvespeculation
where switch allocation proceeds before virtual channel al-
location is complete to reduce latency. Simple virtual chan-
nel speculation was proposed in [27] where the switch al-
location and the VC allocation occurs in parallel to reduce
the critical path through the router (Figure 7(a)). With a

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Final
grant

Input
requests

Output k

v : 1
arbiter

VC 1

VC 2

VC v

Input 1

Input k
v : 1

arbiter

k
:1

ar
bi

te
r

Output 1

Input requests
(log2 k bits)

k
:1

ar
bi

te
r

VC requests (1 bit)

=k

=k

8
:1

ar
bi

te
r

k
/8

:1
ar

bi
te

r

Intermediate
grant

Global Output Arbiter

Local Output
Arbiter

Figure 6. Scalable switch allocator architecture. The input arbiters are localized but the output arbiters are distributed across the router

to limit wiring complexity. A detailed view of the output arbiter corresponding to output k is shown to the right.

(b) CVA scheme

(a) Conventional
Speculation

Pipeline

(c) OVA scheme

RC VA
SA

ST

1 2 3Cycle

SA ST

1 2 3Cycle 4 65

RC SA1 Wire
VA1
SA2

VA2
SA3 ST1 STn...

SA1 Wire SA2 SA3 ST1 STn...

... STnRC SA1 Wire

1 2 3Cycle

SA2 SA3 VA ST1

4 65 7

... STnSA1 Wire SA2 SA3 ST1

Figure 7. Speculative pipeline with each packet assumed to

be 2 flits. (a) speculation used on the pipeline shown in Figure

5(b) (b) high-radix routers with CVA (c) high-radix routers with

OVA. The pipeline stages underlined show the stages that are

speculative.

deeper pipeline in a high-radix router, VC allocation is re-
solved later in the pipeline. This leads to more aggressive
speculation (Figure 7(b-c)).5

With CVA, VC allocation is performed at the crosspoints
where the status of the output VCs is maintained. Input
switch arbitration is done speculatively. Each cycle, each
input controller drives a single request over a per-input set
of horizontal virtual-channel-request lines to the local/global
virtual output channel arbiter. Each such request includes
both the requested output port and output virtual channel

The virtual channel allocator at each crosspoint includes
a separate arbiter for each output virtual channel. Insteadof

5Pipeline key: SAx: different stages of switch allocation, Wire: separate
pipeline stage for the request from the input arbiters to travel to the output
arbiters, STx: switch traversal, multiple cycles will be needed to traverse
the switch

thek output arbiters used in the switch allocator (Figure 6),
CVA uses a total ofkv output virtual channel arbiters. Re-
quests (if any) to each output virtual channel arbiter are de-
coded from the virtual channel request lines and each arbiter
proceeds in the same local-global arbitration used in switch
allocation.

Using OVA reduces arbiter area at some expense in per-
formance. In this scheme, the switch allocation proceeds
through all three stages of arbitration and only when com-
plete is the status of the output virtual channel checked. If
the output VC is indeed free, it is allocated to the packet. As
shown in Figure 7(c), OVA speculates deeper in the pipeline
than CVA and reduces complexity by eliminating the per-
VC arbiters at each crosspoint. However, OVA compromises
performance by allowing only one VC per output to be re-
quested per allocation. A block diagram of the different VA
architectures is shown in Figure 8 and illustrates the control
logic needed for the two schemes. They are compared and
evaluated in the next section.

4.3 Performance

We use cycle accurate simulations to evaluate the per-
formance of the scalable switch and virtual channel alloca-
tors. We simulate a radix-64 router using virtual-channel
flow control with four virtual channels on uniform random
traffic with each flit taking 4 cycles to traverse the switch.
Other traffic patterns are discussed in Section 7. Packets
were injected using a Bernoulli process. The simulator was
warmed up under load without taking measurements until
steady-state was reached. Then a sample of injected pack-
ets were labeled during a measurement interval. The sample
size was chosen such that the measurements are accurate to
within 3% with 99% confidence. Finally, the simulation was

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Output

. . .

Input 1 req

Input k req

grant 1 grant1_switch

grant_VC

VC0
VC1

VCv

s
w

it
c
h

 a
rb

it
e
r

(S
A

)

s
w

it
c
h

 a
rb

it
e
r

grant 1 grant1_switch

grant1_VC

grant k grantk_switch

grantk_VC

V
C

 0
 a

rb
it
e
r

V
C

 1
 a

rb
it
e
r

V
C

 v
 a

rb
it
e
r

...

VC arbiter

Input k req

Input 1 req

. . .

S
A

 w
in

n
e
r

o
u

tp
u
t

V
C

 r
e
q
u

e
s
t

grant k grantk_switch

grant_VC

(a) (b)

Figure 8. Block diagram of the different VC allocation schemes

(a) CVA (b) OVA. In each cycle, CVA can handle multiple VC

requests for the same output where as in OVA, only a single

VC request for each output can be made. CVA parallelize

the switch and VC allocation while in OVA, the two allocation

steps are serialized. For simplicity, the logic is shown for only

a single output.

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

offered load

la
te

n
c

y
 (

c
y

c
le

s
)

OVA

CVA

low-radix

Figure 9. Latency vs. offered load for the baseline architecture

run until all the labeled packets reached their destinations.
We begin the evaluation using single-flit packets; later, we
also consider longer packets (10 flits).

A plot of latency versus offered load (as a fraction of the
capacity of the switch) is shown in Figure 9. The perfor-
mance of a low-radix router (radix 16), which follows the
pipeline shown in Figure 5(b), with a centralized switch and
virtual channel allocation is shown for comparison. Note
that this represents an unrealistic design point since the cen-
tralized single-cycle allocation does not scale. Even with
multiple virtual channels, head-of-line(HoL) blocking limits
the low-radix router to approximately 60% throughput [18].

Increased serialization latency gives the high-radix router
a higher zero-load latency than the low-radix router when
considering only a single stage, as in this case. The satu-
ration throughput of the high-radix router is approximately

50% or 12% lower than the low-radix router. The results re-
flect the performance of the router with realistic pipeline de-
lays, distributed switch allocation, and a speculative virtual
channel allocation. Most of this loss is attributed to the spec-
ulative VC allocation. The effect is increased when OVA is
used giving a saturation throughput of about 45%.

4.4 Prioritized Virtual Channel Allocation

With speculative VC allocation, if the initial VC alloca-
tion fails, bandwidth can be unnecessarily wasted if the re-
bidding is not done carefully. For example, consider an in-
put queue with 4 VCs and input arbitration performed in a
round-robin fashion. Assume that all of the VCs in the input
queues are occupied and the flit at the head of one of the VC
queues has failed VC allocation. If all 4 VCs continuously
bid for the output one after the other, the speculative bids
by the failed VC will waste approximately 25% of the band-
width until the output VC it is waiting on becomes available.

Bandwidth loss due to speculative VC allocation can be
reduced by giving priority in switch allocation to nonspecu-
lative requests [10,27]. This can be accomplished, for exam-
ple by replacing the single switch allocator of Figure 10(a)
with separate switch allocators for speculative and nonspec-
ulative requests as shown in Figure 10(b). With this arrange-
ment, a speculative request is granted bandwidth only if there
are no nonspeculative requests. Prioritizing nonspeculative
requests in this manner reduces bandwidth loss but at the ex-
pense of doubling switch allocation logic.

 s
w

it
c
h

 a
rb

it
e

r

. . .

Input 1 request grant1

Input k request grant k

. . .

s
p

e
c
u

la
ti
v
e

 s
w

it
c
h

 a
rb

it
e

r

n
o

n
s
p

e
c
u

la
ti
v
e

 s
w

it
c
h

 a
rb

it
e

r

. . .

grant1_spec

grant1_nonspec
Input 1 request grant1

grantk_spec

grantk_nonspec
Input k request grant k

.
.

(a) (b)

Figure 10. Block diagram of a switch arbiter using (a) one

arbiter and (b) two arbiters to prioritize the nonspeculative

requests.

In this section we evaluate the performance gained by us-
ing two allocators to prioritize nonspeculative requests.The
switch simulated in Section 4.3 used only a single switch
allocator and did not prioritize nonspeculative requests.To
ensure fairness with two switch arbiters, the priority pointer
in the speculative switch arbiter is only updated after the
speculative request is granted (i.e. when there are no non-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

speculative requests). Our evaluation uses only 10-flit pack-
ets — with single flit packets, all flits are speculative, and
hence there is no advantage to prioritizing nonspeculative
flits. We prioritize nonspeculative requests only at the out-
put switch arbiter. Prioritizing at the input arbiter reduces
performance by preventing speculative flits representing VC
requests from reaching the output virtual channel allocators.

Figure 11 shows that prioritizing nonspeculative requests
is advantageous when there is only a single virtual chan-
nel, but has little return with four virtual channels. These
simulations use CVA for VC allocation. With only a single
VC, prioritized allocation increases saturation throughput by
10% and gives lower latency as shown in Figure 11(a). With
four VCs, however, the advantage of prioritized allocation
diminishes as shown in Figure 11(b). Here the multiple VCs
are able to prevent the loss of bandwidth since with multiple
VCs, a speculative request will likely find an available out-
put VCs. Results for the OVA VC allocation follow the same
trend but are not shown for space constraints. Using multiple
VCs gives adequate throughput without the complexity of a
prioritized switch allocator.

In the following two sections, which introduce two new
architectures, we will assume the CVA scheme for VC allo-
cation using a switch allocator without prioritization.

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

offered load

la
te

n
c

y
 (

c
y
c

le
s

)

1VC - 1ARB 1VC - 2ARB

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

offered load

la
te

n
c

y
 (

c
y

c
le

s
)

4VC - 1ARB 4VC - 2ARB

(a) (b)

Figure 11. Comparison of using one arbiter and two arbiters

for (a) 1VC (b) 4VC

5 Buffered Crossbar

Adding buffering at the crosspoints of the switch (Fig-
ure 12(b)) decouples input and output virtual channel and
switch allocation. This decoupling simplifies the allocation,
reduces the need for speculation, and overcomes the perfor-
mance problems of the baseline architecture with distributed,
speculative allocators.

5.1 Switch and Virtual Channel Allocation

Input and output switch allocation are completely decou-
pled. A flit whose request wins the input arbitration is im-

 o
u

tp
u

t 1

o
u

tp
u

t 2

o
u

tp
u

t k

 o
u

tp
u

t 1

o
u

tp
u

t 2

o
u

tp
u

t k

input 1

input k

· · ·

input 2

· · ·

input 1

input k

· · ·

input 2

· · ·

(a) (b)

Figure 12. Block diagram of a (a) baseline crossbar switch

and (b) fully buffered crossbar switch.

mediately forwarded to the crosspoint buffer corresponding
to its output. At the crosspoint, local and global output arbi-
tration are performed as in the unbuffered switch. However,
because the flit is buffered at the crosspoint, it does not have
to re-arbitrate at the input if it loses arbitration at the output.

The intermediate buffers are associated with the input
VCs. In effect, the crosspoint buffers are per-output exten-
sions of the input buffers. Thus, no VC allocation has to be
performed to reach the crosspoint — the flit already holds the
input VC. Output VC allocation is performed in two stages:
av-to-1 arbiter that selects a VC at each crosspoint followed
by ak-to-1 arbiter that selects a crosspoint to communicate
with the output.

5.2 Crosspoint buffer credits

To ensure that the crosspoint buffers never overflow,
credit-based flow control is used. Each input keeps a sepa-
rate free buffer counter for each of thekv crosspoint buffers
in its row. For each flit sent to one of these buffers, the cor-
responding free count is decremented. When a count is zero,
no flit can be sent to the corresponding buffer. Likewise,
when a flit departs a crosspoint buffer, a credit is returned
to increment the input’s free buffer count. The required size
of the crosspoint buffers is determined by the credit latency
– the latency between when the buffer count is decremented
at the input and when the credit is returned in an unloaded
switch.

It is possible for multiple crosspoints on the same input
row to issue flits on the same cycle (to different outputs) and
thus produce multiple credits in a single cycle. Communicat-
ing these credits back to the input efficiently presents a chal-
lenge. Dedicated credit wires from each crosspoint to the
input would be prohibitively expensive. To avoid this cost,
all crosspoints on a single input row share a single credit re-
turn bus. To return a credit, a crosspoint must arbitrate for
access to this bus. The credit return bus arbiter is distrib-
uted, using the same local-global arbitration approach as the
output switch arbiter.

We have simulated the use of a shared credit return bus

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

and compared it with anideal (but not realizable) switch in
which credits are returned immediately. Simulations show
that there is minimal difference between the ideal scheme
and the shared bus. The impact of credit return delay is min-
imized since each flit takes four cycles to traverse the input
row. Thus even if a crosspoint loses the credit return bus ar-
bitration, it has 3 additional cycles to re-arbitrate for the bus
without affecting the throughput.

5.3 Performance and area

We simulated the buffered crossbar using the same simu-
lation setup as described in Section 4.3. In the switch evalu-
ated, each crosspoint buffer contains four flit entries per vir-
tual channel. As shown in Figure 13, the addition of the
crosspoint buffers enables a much higher saturation through-
put than the unbuffered crossbar while maintaining low la-
tency at low offered loads. This is due both to avoiding head-
of-line blocking and decoupling input and output arbitration.

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1
offered load

la
te

n
c

y
 (

c
y

c
le

s
)

baseline

low-radix

fully-buffered

Figure 13. Latency vs. offered load for the Fully Buffered Ar-

chitecture. In both the fully buffered crossbar and the baseline

architecture, the CVA scheme is used.

With sufficient crosspoint buffers, this design achieves
a saturation throughput of 100% of capacity because the
head-of-line blocking is completely removed. As we in-
crease the amount of buffering at the crosspoints, the fully
buffered architecture begins to resemble an virtual-output
queued (VOQ) switch where each input maintains a sep-
arate buffer for each output. The advantage of the fully
buffered crossbar compared to a VOQ switch is that there
is no need for a complex allocator - the simple distributed
allocation scheme discussed in Section 4 is able to achieve
100% throughput.

To evaluate the impact of the crosspoint buffer size on
performance, we vary the buffer size and evaluate the perfor-
mance for short and long packets. As shown in Figure 14(a),
for short packets four-flit buffers are sufficient to achieve
good performance. With long packets, however, larger cross-
point buffers are required to permit enough packets to be

stored in the crosspoint to avoid head-of-line blocking in the
input buffers.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
offered load

la
te

n
c
y
 (

c
y
c
le

s
)

4 flits

8 flits

64 flits

1024 flits

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1
offered load

la
te

n
c

y
 (

c
y

c
le

s
)

4 flits

8 flits

64 flits

1024 flits

(a) (b)

Figure 14. Latency vs. offered load for the fully buffered archi-

tecture for (a) short packet and (b) long packet as the cross-

point buffer size is varied

The performance benefits of a fully-buffered switch come
at the cost of a much larger router area. The crosspoint
buffering is proportional tovk2 and dominates chip area as
the radix increases. Figure 15 shows how storage and wire
area grow withk in a0.10µm technology forv=4. The stor-
age area includes crosspoint and input buffers. The wire area
includes area for the crossbar itself as well as all control sig-
nals for arbitration and credit return. As radix is increased,
the bandwidth of the crossbar (and hence its area) is held
constant. The increase in wire area with radix is due to in-
creased control complexity. For a radix greater than 50, stor-
age area exceeds wire area.

0

50

100

150

200

0 50 100 150 200 250
radix

a
re

a
 (

m
m

2
)

storage area wire area

Figure 15. Area comparison between storage area and wire

area in the fully buffered architecture.

5.4 Fully Buffered Crossbar without per-VC
buffering

One approach to reducing the area of the fully buffered
crossbar is to eliminate per-VC buffering at the crosspoints.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

With a single shared buffer among the VCs per crosspoint,
the total amount of storage area can be reduced by a factor of
v. This approach would still decouple the input and the out-
put switch arbitration, thus providing good performance over
a non-buffered crossbar. However, VC allocation is compli-
cated by the shared buffers and it presents new problems.

As discussed in Section 4.2, VC allocation is performed
speculatively in order to reduce latency — the flit is sent to
the crosspoint without knowing if the output VC can be al-
located. With per input VC crosspoint buffers, this was not
an issue. However, with a crosspoint buffer shared between
input VCs, a flit cannot be allowed to stay in the crosspoint
buffer while awaiting output VC allocation. If the specula-
tive flit is allowed to wait in the crosspoint buffer follow-
ing an unsuccessful attempt at VC allocation, this flit can
block all input VCs. This not only degrades performance
but also creates dependencies between VCs that may lead to
deadlock. Because flits cannot wait for VC allocation in the
crosspoint buffers, speculative flits that have been sent tothe
crosspoint switch must be kept in the input buffer until an
ACK is received from output VC allocation. If the flit fails
VC allocation or if there are no downstream buffers, the flit
is removed from the buffer at the crosspoint and a NACK is
sent back to the input, and the input has to resend this flit at a
later time. Note that with per-VC buffers, this blocking does
not occur and no ACKs are necessary.

5.5 Other Issues

The fully-buffered crossbar presents additional issues be-
yond the quadratic growth in storage area. This design re-
quiresk2 arbiters, one at each crosspoint, withv inputs each
to arbitrate between the VCs at each crosspoint. In addi-
tion, each input needs akv entry register file to maintain the
credit information for the crosspoint buffers and logic to in-
crement/decrement the credit information appropriately.

Besides the microarchitectural issues, the fully buffered
crossbar restricts the routing algorithm that can be imple-
mented. A routing relation may return multiple outputs as a
possible next hop. With a fully buffered architecture and the
distributed allocators, multiple outputs can not be requested
simultaneously and only one output port can be selected. The
hierarchical approach that we present in the next section pro-
vides a solution that is a compromise between a centralized
router and the fully buffered crossbar.

6 Hierarchical Crossbar Architecture

A block diagram of the hierarchical crossbar is shown in
Figure 16. The hierarchical crossbar is built by dividing the
crossbar switch into subswitches where only the inputs and
outputs of the subswitch are buffered. A crossbar switch with
k ports that has a subswitch of sizep is made up of(k/p)2

p × p crossbars, each with its own input and output buffers.

 subswitch

Figure 16. Hierarchical Crossbar (k=4) built from smaller sub-

switches (p=2).

By implementing a subswitch design the total amount of
buffer area grows asO(vk2/p), so by adjustingp the buffer
area can be significantly reduced from the fully-buffered de-
sign. This architecture also provides a natural hierarchy in
the control logic — local control logic only needs to con-
sider information within a subswitch and global control logic
coordinates the subswitches.

Similar to the fully-buffered architecture, the intermedi-
ate buffers on the subswitch boundaries are allocated on a
per-VC basis. The subswitch input buffers are allocated ac-
cording to a packet’sinput VC while the subswitch output
buffers are allocated according to a packet’soutputVC. This
decoupled allocation reduces HoL blocking when VC allo-
cation fails and also eliminates the need to NACK flits in
the intermediate buffers. By having this separation at the
subswitches with buffers, it divides the VC allocation into
a local VC allocation within the subswitch and a global VC
allocation among the subswitches.

With the hierarchical design, an important design para-
meter is the size of the subswitch,p which can range from
1 to k. With smallp, the switch resembles a fully-buffered
crossbar resulting in high performance but also high cost. As
p approaches the radixk, the switch resembles the baseline
crossbar architecture giving low cost but also lower perfor-
mance.

The throughput and area of hierarchical crossbars with
various subswitch sizes are compared to the fully buffered
crossbar and the baseline architecture in Figure 17. On uni-
form random traffic(Figure 17(a)), the hierarchical crossbar
performs as well as the fully buffered crossbar, even with a
large subswitch size. With uniform random traffic, each sub-
switch see only a fraction of the load —λ

k/p whereλ is the
total offered load. Even with just two subswitches, the max-
imum load seen by any subswitch for uniform random traffic
pattern will always be less than 50% and the subswitches
will not be saturated.

A worst-case traffic pattern for the hierarchical crossbar

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

offered load

la
te

n
c

y
 (

c
y

c
le

s
)

baseline

subswitch 32

subswitch 16

subswitch 8

subswitch 4

fully-buffered

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

offered load

la
te

n
c

y
 (

c
y

c
le

s
)

baseline
subswitch 32
subswitch 16
subswitch 8
subswitch 4
fully-buffered

(a) (b)

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1
offered load

la
te

n
c

y
 (

c
y

c
le

s
)

fully buffered crossbar

hierarchical crossbar -
subswitch 8

0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

0 50 100 150 200 250
radix

a
re

a
 (

s
to

ra
g

e
 b

it
s

)

fully buffered xbar

subswitch 4
subswitch 8

subswitch 16
subswitch 32

(c) (d)

Figure 17. Comparison of the hierarchical crossbar as the

subswitch size is varied (a) uniform random traffic (b) worst-

case traffic (c) long packets and (d) area. k=64 and v=4 is

used for the comparison.

concentrates traffic on a small number of subswitches. For
this traffic pattern, each group of(k/p) inputs that are con-
nected to the same row of subswitches send packets to a
randomly selected output within a group of(k/p) outputs
that are connected to the same column of subswitches. This
concentrates all traffic into only(k/p) of the (k/p)2 sub-
switches. Figure 17(b) shows performance on this traffic
pattern. The benefit of having smaller subswitch size is ap-
parent. On this worst-case pattern, the hierarchical crossbar
does not achieve the throughput of the fully-buffered cross-
bar (about 30% less throughput forp = 8). However hier-
archical crossbars outperforms the baseline architectureby
20% (forp = 8). Fortunately, this worst-case traffic pattern
is very unlikely in practice.

Like the fully-buffered crossbar, the throughput of the hi-
erarchical crossbar on long packets depends on the amount
of intermediate buffering available. The evaluation so faras-
sumed that each buffer in the hierarchical crossbar holds four
flits. In order to provide a fair comparison, we keep thetotal
buffer size constant and compare the performance of the hi-
erarchical crossbar with the fully buffered crossbar on long
packets. The fully buffered crossbar has 4 entries per cross-
point buffer while the hierarchical crossbar(p = 8) has 16 en-

tries per buffer.6 Figure 17(c) compares the performance of a
fully-buffered crossbar with a hierarchical crossbar (p = 8)
with equal total buffer space. Under this constraint, the hier-
archical crossbar provides better throughput on uniform ran-
dom traffic than the fully-buffered crossbar.

The cost of the two architectures, in terms of area, is com-
pared in Figure 17(d). The area is measured in terms of the
storage bits required in the architecture. As radix increases,
there is quadratic growth in the area consumed by the fully
buffered crossbar. Fork = 64 andp = 8, a hierarchical
crossbar takes 40% less area than a fully-buffered crossbar.

7 Simulation Results

In addition to uniform random traffic, we present addi-
tional simulations to compare the architectures presentedus-
ing traffic patterns summarized in Table 1. The results of
the simulations are shown in Figure 18. On diagonal traf-
fic, the hierarchical crossbar exceeds the throughput of the
baseline by 10%. Hotspot traffic limits the throughput to un-
der 40% capacity for all three architectures. At this point
the oversubscribed outputs are saturated. The hierarchical
crossbar and the fully-buffered crossbar achieve nearly 100%
throughput on bursty traffic while the baseline architecture
saturates at 50%. The hierarchical crossbar outperforms the
full-buffered crossbar on this pattern. It is better able to
handle bursts of traffic because it has two stages of buffer-
ing, at both the inputs and the outputs of each subswitch,
even though it has less total buffering than the fully-buffered
crossbar.

Name Description

diagonal traffic traffic pattern where inputi send
packets only to outputi and(i + 1)
modk

hotspot uniform traffic pattern withh = 8
outputs being oversubscribed. For
each input, 50% of the traffic is sent
to theh outputs and the other 50%
is randomly distributed.

bursty uniform traffic pattern is simulated
with a bursty injection based on a
Markov ON/OFF process and aver-
age burst length of 8 packets is used.

Table 1. Nonuniform traffic pattern evaluated.

While a single high-radix router has higher zero-load la-
tency than a low-radix router (Figure 9), this factor is more
than offset by the reduced hop-count of a high-radix net-
work giving lower zero-load latency for the network as a

6To make the total buffer storage equal, each input and outputbuffer in
the hierarchical crossbar hasp/2 times the storage of a crosspoint buffer in
the fully-buffered crossbar.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
offered load

la
te

n
c
y
 (

c
y
c
le

s
)

baseline

hierarchical crossbar
(p=8)
fully buffered crossbar

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

offered load

la
te

n
c

y
 (

c
y

c
le

s
)

baseline

fully buffered crossbar

hierarchical crossbar
(p=8)

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1
offered load

la
te

n
c

y
 (

c
y

c
le

s
)

baseline

fully buffered crossbar

hierarchical crossbar
(p=8)

(a) (b) (c)

Figure 18. Performance Comparison on Nonuniform Traffic pattern (a) diagonal traffic (b) hotspot traffic (c) bursty traffic. Parameters

used are k=64, v=4, and p=8 with 1 flit packets

whole. Latency as a function of the offered load for a net-
work of 4096 nodes with both radix-64 and radix-16 routers
is shown in Figure 19. Both routers use the hierarchical ar-
chitecture proposed in Section 6. The routers are config-
ured as a Clos [6] network with three stages for the radix-64
routers and five stages for the radix-16 routers. The simu-
lation was run using an oblivious routing algorithm (middle
stages are selected randomly) and uniform random traffic.
Because of the complexity of simulating a large network, we
use the simulation methodology outlined in [19] to reduce
the simulation time with minimal loss in the accuracy of the
simulation.

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1
offered load

la
te

n
c
y

 (
c

y
c

le
s

)

low-radix router high-radix router

Figure 19. Network simulation comparison

8 Related Work

Most existing single chip router architectures are de-
signed for small radix implementations [24, 30]. Commod-
ity routers such as Quadrics [3] implement a radix-8 router
and the highest radix available from Myrinet is radix-32 [25].
The IBM SP2 switch [32] is a radix-8.

The scaling issue of switches have been addressed in IP
routers in order to support the increasing line rate. The
IBM Prizma architecture third generation switch [12] has in-
creased the number of ports from 32 to 64. To overcome

the limitation of the scheduling or the allocation in these
IP routers, buffered crossbars [29] have been studied which
decouple the input and the output allocation and has been
shown to achieve high performance. However, the routers for
these switch fabrics are fundamentally different. IP routers
have packets that are significant longer (usually at least 40B
to 100B) compared to the packet size of a shared memory
multiprocessors (8B to 16B). Thus, IP routers are less sensi-
tive to latency in the design than the high-radix routers used
in a multi-computer system. In addition, these IP routers are
often built using multiple chips and thus, do not have the area
constraint that is present in our design.

High-radix crossbars have been previously designed us-
ing multiple lower-radix crossbars. A design implemented
with multiple chips and each chip acting as a sub-crossbar is
outlined in [10]. Other work has attempted to exploit traffic
characteristics to partition the crossbar into smaller, faster
subcrossbars [5] but does not scale to high radix. A two-
dimensional crossbar with VOQs has been decomposed to
a switch organization similar to our hierarchical router [17].
However, these references neither discuss how to scale the
allocation schemes to high-radix nor do they provide the per-
VC intermediate buffering at the subswitches.

To prevent HoL blocking, virtual output queueing (VOQ)
is often used in IP routers where each input has a separate
buffer for each output [23]. VOQ addsO(k2) buffering and
becomes costly, especially ask increases. To overcome the
area limitation and fit on a single chip, we present an alter-
nate placement of the buffers at subswitches in a hierarchical
implementation of the crossbar. Hierarchical arbitrationhas
been previously studied and the arbitration logic used in this
work resembles the earlier work from [4]. The novelty of
the hierarchical crossbar is in the placement of buffers at the
input and outputs of the subswitch and in the decoupling of
the virtual channel allocation.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

9 Conclusion and Future Work

To exploit advances in technology, high-radix routers are
needed to convert available chip bandwidth into lower la-
tency and cost. These routers use a larger number of ports
with narrower channels instead of a smaller number of ports
with wider channels. Existing microarchitectures for build-
ing routers do not scale to high radix. Naive scaling of a
baseline architecture provides a simple design but provides
less than 50% throughput. A fully-buffered crossbar with
per-VC buffering at the crosspoints provides nearly 100%
throughput but at a prohibitive cost. We propose an alter-
native architecture, the hierarchical crossbar, that maintains
high performance but at a lower, realizable cost. The hierar-
chical crossbar provides a 20-60% increase in the throughput
over the baseline architecture and results in a 40% area sav-
ings compared to the fully buffered crossbar. The hierarchi-
cal nature of the architecture provides the benefit of logically
separating the control logic in a hierarchical manner as well.

The migration to high-radix routers opens many oppor-
tunities for future work. High-radix routers reduce network
hop count, presenting challenges in the design ofoptimal
network topologies. New routing algorithms are required to
deal both with the large number of ports on each router and
with new topologies that we expect to emerge to best ex-
ploit these routers. In this work, we only consider crossbar
switch architectures. Alternative internal switch organiza-
tions (e.g., on chip networks with direct or indirect topolo-
gies) can potentially reduce implementation costs furtherand
enable scaling to very high radices.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their insightful comments. This work has been supported
in part by a grant from the Stanford Networking Research
Center, in part by an NSF Graduate Fellowship, and in part
by New Technology Endeavors, Inc. through DARPA sub-
contract CR03-C-0002 under U.S. government Prime Con-
tract Number NBCH3039003.

References

[1] A. Agarwal. Limits on Interconnection Network Performance. IEEE
Trans. Parallel Distrib. Syst., 2(4):398–412, 1991.

[2] A. Agarwal et al. The MIT Alewife Machine: Architecture and Per-
formance. InProc. of the 22nd Annual Int’l Symp. on Computer
Architecture, pages 2–13, 1995.

[3] J. Beecroft, D. Addison, F. Petrini, and M. McLaren. Quadrics QsNet
II: A Network for Supercomputing Applications. InHot Chips 15,
Stanford, CA, August 2003.

[4] H. J. Chao, C. H. Lam, and X. Guo. A Fast Arbitration Schemefor
Terabit Packet Switches. InProc. of IEEE Global Telecommunica-
tions Conf., pages 1236–1243, 1999.

[5] Y. Choi and T. M. Pinkston. Evaluation of Crossbar Architectures for
Deadlock Recovery Routers.J. Parallel Distrib. Comput., 61(1):49–
78, 2001.

[6] C. Clos. A Study of Non-Blocking Switching Networks.The Bell
System technical Journal, 32(2):406–424, March 1953.

[7] Cray X1. http://www.cray.com/products/systems/x1/.
[8] W. J. Dally. Performance Analysis of k-ary n-cube Interconnection

Networks.IEEE Transactions on Computers, 39(6):775–785, 1990.
[9] W. J. Dally and C. L. Seitz. The Torus Routing Chip.Distributed

Computing, 1(4):187–196, 1986.
[10] W. J. Dally and B. Towles.Principles and Practices of Interconnec-

tion Networks. Morgan Kaufmann, San Francisco, CA, 2004.
[11] T. Dunigan. Early Experiences and Performance of the In-

tel Paragon. Technical report, Oak Ridge National Laboratory,
ORNL/TM-12194., 1993.

[12] A. P. J. Engbersen. Prizma Switch Technology.IBM J. Res. Dev.,
47(2-3):195–209, 2003.

[13] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Architec-
ture and Design of AlphaServer GS320. InProc. of the 9th Int’l conf.
on Architectural support for programming languages and operating
systems, pages 13–24, 2000.

[14] F. Heaton, B. Dally, W. Dettloff, J. Eyles, T. Greer, J. Poulton,
T. Stone, and S. Tell. A Single-Chip Terabit Switch. InHot Chips
13, Stanford, CA, 2001.

[15] M. Horowitz, C.K. K. Yang, and S. Sidiropoulos. High-Speed Elec-
trical Signaling: Overview and Limitations.IEEE Micro, 18(1):12–
24, 1998.

[16] IBM Redbooks. An Introduction to the New IBM eServer pSeries
High Performance Switch.

[17] J. Jun, S. Byun, B. Ahn, S. Y. Nam, , and D. Sung. Two-Dimensional
Crossbar Matrix Switch Architecture. InAsia Pacific Conf. on Com-
munications, pages 411–415, September 2002.

[18] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input versusOutput
Queueing on a Space-division Packet Switch.IEEE Transactions on
Communications, COM-35(12):1347–1356, 1987.

[19] J. Kim, W. J. Dally, and A. K. Gupta. Simulation of a High-radix
Interconnection Network.CVA Technical Report, March 2005.

[20] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. InProc. of the 24th Annual Int’l Symp. on Computer
Architecture, pages 241–251, 1997.

[21] M. J. E. Lee, W. J. Dally, R. Farjad-Rad, H.T. Ng, R. Senthinathan,
J. H. Edmondson, and J. Poulton. CMOS High-Speed I/Os - Present
and Future. InInternational Conf. on Computer Design, pages 454–
461, San Jose, CA, 2003.

[22] C. E. Leiserson et al. The Network Architecture of the Connection
Machine CM-5.J. Parallel Distrib. Comput., 33(2):145–158, 1996.

[23] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand.
Achieving 100% Throughput in an Input Queue Switch. InProc.
IEEE INFOCOM’96,, pages 296–302., San Francisco, CA, 1996.

[24] S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The
Alpha 21364 network architecture. InHot Chips 9, pages 113–117,
Stanford, CA, August 2001.

[25] Myrinet. http://www.myricom.com/myrinet/overview/.
[26] M. D. Noakes, D. A. Wallach, and W. J. Dally. The J-Machine Multi-

computer: An Architectural Evaluation. InProc. of the 20th Annual
Int’l Symp. on Computer Architecture, pages 224–235, 1993.

[27] L. S. Peh and W. J. Dally. A Delay Model for Router Micro-
architectures.IEEE Micro, 21(1):26–34, 2001.

[28] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The
Quadrics Network: High-Performance Clustering Technology. IEEE
Micro, 22(1):46–57, 2002.

[29] R. Rojas-Cessa, E. Oki, and H. Chao. CIXOB-k: Combined Input-
Crosspoint-Output Buffered Packet Switch. InProc. of IEEE Global
Telecom. Conf., pages 2654–2660, San Antonio, TX, 2001.

[30] S. Scott and G. Thorson. The Cray T3E Network: Adaptive Routing
in a High Performance 3D Torus. InHot Chips 4, Stanford, CA, Aug.
1996.

[31] SGI Altix 3000. http://www.sgi.com/products/servers/altix/.
[32] C. B. Stunkel et al. The SP2 High-performance Switch.IBM Syst. J.,

34(2):185–204, 1995.
[33] H. Wang, L. S. Peh, and S. Malik. Power-driven Design of Router

Microarchitectures in On-chip Networks. InProc. of the 36th Annual
IEEE/ACM Int’l Symposium on Microarchitecture, pages 105–116,
2003.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

