IMPROVING PROGRAM EFFICIENCY BY
PACKING INSTRUCTIONS INTO REGISTERS

STEPHEN HINES, JOSHUA GREEN, GARY TYSON, DAVID WHALLEY

COMPUTER SCIENCE DEPT.
FLORIDA STATE UNIVERSITY

JUNE 7, 2005

‘ € INTRODUCTION I

e Embedded Processor Design Constraints
— Power Consumption
— Static Code Size
— Execution Time
e Fetch logic consumes 36% of total processor power on StrongARM
— Instruction Cache (IC) and/or ROM — Lower power than a large
memory store, but still a fairly large, flat storage method
e Instruction encodings can be wasteful with bits
— Nowhere near theoretical compression limits
— Maximize functionality, but simplify decoding (fixed length)
— Most applications only apply a subset of available instructions

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 1

‘ € ACCESS OF DATA & INSTRUCTIONS |

Main Memory

L2 Cache
L1 Data Cache L1 Instruction Cache

Data Register File

e Each lower layer is designed to improve accessibility of current/frequent
items, albeit at a reduction in number of available items

e Caching is beneficial, but compilers can do better for the “most
frequently” accessed data items (e.g. Register Allocation)

e Instructions have no analogue to the Data Register File (RF)

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 2

‘ € INSTRUCTION REGISTER FIiLE — IRF |

IF Stage First Half of ID Stage
instruction
IF/ID buffer
ROM J —————
PC or IRF L
ttic 0 | 1

e Stores frequently occurring instructions as specified by the compiler
(potentially in a partially decoded state)

e Allows multiple instruction fetch with packed instructions

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 3

‘ € DyNAMIC INSTRUCTION REDUNDANCY |

< 100 .

>

S 80

)

: N

S

S 60 :: o

c S average
2 40 74 susan

"g pgp e
= patricia
2 20 |F gsm i
Ic jpeg

= ghostscript wwweee:
|_

O 1 1 1 1
16 32 48 64 80 96 112 128

Number of Distinct Instructions

e Profiling the largest benchmark in each category of MiBench

e 32-entry IRF can capture 66.51% of all dynamic instructions executed
on average

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 4

‘ € [SA MODIFICATIONS I

e MIPS ISA — commonly known and provides simple encoding
e RISA (Register ISA) — instructions available via IRF access

e MISA (Memory ISA) — instructions available in memory

— Create new instruction formats that can reference multiple RISA
instructions — Tightly Packed

— Modify original instructions to be able to pack an additional RISA
instruction reference — Loosely Packed

e Increase packing abilities

— Parameterization
— Positional Register Specifiers

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 5

‘ € TicuTLYy PACKED INSTRUCTION FORMAT I

6 bits 5 bits 5 bits 5 bits

5 bits

1

5 bits

opcode | instl inst2 inst3

inst4

param

S

inst5

param

e New opcodes for this T-format of MISA instructions
e Supports sequential execution of up to 5 RISA instructions from the IRF

— Unnecessary fields are padded with nop

e Supports up to 2 parameters replacing instruction slots
— Parameters can come from 32-entry Immediate Table (IMM)
— Each IRF entry retains a default immediate value as well

— Branches use these 5-bits for displacements

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS

SLIDE 6

RTL (positional)

| RTL

1 | r[2]=R[r[29]+4];
2 | r[2]=r[2]1+r[5];
3| R[r[29]+4]=x[2];
4 | r[3]=R[r[29]1+4];
SO | r[3]=r[3]+r[3];
6 | R[r[29]+4]1=r[3];

r[({2]=R[r[29]+4];
s[0]=s[0]+r[5];
R[u[2]+4]=s[0];

r[3]=R[r[29]+4];
s[0]=s[0]+r[5];
R[u[2]+4]=s[0];

e Abstract out common register usage patterns (e.g. load/add/store)
e Increases code redundancy, so greater opportunity for compression

e Positional register values can be obtained via modifications to standard

pipeline register forwarding logic

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS

SLIDE 7

‘ € COMPILER MODIFICATIONS I

_ VPO Profiling
C Source Files @ = Executable

Static Dynamic
Profile Profile
Data Data
VPO
Executable |—= - IRF Analyzer
el IRF/IMM @

Data

e VPO — Very Portable Optimizer targeted for SimpleScalar MIPS/Pisa
e |RF-resident instructions are selected by a greedy algorithm using profile
data including parameterization/positional hints

e |terative packing process using a sliding window to allow branch
displacements to slip into (5-bit) range

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE &

Instruction Register File

Original Code Sequence

| Instruction Default
O | nop NA

1 addiu r[5], r[3], 1 1

2 | beqr[5], r[0], O None
3 | addu r[5], r[5], r[4] NA

4 | andir[3], r[3],63 63

Immediate Table

Value
3 32
4 63

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], -8

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 9

Instruction Register File

Original Code Sequence

| Instruction Default
O | nop NA

1 addiu r[5], r[3], 1 1

2 | beqr[5], r[0], O None
3 | addu r[5], r[5], r[4] NA

4 | andir[3], r[3],63 63

Immediate Table

Value
3 32
4 63

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], -8

\

Marked IRF Sequence

lw r[3], 8(r[29])

IRF[4], default (4)

IRF[1], param (3)

IRF[3]

IRF[2], param (branch -8)

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS

SLIDE 9

Instruction Register File

Original Code Sequence

| Instruction Default
O | nop NA

1 addiu r[5], r[3], 1 1

2 | beqr[5], r[0], O None
3 | addu r[5], r[5], r[4] NA

4 | andir[3], r[3],63 63

Immediate Table

Value
3 32
4 63

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], -8

\

Marked IRF Sequence

lw r[3], 8(r[29])

IRF[4], default (4)

IRF[1], param (3)

IRF[3]

IRF[2], param (branch -8)

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS

SLIDE 9

Instruction Register File

Original Code Sequence

| Instruction Default
O | nop NA

1 addiu r[5], r[3], 1 1

2 | beqr[5], r[0], O None
3 | addu r[5], r[5], r[4] NA

4 | andir[3], r[3],63 63

Immediate Table

Value
3 32
4 63

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], -8

\

Marked IRF Sequence

lw r[3], 8(r[29])

IRF[4], default (4)

IRF[1], param (3)

IRF[3]

IRF[2], param (branch -8)

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS

SLIDE 9

Instruction Register File

Original Code Sequence

| Instruction Default
O | nop NA

1 addiu r[5], r[3], 1 1

2 | beqr[5], r[0], O None
3 | addu r[5], r[5], r[4] NA

4 | andir[3], r[3],63 63

Immediate Table

Value
3 32
4 63

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], -8

\

Marked IRF Sequence

lw r[3], 8(r[29])

IRF[4], default (4)

IRF[1], param (3)

IRF[3]

IRF[2], param (branch -8)

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS

SLIDE 9

Instruction Register File

Original Code Sequence

| Instruction Default
O | nop NA

1 addiu r[5], r[3], 1 1

2 | beqr[5], r[0], O None
3 | addu r[5], r[5], r[4] NA

4 | andir[3], r[3],63 63

Immediate Table

Value
3 32
4 63

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], -8

\

Marked IRF Sequence

lw r[3], 8(r[29])

IRF[4], default (4)

IRF[1], param (3)

IRF[3]

IRF[2], param (branch -8)

\ 4

Packed Code Sequence

Iw r[3], 8(r[29]) {4}

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS

SLIDE 9

Instruction Register File

Original Code Sequence

| Instruction Default
O | nop NA

1 addiu r[5], r[3], 1 1

2 | beqr[5], r[0], O None
3 | addu r[5], r[5], r[4] NA

4 | andir[3], r[3],63 63

Immediate Table

Value
3 32
4 63

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], -8

\

Marked IRF Sequence

lw r[3], 8(r[29])

IRF[4], default (4)

IRF[1], param (3)

IRF[3]

IRF[2], param (branch -8)

\ 4

Packed Code Sequence

lw r[3], 8(r[29]) {4}
param3_AC {1,3,2} {3,-5}

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS

SLIDE 9

Instruction Register File

Original Code Sequence

| Instruction Default lw r[3], 8(r[29])
O | nop NA andi r[3], r[3], 63
1 addiu r[5], r[3], 1 1 addiu r[5], r[3], 32
2 beq r[5], 1[0], O None addu r[5], r[5], r[4]
3 | addu r[5], r[5], r[4] NA beq r[5], r[0], -8
4 | andir[3], r[3],63 63 ‘
Immediate Table Marked IRF Sequence
| Value Iw r[3], 8(r[29])
IRF[4], default (4)
3 52 IRF[1], param (3)
4 63 IRF[3]
IRF[2], param (branch -8)
Encoded Packed Sequence
opcode | rs rt immediate irf ‘
Iw 29 | 3 8 4 Packed Code Sequence
opcode | inst1 | inst2 | inst3 |param|s|param Iw r[3], 8(r[29)]) {4}
param3_AC| 1 3 2 3 1| -5 param3_AC {1,3,2} {3,-5}

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS

SLIDE 9

‘ € ReEDUCING STATIC CODE SIZE |

100

90

Code Size (%)

60-

B insts

B insts+params [insts+params+
pos

80"

70-

automotive
consumer
network
office
security
telecomm
average

Benchmark Category

e 32-entry IRF Impact on Code Size

— 83.23% « Packing instructions alone
— 81.70% « Packing instructions with params
— 81.09% <« Packing instructions with params and positional registers

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 10

‘ € ReEDUCING FETCH ENERGY & EXEC. TIME |

[l Fetch Energy [l Execution Time

£ 100

()

£ 90

- 80

Q 70

S 60’

’g 50+

w40, b x Q > c ®
= = 5 S = = =
o > 2 5) Q S
= % o [0 2 >
2 & < * 2 ®
= o L

Benchmark Category

Sim-panalyzer used to gather energy data alongside SimpleScalar

|C access is > 100 times as costly as IRF access

55% of instructions fetched from 32-entry IRF ~ 37% reduction in energy
Fewer cycles due to improved cache effects and fetch rate

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 11

‘ € IRF STATIC CODE SIZE SENSITIVITY I

v Fixed 5-bit ¢ Variable m VBR-No
Bitwidth Bitwidth Loosely
References References Packed
100
95
;\3 90
0 851
h 80
o 75
§ 70 AN
L 65 S
@
& 60 ™~
50

16 32 64 128 256 512 1024
Number of IRF Entries
e Pack sizes can differ with IRF size (e.g. tight5 & param4 not available
for > 32 entries; tight4 & param3 not available for > 64 entries; . . .)

e Static code size decreases when packing with a larger IRF until reduced
pack sizes overwhelm the benefit of greater entries

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 12

‘ € CROSSCUTTING ISSUES I

e Context switching — Must preserve IRF, IMM and positional registers
as part of process state

— Pointer to routine for loading IRF for each particular process
— Only restore IRF/IMM, never save; positional registers need to be
saved /restored

e Exceptions — How to restart execution of a packed instruction?

— Keep track of how many RISA instructions have completed already
— Store a bitmask of completed instructions for improved restart

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 13

‘ € RELATED WORK |

_ Code Size| Power Hardware
UCETiIE0e Reduction|Savings Sppes Complexity

Proc. Abs. + - — [Minimal
LO 0 I — — [Minimal
Echo Saa s = +/— |Easy
ZOLB/Loop Cache 0 + + |Easy
IRF ++ ++ + |Easy
Codewords ++ — | ?/=—=|Moderate
Arm /Thumb ++ — — — |Moderate
Arm/Thumb/AX ++ ?/— | —— |Moderate
Heads and Tails +-+ ?/— | ?7/— [Moderate
DISE ++ ?/+ + | Difficult
Mini-graphs ++ 7/ + |Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is > 10%. 0
means that there is very little to no effect. 7 means that results are speculative since they are
not presented or explained in detail. — means that penalty is < 10%. — — means that penalty is
> 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 14

‘ € RELATED WORK |

_ Code Size| Power Hardware
UCETiIE0e Reduction|Savings Sppes Complexity

Proc. Abs. + — — [Minimal
LO 0 I — — [Minimal
Echo -+~ - + /- |Easy
ZOLB/Loop Cache 0 + + |Easy
IRF ++ ++ + |Easy
Codewords ++ — | ?/=—=|Moderate
Arm /Thumb ++ — — — |Moderate
Arm/Thumb/AX ++ ?/— | —— |Moderate
Heads and Tails +-+ ?/— | ?7/— [Moderate
DISE ++ ?/+ + | Difficult
Mini-graphs ++ 7/ + |Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is > 10%. 0
means that there is very little to no effect. 7 means that results are speculative since they are
not presented or explained in detail. — means that penalty is < 10%. — — means that penalty is
> 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 14

‘ € RELATED WORK |

_ Code Size| Power Hardware

UCEnmee Reduction|Savings SpPEs Complexity
Proc. Abs. + - — |Minimal
LO 0 - — — [Minimal
Echo Sae s = +/— |Easy
ZOLB/Loop Cache 0 -+ + |Easy
IRF ++ ++ + |Easy
Codewords ++ — | ?/=—=|Moderate
Arm/Thumb +4 — — — |[Moderate
Arm/Thumb/AX -+ ?/— | — - |Moderate
Heads and Tails -+ ?/— | ?7/- |Moderate
DISE ++ ?/+ + |Difficult
Mini-graphs ++ 7/ + |Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is > 10%. 0
means that there is very little to no effect. 7 means that results are speculative since they are
not presented or explained in detail. — means that penalty is < 10%. — — means that penalty is
> 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 14

‘ € RELATED WORK |

_ Code Size| Power Hardware
UCETIE0e Reduction|Savings Sppes Complexity

Proc. Abs. + - — |Minimal
LO 0 +4+ | —— [Minimal
Echo Saas = +/— |Easy
ZOLB/Loop Cache 0 - + |Easy
IRF ++ ++ + |Easy
Codewords ++ — | ?/=—=|Moderate
Arm /Thumb ++ — — — |Moderate
Arm/Thumb/AX ++ ?/— | —— |Moderate
Heads and Tails +-+ ?/— | ?7/— [Moderate
DISE ++ ?/+ + |Difficult
Mini-graphs ++ ?/— + |Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is > 10%. 0
means that there is very little to no effect. 7 means that results are speculative since they are
not presented or explained in detail. — means that penalty is < 10%. — — means that penalty is
> 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 14

‘ € RELATED WORK |

_ Code Size| Power Hardware

UCETiIE0e Reduction|Savings SIS Complexity
Proc. Abs. + - — [Minimal
LO 0 I — — [Minimal
Echo Saa s = +/— |Easy
ZOLB/Loop Cache 0 + + |Easy
IRF ++ ++ + |Easy
Codewords -+ — |?/-—|Moderate
Arm /Thumb ++ — — — |[Moderate
Arm/Thumb/AX ++ ?/— | —— |Moderate
Heads and Tails +-+ ?/— | ?7/— |Moderate
DISE ++ ?/+ + |Difficult
Mini-graphs ++ ?/- + | Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is > 10%. 0
means that there is very little to no effect. 7 means that results are speculative since they are
not presented or explained in detail. — means that penalty is < 10%. — — means that penalty is
> 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 14

‘ € FUTURE WORK I

e Compiler Enhancements

— Dynamic loading of IRF entries (or windows similar to SPARC RF)
— Improved packing algorithms
— Predication support

e Hardware Enhancements

— Split compression of opcodes and operands in RISA

— Decouple MISA and RISA by developing a split ISA
* MISA facilitating code size reduction with traditional compression
* RISA focusing on improved execution time and energy usage

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 15

‘ € CONCLUSIONS |

e Instruction Register File provides an improved fetch mechanism

e Focus is on common/frequently accessed instructions, similar to RF,
enabling the compiler to promote instructions

e Rare combination compiler/hardware optimization that can vyield
improvements in all 3 performance metrics

— Static code size reductions of ~ 20%
— Fetch energy reduced 37% (total energy ~ 15%)
— Execution time reduced 5% due to better IC behavior

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 16

€ Tue END

Thank you!

Questions 777

IMPROVING PROGRAM EFFICIENCY BY PACKING INSTRUCTIONS INTO REGISTERS SLIDE 17

‘ € MIPS INSTRUCTION FORMAT MODIFICATIONS I

6 bits

5 bits

5 bits

5 bits

5 bits

6 bits

6 bits

5 bits

5 bits

5 bits

6 bits

5 bits

opcode

rs

rt

rd

shamt

function

opcode

rs
shamt

rt

rd

function

inst

Register Format: Arithmetic/Logical Instructions

6 bits

5 bits

5 bits

16 bits

Register Format with Index to Second Instruction in IRF

6 bits

5 bits

5 bits

11 bits

5 bits

opcode

rs

rt

immediate value

opcode

rs

rt

immediate value

inst

Immediate Format: Loads/Stores/Branches/ALU with Imm
26 bits

6 bits

Immediate Format with Index to Second Instruction in IRF

6 bits

26 bits

opcode

target address

opcode

target address

Jump Format: Jumps and Calls

(a) Original MIPS Instruction Formats

(b) Loosely Packed MIPS Instruction Formats

e Creating Loosely Packed Instructions

— R-type: Removed shamt field and merged with rs

Jump Format

— |-type: Shortened immediate values (16-bit — 11-bit)

* Lui now uses 21-bit immediate value, hence no loose packing

— J-type: Unchanged

‘ € SELECTING IRF-RESIDENT INSTRUCTIONS I

Read in instruction profile (static or dynamic);
Calculate the top 32 immediate values for I-type instructions;
Coalesce all I-type instructions that match based on parameterized immediates;
Construct positional and regular form lists from the instruction profile, along with conflict information;
IRF[0] < nop;
foreach / € [1..31] do
Sort both lists by instruction frequency;
IRF[i] < highest freq instruction remaining in the two lists;

foreach conflict of IRF[i] do
| Decrease the conflict instruction frequencies by the specified amounts;

e Greedy heuristic for selecting instructions to reside in IRF

e Can mix static and dynamic profiles together now to obtain good
compression and good local packing

‘ € COALESCING SIMILAR INSTRUCTIONS I

Opcode | rs | rt | immed | prs | prt | Freqg
addiu r[3] r[(5] 1 s[0] NA 400
addiu r[3] r[5] 4 s[0] NA 300
addiu r[7] r[5] 1 s[0] NA 200

| Coalescing Immediate Values |
addiu r[3] r[5] 1 s[0] NA 700
addiu r[7] r[5] 1 s[0] NA 200

| Grouping by Positional Form {
addiu NA r[5] 1 s[0] NA 900

| Actual RTL |
r[5]=s[0]+1 900

e Semantically equivalent and commutative instructions are converted into
single recognizable forms to aid in detecting code redundancy

‘ € PACKING INSTRUCTIONS |

Name Description

tightb 5 IRF instructions (no parameters)
tight4 4 IRF instructions (no parameters)
param4 | 4 IRF instructions (1 parameter)

tight3 3 IRF instructions (no parameters)
param3 | 3 IRF instructions (1 or 2 parameters)
tight2 2 IRF instructions (no parameters)
param2 | 2 IRF instructions (1 or 2 parameters)
loose Loosely packed format

none Not packed (or loose with nop)

e Instructions are packed only within a basic block

e A sliding window of instructions is examined to determine which packing
(if any) to apply

e Branches can move into range (5-bits) due to packing, so we repack
iteratively in an attempt to obtain greater packing density

