
Improving Program Efficiency by

Packing Instructions into Registers

Stephen Hines, Joshua Green, Gary Tyson, David Whalley

Computer Science Dept.

Florida State University

June 7, 2005

u Introduction

• Embedded Processor Design Constraints
– Power Consumption
– Static Code Size
– Execution Time

• Fetch logic consumes 36% of total processor power on StrongARM
– Instruction Cache (IC) and/or ROM — Lower power than a large

memory store, but still a fairly large, flat storage method
• Instruction encodings can be wasteful with bits

– Nowhere near theoretical compression limits
– Maximize functionality, but simplify decoding (fixed length)
– Most applications only apply a subset of available instructions

Improving Program Efficiency by Packing Instructions into Registers slide 1

u Access of Data & Instructions

Main Memory

L2 Cache

L1 Data Cache L1 Instruction Cache

Data Register File g???g

• Each lower layer is designed to improve accessibility of current/frequent
items, albeit at a reduction in number of available items

• Caching is beneficial, but compilers can do better for the “most
frequently” accessed data items (e.g. Register Allocation)

• Instructions have no analogue to the Data Register File (RF)

Improving Program Efficiency by Packing Instructions into Registers slide 2

u Instruction Register File — IRF

instruction
buffer

PC
ROM

or

L1 IC

IF Stage First Half of ID Stage

IRF

IF/ID

• Stores frequently occurring instructions as specified by the compiler
(potentially in a partially decoded state)

• Allows multiple instruction fetch with packed instructions

Improving Program Efficiency by Packing Instructions into Registers slide 3

u Dynamic Instruction Redundancy

 0

 20

 40

 60

 80

 100

 128 112 96 80 64 48 32 16

T
ot

al
 In

st
ru

ct
io

n
F

re
qu

en
cy

 (
%

)

Number of Distinct Instructions

average
susan

pgp
patricia

gsm
jpeg

ghostscript

• Profiling the largest benchmark in each category of MiBench

• 32-entry IRF can capture 66.51% of all dynamic instructions executed
on average

Improving Program Efficiency by Packing Instructions into Registers slide 4

u ISA Modifications

• MIPS ISA — commonly known and provides simple encoding

• RISA (Register ISA) — instructions available via IRF access

• MISA (Memory ISA) — instructions available in memory

– Create new instruction formats that can reference multiple RISA
instructions — Tightly Packed

– Modify original instructions to be able to pack an additional RISA
instruction reference — Loosely Packed

• Increase packing abilities

– Parameterization
– Positional Register Specifiers

Improving Program Efficiency by Packing Instructions into Registers slide 5

u Tightly Packed Instruction Format

s inst5 param

5 bits15 bits5 bits5 bits5 bits6 bits

inst3inst2inst1opcode paraminst4

• New opcodes for this T-format of MISA instructions
• Supports sequential execution of up to 5 RISA instructions from the IRF

– Unnecessary fields are padded with nop
• Supports up to 2 parameters replacing instruction slots

– Parameters can come from 32-entry Immediate Table (IMM)
– Each IRF entry retains a default immediate value as well
– Branches use these 5-bits for displacements

Improving Program Efficiency by Packing Instructions into Registers slide 6

u Positional Register Specifiers

RTL RTL (positional)
1 r[2]=R[r[29]+4]; r[2]=R[r[29]+4];
2 r[2]=r[2]+r[5]; s[0]=s[0]+r[5];
3 R[r[29]+4]=r[2]; R[u[2]+4]=s[0];

.

4 r[3]=R[r[29]+4]; r[3]=R[r[29]+4];
5 r[3]=r[3]+r[5]; s[0]=s[0]+r[5];
6 R[r[29]+4]=r[3]; R[u[2]+4]=s[0];

• Abstract out common register usage patterns (e.g. load/add/store)
• Increases code redundancy, so greater opportunity for compression
• Positional register values can be obtained via modifications to standard

pipeline register forwarding logic

Improving Program Efficiency by Packing Instructions into Registers slide 7

u Compiler Modifications

C Source Files
Profiling

Executable
VPO

Compiler

Executable IRF Analyzer
VPO

Compiler

Profile
Data

Dynamic

Data
IRF/IMM

Profile
Data

Static

• VPO — Very Portable Optimizer targeted for SimpleScalar MIPS/Pisa
• IRF-resident instructions are selected by a greedy algorithm using profile

data including parameterization/positional hints
• Iterative packing process using a sliding window to allow branch

displacements to slip into (5-bit) range

Improving Program Efficiency by Packing Instructions into Registers slide 8

Instruction Register File

Immediate Table

NA
1
None
NAaddu r[5], r[5], r[4]

nop0
#

1
2
3

...

DefaultInstruction

...

#
...
3

...

Value
...
32

lw r[3], 8(r[29])

addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

addiu r[5], r[3], 32

andi r[3], r[3],634 63

andi r[3], r[3], 63

634

Improving Program Efficiency by Packing Instructions into Registers slide 9

Instruction Register File

Immediate Table

NA
1
None
NAaddu r[5], r[5], r[4]

nop0
#

1
2
3

...

DefaultInstruction

...

#
...
3

...

Value
...
32

lw r[3], 8(r[29])

IRF[1], param (3)
IRF[3]
IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])

addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

addiu r[5], r[3], 32
andi r[3], r[3], 63

andi r[3], r[3],63 634

IRF[4], default (4)

634

Improving Program Efficiency by Packing Instructions into Registers slide 9

Instruction Register File

Immediate Table

NA

None
NAaddu r[5], r[5], r[4]

nop0
#

2
3

...

DefaultInstruction

...

#
...

4
...

Value
...

63

lw r[3], 8(r[29])

IRF[3]
IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])

addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

beq r[5], r[0], 0

IRF[1], param (3)
IRF[4], default (4)

andi r[3], r[3],63 634

andi r[3], r[3], 63
addiu r[5], r[3], 32addiu r[5], r[3], 11 1

323

Improving Program Efficiency by Packing Instructions into Registers slide 9

Instruction Register File

Immediate Table

NA

None

nop0
#

2

...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

lw r[3], 8(r[29])

IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])

beq r[5], r[0], −8

Original Code Sequence

beq r[5], r[0], 0

IRF[4], default (4)

andi r[3], r[3],63 634

andi r[3], r[3], 63

addu r[5], r[5], r[4]
addiu r[5], r[3], 32addiu r[5], r[3], 1 11

IRF[1], param (3)
IRF[3]

addu r[5], r[5], r[4]3 NA

Improving Program Efficiency by Packing Instructions into Registers slide 9

Instruction Register File

Immediate Table

NAnop0
#

...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

lw r[3], 8(r[29])

Marked IRF Sequence

lw r[3], 8(r[29])

Original Code Sequence

IRF[4], default (4)

andi r[3], r[3],63 634

andi r[3], r[3], 63
addiu r[5], r[3], 1 11

IRF[1], param (3)

beq r[5], r[0], −8

addiu r[5], r[3], 32
addu r[5], r[5], r[4]

addu r[5], r[5], r[4] NA3

IRF[3]
IRF[2], param (branch −8)

beq r[5], r[0], 02 None

Improving Program Efficiency by Packing Instructions into Registers slide 9

Instruction Register File

Immediate Table

NA
1
None
NA
63

addu r[5], r[5], r[4]

nop0
#

1
2
3
4
...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

Packed Code Sequence

IRF[1], param (3)
IRF[3]
IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

andi r[3], r[3],63

lw r[3], 8(r[29])
IRF[4], default (4)

lw r[3], 8(r[29]) {4}

Improving Program Efficiency by Packing Instructions into Registers slide 9

Instruction Register File

Immediate Table

NA
1
None
NA
63

addu r[5], r[5], r[4]

nop0
#

1
2
3
4
...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

lw r[3], 8(r[29]) {4}

Packed Code Sequence

lw r[3], 8(r[29])
IRF[4], default (4)

Marked IRF Sequence

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

andi r[3], r[3],63

IRF[1], param (3)
IRF[3]
IRF[2], param (branch −8)

param3_AC {1,3,2} {3,−5}

Improving Program Efficiency by Packing Instructions into Registers slide 9

Instruction Register File

Immediate Table

Encoded Packed Sequence

NA
1
None
NA
63

addu r[5], r[5], r[4]

nop0
#

1
2
3
4
...

DefaultInstruction

...

#
...
3
4
...

Value
...
32
63

rs rt irfimmediate

opcode inst1 inst2 inst3 param s param lw r[3], 8(r[29]) {4}
param3_AC {1,3,2} {3,−5}

Packed Code Sequence

lw r[3], 8(r[29])
IRF[4], default (4)
IRF[1], param (3)
IRF[3]
IRF[2], param (branch −8)

Marked IRF Sequence

lw r[3], 8(r[29])
andi r[3], r[3], 63
addiu r[5], r[3], 32
addu r[5], r[5], r[4]
beq r[5], r[0], −8

Original Code Sequence

addiu r[5], r[3], 1
beq r[5], r[0], 0

andi r[3], r[3],63

lw

opcode

29 3 8 4

−513231param3_AC

Improving Program Efficiency by Packing Instructions into Registers slide 9

u Reducing Static Code Size

• 32-entry IRF Impact on Code Size

– 83.23% ← Packing instructions alone
– 81.70% ← Packing instructions with params
– 81.09% ← Packing instructions with params and positional registers

Improving Program Efficiency by Packing Instructions into Registers slide 10

u Reducing Fetch Energy & Exec. Time

• Sim-panalyzer used to gather energy data alongside SimpleScalar
• IC access is > 100 times as costly as IRF access
• 55% of instructions fetched from 32-entry IRF ∼ 37% reduction in energy
• Fewer cycles due to improved cache effects and fetch rate

Improving Program Efficiency by Packing Instructions into Registers slide 11

u IRF Static Code Size Sensitivity

• Pack sizes can differ with IRF size (e.g. tight5 & param4 not available
for > 32 entries; tight4 & param3 not available for > 64 entries; . . .)

• Static code size decreases when packing with a larger IRF until reduced
pack sizes overwhelm the benefit of greater entries

Improving Program Efficiency by Packing Instructions into Registers slide 12

u Crosscutting Issues

• Context switching — Must preserve IRF, IMM and positional registers
as part of process state

– Pointer to routine for loading IRF for each particular process
– Only restore IRF/IMM, never save; positional registers need to be

saved/restored

• Exceptions — How to restart execution of a packed instruction?

– Keep track of how many RISA instructions have completed already
– Store a bitmask of completed instructions for improved restart

Improving Program Efficiency by Packing Instructions into Registers slide 13

u Related Work

Code Size Power Hardware
Technique

Reduction Savings
Speed

Complexity

Proc. Abs. + – – Minimal

L0 0 ++ – – Minimal

Echo ++ – +/– Easy

ZOLB/Loop Cache 0 + + Easy

IRF ++ ++ + Easy

Codewords ++ – ?/– – Moderate

Arm/Thumb ++ – – – Moderate

Arm/Thumb/AX ++ ?/– – – Moderate

Heads and Tails ++ ?/– ?/– Moderate

DISE ++ ?/+ + Difficult

Mini-graphs ++ ?/– + Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is ≥ 10%. 0

means that there is very little to no effect. ? means that results are speculative since they are
not presented or explained in detail. – means that penalty is < 10%. – – means that penalty is

≥ 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

Improving Program Efficiency by Packing Instructions into Registers slide 14

u Related Work

Code Size Power Hardware
Technique

Reduction Savings
Speed

Complexity

Proc. Abs. + – – Minimal

L0 0 ++ – – Minimal

Echo ++ – +/– Easy

ZOLB/Loop Cache 0 + + Easy

IRF ++ ++ + Easy

Codewords ++ – ?/– – Moderate

Arm/Thumb ++ – – – Moderate

Arm/Thumb/AX ++ ?/– – – Moderate

Heads and Tails ++ ?/– ?/– Moderate

DISE ++ ?/+ + Difficult

Mini-graphs ++ ?/– + Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is ≥ 10%. 0

means that there is very little to no effect. ? means that results are speculative since they are
not presented or explained in detail. – means that penalty is < 10%. – – means that penalty is

≥ 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

Improving Program Efficiency by Packing Instructions into Registers slide 14

u Related Work

Code Size Power Hardware
Technique

Reduction Savings
Speed

Complexity

Proc. Abs. + – – Minimal

L0 0 ++ – – Minimal

Echo ++ – +/– Easy

ZOLB/Loop Cache 0 + + Easy

IRF ++ ++ + Easy

Codewords ++ – ?/– – Moderate

Arm/Thumb ++ – – – Moderate

Arm/Thumb/AX ++ ?/– – – Moderate

Heads and Tails ++ ?/– ?/– Moderate

DISE ++ ?/+ + Difficult

Mini-graphs ++ ?/– + Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is ≥ 10%. 0

means that there is very little to no effect. ? means that results are speculative since they are
not presented or explained in detail. – means that penalty is < 10%. – – means that penalty is

≥ 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

Improving Program Efficiency by Packing Instructions into Registers slide 14

u Related Work

Code Size Power Hardware
Technique

Reduction Savings
Speed

Complexity

Proc. Abs. + – – Minimal

L0 0 ++ – – Minimal

Echo ++ – +/– Easy

ZOLB/Loop Cache 0 + + Easy

IRF ++ ++ + Easy

Codewords ++ – ?/– – Moderate

Arm/Thumb ++ – – – Moderate

Arm/Thumb/AX ++ ?/– – – Moderate

Heads and Tails ++ ?/– ?/– Moderate

DISE ++ ?/+ + Difficult

Mini-graphs ++ ?/– + Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is ≥ 10%. 0

means that there is very little to no effect. ? means that results are speculative since they are
not presented or explained in detail. – means that penalty is < 10%. – – means that penalty is

≥ 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

Improving Program Efficiency by Packing Instructions into Registers slide 14

u Related Work

Code Size Power Hardware
Technique

Reduction Savings
Speed

Complexity

Proc. Abs. + – – Minimal

L0 0 ++ – – Minimal

Echo ++ – +/– Easy

ZOLB/Loop Cache 0 + + Easy

IRF ++ ++ + Easy

Codewords ++ – ?/– – Moderate

Arm/Thumb ++ – – – Moderate

Arm/Thumb/AX ++ ?/– – – Moderate

Heads and Tails ++ ?/– ?/– Moderate

DISE ++ ?/+ + Difficult

Mini-graphs ++ ?/– + Difficult

Legend: + means that improvement is < 10%. ++ means that improvement is ≥ 10%. 0

means that there is very little to no effect. ? means that results are speculative since they are
not presented or explained in detail. – means that penalty is < 10%. – – means that penalty is

≥ 10%. Hardware complexity is scaled from easy (no changes) to difficult (complete redesign).

Improving Program Efficiency by Packing Instructions into Registers slide 14

u Future Work

• Compiler Enhancements

– Dynamic loading of IRF entries (or windows similar to SPARC RF)
– Improved packing algorithms
– Predication support

• Hardware Enhancements

– Split compression of opcodes and operands in RISA
– Decouple MISA and RISA by developing a split ISA

? MISA facilitating code size reduction with traditional compression
? RISA focusing on improved execution time and energy usage

Improving Program Efficiency by Packing Instructions into Registers slide 15

u Conclusions

• Instruction Register File provides an improved fetch mechanism

• Focus is on common/frequently accessed instructions, similar to RF,
enabling the compiler to promote instructions

• Rare combination compiler/hardware optimization that can yield
improvements in all 3 performance metrics

– Static code size reductions of ∼ 20%

– Fetch energy reduced 37% (total energy ∼ 15%)
– Execution time reduced 5% due to better IC behavior

Improving Program Efficiency by Packing Instructions into Registers slide 16

u The End

Thank you!

Questions ???

Improving Program Efficiency by Packing Instructions into Registers slide 17

u MIPS Instruction Format Modifications

5 bits 5 bits 5 bits 6 bits6 bits 5 bits

shamt functionrdrtrsopcode

Register Format: Arithmetic/Logical Instructions

immediate valuertrsopcode

 Immediate Format: Loads/Stores/Branches/ALU with Imm

6 bits 5 bits 5 bits 16 bits

26 bits6 bits

target addressopcode

Jump Format: Jumps and Calls

(a) Original MIPS Instruction Formats

Register Format with Index to Second Instruction in IRF

opcode rs rt rd function inst

5 bits6 bits5 bits5 bits5 bits6 bits

shamt

6 bits 5 bits 5 bits 11 bits 5 bits

opcode rs rt immediate value inst

Immediate Format with Index to Second Instruction in IRF

Jump Format

opcode target address

26 bits6 bits

(b) Loosely Packed MIPS Instruction Formats

• Creating Loosely Packed Instructions
– R-type: Removed shamt field and merged with rs
– I-type: Shortened immediate values (16-bit → 11-bit)

? Lui now uses 21-bit immediate value, hence no loose packing
– J-type: Unchanged

u Selecting IRF-Resident Instructions

Read in instruction profile (static or dynamic);
Calculate the top 32 immediate values for I-type instructions;

Coalesce all I-type instructions that match based on parameterized immediates;
Construct positional and regular form lists from the instruction profile, along with conflict information;

IRF[0]← nop;
foreach i ∈ [1..31] do

Sort both lists by instruction frequency;
IRF[i]← highest freq instruction remaining in the two lists;

foreach conflict of IRF[i] do
Decrease the conflict instruction frequencies by the specified amounts;

• Greedy heuristic for selecting instructions to reside in IRF

• Can mix static and dynamic profiles together now to obtain good
compression and good local packing

u Coalescing Similar Instructions

Opcode rs rt immed prs prt Freq

addiu r[3] r[5] 1 s[0] NA 400
addiu r[3] r[5] 4 s[0] NA 300
addiu r[7] r[5] 1 s[0] NA 200
...

⇓ Coalescing Immediate Values ⇓

addiu r[3] r[5] 1 s[0] NA 700
addiu r[7] r[5] 1 s[0] NA 200
...

⇓ Grouping by Positional Form ⇓

addiu NA r[5] 1 s[0] NA 900
...

⇓ Actual RTL ⇓

r[5]=s[0]+1 900

• Semantically equivalent and commutative instructions are converted into
single recognizable forms to aid in detecting code redundancy

u Packing Instructions

Name Description

tight5 5 IRF instructions (no parameters)

tight4 4 IRF instructions (no parameters)
param4 4 IRF instructions (1 parameter)

tight3 3 IRF instructions (no parameters)
param3 3 IRF instructions (1 or 2 parameters)

tight2 2 IRF instructions (no parameters)
param2 2 IRF instructions (1 or 2 parameters)

loose Loosely packed format
none Not packed (or loose with nop)

• Instructions are packed only within a basic block
• A sliding window of instructions is examined to determine which packing

(if any) to apply
• Branches can move into range (5-bits) due to packing, so we repack

iteratively in an attempt to obtain greater packing density

