
Victim Replication: Maximizing
Capacity while Hiding Wire Delay
in Tiled Chip Multiprocessors

Michael Zhang & Krste Asanovic
Computer Architecture Group
MIT CSAIL

Chip Multiprocessors (CMPs) are Here

Easily utilizes on-chip transistors
Naturally exploits thread-level parallelism
Dramatically reduces design complexity

Future CMPs will have more processor cores
Future CMPs will have more cache

IBM Power5
with 1.9MB L2

AMD Opteron
with 2MB L2

Intel Montecito
With 24MB L3

core

L1$

Current Chip Multiprocessors

Layout: “Dance-Hall”
Core + L1 cache
L2 cache

Small L1 cache: Very low
access latency

Large L2 cache: Divided into
slices to minimize access
latency and power usage

Intra-Chip Switch

core

L1$

core

L1$

core

L1$

L2
Cache

A 4-node CMP with
a large L2 cache

core

L1$

Current Chip Multiprocessors

Layout: “Dance-Hall”
Core + L1 cache
L2 cache

Small L1 cache: Very low
access latency

Large L2 cache: Divided into
slices to minimize access
latency and power usage

Intra-Chip Switch

core

L1$

core

L1$

core

L1$

A 4-node CMP with
a large L2 cache

L2 Slice

L2 Slice

L2 Slice

L2 Slice L2 Slice L2 Slice

L2 Slice L2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice

core

L1$

L2 Slice

L2 Slice

L2 Slice L2 Slice L2 Slice

Increasing CMP Cache Capacities lead to Non-
Uniform Cache Access Latency (NUCA)

Current: Caches are designed with
(long) uniform access latency for the
worst case:

Best Latency == Worst Latency

Future: Must design with non-uniform
access latencies depending on the on-
die location of the data:

Best Latency << Worst Latency

Challenge: How to minimize average
cache access latency:

Average Latency Best Latency

L2 Slice L2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

L2 Slice L2 Slice L2 SliceL2 Slice

Intra-Chip Switch

core

L1$

core

L1$

core

L1$

A 4-node CMP with
a large L2 cache

Intra-Chip Switch

core

L1$

core

L1$

core

L1$

core

L1$

Current Research on NUCAs

Targeting uniprocessor machines

Data Migration: Intelligently place
data such that the active working
set resides in cache slices closest
to the processor

D-NUCA [ASPLOS-X, 2002]
NuRAPID [MICRO-37, 2004]

Data Migration does not Work Well with CMPs

Problem: The unique copy of
the data cannot be close to
all of its sharers

Behavior: Over time, shared
data migrates to a location
equidistant to all sharers

Beckmann & Wood [MICRO-36, 2004]

core

L1$

Intra-Chip Switch

core

L1$

core

L1$

core

L1$

Intra-Chip Switch

core

L1$

core

L1$

core

L1$

core

L1$

This Talk: Tiled CMPs with Directory-
Based Cache Coherence Protocol

Tiled CMPs for Scalability
Minimal redesign effort
Use directory-based protocol for
scalability

Managing the L2s to minimize
the effective access latency

Keep data close to the requestors
Keep data on-chip

Two baseline L2 cache designs
Each tile has own private L2
All tiles share a single distributed L2

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

SWc L1

L2$
Data

L2$
Tag

core L1$

L2$
Slice
Data

Switch

L2$
Slice
Tag

Private L2 Design Provides Low Hit Latency

core L1$

Private
L2$
Data

Switch

DIRL2$
Tag

core L1$

Private
L2$
Data

Switch

DIRL2$
Tag

Sharer jSharer i

The local L2 slice is used
as a private L2 cache for
the tile

Shared data is duplicated in
the L2 of each sharer
Coherence must be kept
among all sharers at the L2
level

On an L2 miss:
Data not on-chip
Data available in the private
L2 cache of another chip

Private L2 Design Provides Low Hit Latency

core L1$

Private
L2$
Data

Switch

DIRL2$
Tag

core L1$

Private
L2$
Data

Switch

DIRL2$
Tag

core L1$

Private
L2$
Data

Switch

DIRL2$
Tag

Home Node
statically determined by address

Owner/SharerRequestor

The local L2 slice is used
as a private L2 cache for
the tile

Shared data is duplicated in
the L2 of each sharer
Coherence must be kept
among all sharers at the L2
level

On an L2 miss:
Data not on-chip
Data available in the private
L2 cache of another tile
(cache-to-cache reply-
forwarding)

Off-chip
Access

Private L2 Design Provides Low Hit Latency

core L1$

Private
L2$
Data

Switch

DIRL2$
Tag

Characteristics:
Low hit latency to resident L2 data
Duplication reduces on-chip capacity

Works well for benchmarks with
working sets that fits into the
local L2 capacitySWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

SWc L1

DirPrivate
L2

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

Shared L2 Design Provides Maximum Capacity

Requestor

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

Owner/Sharer

Off-chip
Access

All L2 slices on-chip form
a distributed shared L2,
backing up all L1s

No duplication, data kept in a
unique L2 location
Coherence must be kept
among all sharers at the L1
level

On an L2 miss:
Data not in L2
Coherence miss (cache-to-
cache reply-forwarding)

Home Node
statically determined by address

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

Shared L2 Design Provides Maximum Capacity

SWc L1

DirShared
L2

Characteristics:
Maximizes on-chip capacity
Long/non-uniform latency to L2 data

Works well for benchmarks with
larger working sets to minimize
expensive off-chip accesses

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

Victim Replication: A Hybrid Combining the
Advantages of Private and Shared Designs

Shared design
characteristics:

Long/non-uniform L2 hit
latency
Maximum L2 capacity

Private design
characteristics:

Low L2 hit latency to
resident L2 data
Reduced L2 capacity

Victim Replication: A Hybrid Combining the
Advantages of Private and Shared Designs

Shared design
characteristics:

Long/non-uniform L2 hit
latency
Maximum L2 capacity

Private design
characteristics:

Low L2 hit latency to
resident L2 data
Reduced L2 capacity

Victim Replication: Provides low hit latency
while keeping the working set on-chip

Victim Replication: A Variant of
the Shared Design

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

Sharer i Sharer j

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

Home Node

Implementation: Based
on the shared design

L1 Cache: Replicates
shared data locally for
fastest access latency

L2 Cache: Replicates the
L1 capacity victims
Victim Replication

Victim Replication: The Local Tile
Replicates the L1 Victim During Eviction

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

Sharer i Sharer j

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

Home Node

Replicas: L1 capacity
victims stored in the
Local L2 slice

Why? Reused in the
near future with fast
access latency

Which way in the
target set to use to
hold the replica?

The Replica should NOT Evict More
Useful Cache Blocks from the L2 Cache

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

Sharer j

core L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

Home Node

Never evict actively
shared home blocks
in favor of a replica

Replica is NOT always made

Sharer i

1. Invalid blocks
2. Home blocks w/o sharers
3. Existing replicas
4. Home blocks w/ sharers

Victim Replication Dynamically Divides the
Local L2 Slice into Private & Shared Partitions

core L1$
Switch

DIRL2$
Tag

core L1$
Switch

DIRL2$
Tag

core L1$
Switch

DIRL2$
Tag

Shared L2$

Private L2$
(filled w/ L1 victims)

Shared
L2$

Private
L2$

Private Design Shared Design

Victim Replication

Victim Replication
dynamically creates
a large local private,
victim cache for the
local L1 cache

Experimental Setup

Processor Model: Bochs
Full-system x86 emulator running Linux 2.4.24
8-way SMP with single in-order issue cores

All latencies normalized to one 24-F04 clock cycle
Primary caches reachable in one cycle

Cache/Memory Model
4x2 Mesh with 3 Cycle near-neighbor latency
L1I$ & L1D$: 16KB each, 16-Way, 1-Cycle, Pseudo-LRU
L2$: 1MB, 16-Way, 6-Cycle, Random
Off-chip Memory: 256 Cycles

Worst-case cross chip contention-free latency is
30 cycles

Applications

Linux 2.4.24

DRAM

c L1

L2

S

D

c L1

L2

S

D

c L1

L2

S

D

c L1

L2

S

D

c L1

L2

S

D

c L1

L2

S

D

c L1

L2

S

D

c L1

L2

S

D

The Plan for Results

Three configurations evaluated:
1. Private L2 design L2P
2. Shared L2 design L2S
3. Victim replication L2VR

Three suites of workloads used:
1. Multi-threaded workloads
2. Single-threaded workloads
3. Multi-programmed workloads

Results show Victim Replication’s Performance
Robustness

Multithreaded Workloads

8 NASA Advanced Parallel Benchmarks:
Scientific (computational fluid dynamics)
OpenMP (loop iterations in parallel)
Fortran: ifort –v8 –O2 –openmp

2 OS benchmarks
dbench: (Samba) several clients making file-centric system calls
apache: web server with several clients (via loopback interface)
C: gcc 2.96

1 AI benchmark: Cilk checkers
spawn/sync primitives: dynamic thread creation/scheduling
Cilk: gcc 2.96, Cilk 5.3.2

Average Access Latency

0

1

2

3

4

5

BT CG EP FT IS LU MG SP
ap

ac
he

dbench
ch

ec
ke

rs

A
cc

es
s

La
te

nc
y

(c
yc

le
s)

L2P
L2S

Average Access Latency,
with Victim Replication

0

1

2

3

4

5

A
cc

es
s

La
te

nc
y

(c
yc

le
s)

L2P
L2S
L2VR

checkersdbenchapacheSPMGLUISFTEPCGBT

Average Access Latency,
with Victim Replication

0

1

2

3

4

5

A
cc

es
s

La
te

nc
y

(c
yc

le
s)

L2P
L2S
L2VR

checkersdbenchapacheSPMGLUISFTEPCGBT

L2P
29.7%

L2S
11.5%

L2S
23.0%

L2S
22.4%

L2P
35.0%

L2S
40.3%

TiedL2S
21.5%

L2P
51.6%

L2S
111%

L2S
12.2%

3rd

L2S
14.4%

L2VR
2.1%

L2VR
3.6%

L2VR
2.5%

L2S
17.5%

L2VR
4.5%

TiedL2VR
3.5%

L2S
18.5%

L2VR
32.0%

L2P
0.1%

2nd

L2VRL2PL2PL2PL2VRL2PTiedL2PL2VRL2PL2VR1st

FT: Private Design is the Best When Working
Set Fits in Local L2 Slice

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

98%

99%

100%

Average Data
Access Latency

Access
Breakdown

Off-chip misses
Hits in Non-Local L2
Hits in Local L2
Hits in L1

The large capacity of the shared design
is not utilized as shared and private
designs have similar off-chip miss rates

The short access latency of the private
design yields better performance

Victim replication mimics the private
design by creating replicas, with
performance within 5%

L2P L2S L2VR L2P L2S L2VR

Best
Very Good
O.K.
Not Good …

CG: Large Number of L2 Hits Magnifies Latency
Advantage of Private Design

0

1

2

3

4

5

6

90%

95%

100% The latency advantage of the private
design is magnified by the large number
of L1 misses that hits in L2 (>9%)

Victim replication edges out shared
design with replicas, by falls short of the
private design

Average Data
Access Latency

Access
Breakdown

L2P L2S L2VR L2P L2S L2VR

Off-chip misses
Hits in Non-Local L2
Hits in Local L2
Hits in L1

MG: Victim Replication is the Best When
Working Set Does not Fit in Local L2

0

0.5

1

1.5

2

2.5

97%

98%

99%

100%

Off-chip misses
Hits in Non-Local L2
Hits in Local L2
Hits in L1

The capacity advantage of the shared
design yields many fewer off-chip
misses

The latency advantage of the private
design is offset by costly off-chip
accesses

Victim replication is even better than
shared design by creating replicas to
reduce access latency

L2P L2S L2VR L2P L2S L2VR

Average Data
Access Latency

Access
Breakdown

Checkers: Dynamic Thread Migration Creates
Many Cache-Cache Transfers

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

95%

96%

97%

98%

99%

100% Virtually no off-chip accesses

Most of hits in the private design come
from more expensive cache-to-cache
transfers

Victim replication is even better than
shared design by creating replicas to
reduce access latency

Average Data
Access Latency

Access
Breakdown

L2P L2S L2VR L2P L2S L2VR

Off-chip misses
Hits in Non-Local L2
Hits in Local L2
Hits in L1

Victim Replication Adapts to
the Phases of the Execution

0

20

40

0

20

40
CG FT

%
 o

f r
ep

lic
a

in
 c

ac
he

0 5.0 Billion Instrs 0 6.6 Billion Instrs

Each graph shows the percentage of
replicas in the L2 caches averaged
across all 8 caches

Single-Threaded Benchmarks

SpecINT2000 are used as Single-
Threaded benchmarks

Intel C compiler version 8.0.055

Victim replication automatically
turns the cache hierarchy into
three levels with respect to the
node hosting the active thread

Active
Thread L1$

Shared
L2$
Data

Switch

DIRL2$
Tag

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

Single-Threaded Benchmarks

SpecINT2000 are used as Single-
Threaded benchmarks

Intel C compiler version 8.0.055

Victim replication automatically
turns the cache hierarchy into
three levels with respect to the
node hosting the active thread

Level 1: L1 cache
Level 2: All remote L2 slices
“Level 1.5”: The local L2 slice acts as
a large private victim cache which
holds data used by the active thread

Active
Thread L1$

Mostly
Replica

Data

Switch

DIRL2$
Tag

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWT L1

Dir
L1.5
with

replicas

SWc L1

DirShared
L2

SWc L1

DirShared
L2

SWc L1

DirShared
L2

Three Level Caching

0

100
mcf

0

100
bzip

%
 o

f r
ep

lic
a

in
 c

ac
he

0 3.8 Billion Instrs 0 1.7 Billion Instrs

Thread running
on one tile

Thread moving
between two tiles

Each graph shows the percentage of
replicas in the L2 caches for each of
the 8 caches

Single-Threaded Benchmarks

Average Data Access Latency

0

2

4

6

8

10

bzip

cra
fty eo

n

gap gcc

gzip mcf

pars
er

perl
bmk

tw
olf

vo
rte

x vp
r

La
te

nc
y

(c
yc

le
s) L2P

L2S
L2VR

Victim replication is the best policy in 11 out of 12
benchmarks with an average saving of 23% over
shared design and 6% over private design

Multi-Programmed Workloads
Average Data Access Latency

0

1

2

3

MP0 MP1 MP2 MP3 MP4 MP5

La
te

nc
y

(c
yc

le
s)

L2P
L2S
L2VR

Created using
SpecINTs, each
with 8 different
programs chosen
at random

1st : Private design, always the best
2nd : Victim replication, performance within 7% of private design
3rd : Shared design, performance within 27% of private design

Concluding Remarks

Victim Replication isVictim Replication is
SimpleSimple: Requires little modification from a shared
L2 design

ScalableScalable: Scales well to CMPs with large number of
nodes by using a directory-based cache coherence
protocol

RobustRobust:: Works well for a wide range of workloads
1. Single-threaded
2. Multi-threaded
3. Multi-programmed

Thank You!Thank You!

