
Threads and Cores

Marc Tremblay, Ph.D.
Sun Fellow & Vice President
Chief Architect – Scalable Systems Group

Sun Proprietary/Confidential: Internal Use Only

Niagara – 32 threads

Core 1

 Memory Latency Compute

Thread 4
Thread 3
Thread 2
Thread 1

Core 2
Thread 4
Thread 3
Thread 2
Thread 1

Core 3
Thread 4
Thread 3
Thread 2
Thread 1

Thread 4
Thread 3
Thread 2
Thread 1

Core 4

Core 5
Thread 4
Thread 3
Thread 2
Thread 1

Core 6
Thread 4
Thread 3
Thread 2
Thread 1

Core 7
Thread 4
Thread 3
Thread 2
Thread 1

Core 8
Thread 4
Thread 3
Thread 2
Thread 1

 Time

Sun Proprietary/Confidential: Internal Use Only

Servers

• Tons of threads available
> Multi-threaded is also multi-process

• Examples
> J2EE based application server

> Already scales to tens of threads today
> Large database

> Easily scales to tens of threads today
> ECAD

> 100k jobs per day in our server ranch
> Searches

> Billions of threads/processes

Sun Proprietary/Confidential: Internal Use Only

Single Application

• MAJC started in 1995
> Dual core, running Java, lots of “compute”
> Multithreaded program “will be there”
> Not so on the desktop -> speculative multithreading

(Space Time Computing)

• Current simulator for high-end Sparc CMT which
has tens of threads
> Written in Java
> Cores are instantiated
> Not multithreaded yet!

Sun Proprietary/Confidential: Internal Use Only

Opportunities

• Communication latency is much better
> From 300-500 cycles (off-chip), to single digit (in core) to

20-25 (on-chip)
> Economics of parallelizing, amortizing thread creation

are greatly improved
> Scalability is much better
> Software bottlenecks are exposed!

Sun Proprietary/Confidential: Internal Use Only

Opportunities

• Synchronization
> Lots of work on transactional memory, lock elision, etc.
> Great for

> JVM
> Thread-safe (too safe) libraries
> Kernel
> Multi-threaded programs

> Also great for thread-level speculation
> Space Time Computing relied on tight atomics between on-

chip cores...

Sun Proprietary/Confidential: Internal Use Only

Conclusion

• We have to help programmers
> Language
> Transactional memory
> Automatic parallelization
> Speculative multithreading

