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Niagara – 32 threads
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Servers

• Tons of threads available
> Multi-threaded is also multi-process

• Examples
> J2EE based application server

> Already scales to tens of threads today
> Large database

> Easily scales to tens of threads today
> ECAD

> 100k jobs per day in our server ranch
> Searches

> Billions of threads/processes
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Single Application

• MAJC started in 1995
> Dual core, running Java, lots of “compute”
> Multithreaded program “will be there”
> Not so on the desktop -> speculative multithreading 

(Space Time Computing)

• Current simulator for high-end Sparc CMT which 
has tens of threads
> Written in Java
> Cores are instantiated
> Not multithreaded yet!
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Opportunities

• Communication latency is much better
> From 300-500 cycles (off-chip), to single digit (in core) to 

20-25 (on-chip)
> Economics of parallelizing, amortizing thread creation 

are greatly improved
> Scalability is much better
> Software bottlenecks are exposed!
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Opportunities

• Synchronization
> Lots of work on transactional memory, lock elision, etc.
> Great for

> JVM
> Thread-safe (too safe) libraries
> Kernel
> Multi-threaded programs

> Also great for thread-level speculation
> Space Time Computing relied on tight atomics between on-

chip cores...
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Conclusion

• We have to help programmers
> Language
> Transactional memory
> Automatic parallelization
> Speculative multithreading


