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PROVIDING MULTIPLE SUPERSCALAR CORE TYPES ON A CHIP, EACH TAILORED TO

DIFFERENT CLASSES OF INSTRUCTION-LEVEL BEHAVIOR, IS AN EXCITING DIRECTION FOR

INCREASING PROCESSOR PERFORMANCE AND ENERGY EFFICIENCY. UNFORTUNATELY,

PROCESSOR DESIGN AND VERIFICATION EFFORT INCREASES WITH EACH ADDITIONAL CORE

TYPE, LIMITING THE MICROARCHITECTURAL DIVERSITY THAT CAN BE PRACTICALLY

IMPLEMENTED. FABSCALAR AIMS TO AUTOMATE SUPERSCALAR CORE DESIGN, OPENING

UP PROCESSOR DESIGN TO MICROARCHITECTURAL DIVERSITY AND TS MANY OPPORTUNITIES.

e o o o o o The past decade has witnessed a
major transition from single-core to multi-
core processors. Multicore processors present
an exciting opportunity to exploit diversity
within and across applications by employing
microarchitecturally diverse superscalar core
types, in what is called a single-instruction-
set architecture (single-ISA) heterogeneous
multicore processor.” Program phases differ
in their instruction-level characteristics: the
amount and distribution of instruction-level
parallelism (ILP) and memory-level parallel-
ism (MLP), branch predictability, and
cache locality. We can improve performance
and power metrics by matching instruction-
level behavior to differently designed cores.
The core types may differ in their superscalar
fetch, dispatch, and issue widths, pipeline
depths, instruction scheduling (in-order or
out-of-order), sizes of units involved in
exposing ILP and MLP (issue queue, load
and store queues, physical register file, and
reorder buffer), function unit mix, and sizes
of predictors and caches.

Previous work in this area projects signif-
icant performance and power advantages for
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microarchitecturally diverse superscalar cores.
Yet, no prior research has addressed a crucial
drawback of this paradigm: design and veri-
fication effort is multiplied by the number
of different core types. This factor limits
the amount of microarchitectural diversity
that can be practically implemented.

In this article, we propose framing super-
scalar cores in a canonical form, so that it
becomes feasible to quickly design many
cores that differ in the three major super-
scalar dimensions: superscalar width, pipeline
depth, and sizes of structures for extracting
ILP (the frequency depends on these three
dimensions). We implemented our approach
in FabScalar, a novel toolset for automati-
cally composing the synthesizable register-
transfer-level (RTL) designs of arbitrary
cores within a canonical superscalar template.
Each canonical pipeline stage has many var-
iants that differ in their complexity (super-
scalar width and stage-specific structure
sizes) and depth of subpipelining, and
canonical pipeline stages are composable
into an overall core. Thus, FabScalar helps
mitigate practical issues that currently
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impede proliferating microarchitecturally di-
verse cores.

FabScalar

As Figure 1 shows, FabScalar consists of

e a canonical superscalar template, which

defines canonical pipeline stages;

a canonical pipeline-stage library (CPSL),
which contains many synthesizable
RTL designs of each canonical pipeline
stage; and

a core generator for automatically com-
posing the RTL designs of arbitrary
superscalar cores by referencing the

CPSL.

The different designs of a given canonical

pipeline stage vary along three major
dimensions:

o Superscalar complexity. A canonical

pipeline stage’s superscalar complexity
is a product of its superscalar width
(number of pipeline ways) and the
sizes of its associated ILP-extracting
structures (such as the issue queue,
physical register file, and predictors).
Increasing superscalar complexity

of customized core

P = . »
% synthesizable RTL D D

Register Read
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Figure 1. Generating a customized core with FabScalar. The toolset contains a canonical
superscalar template, a canonical pipeline-stage library, and a core generator.

could help extract more ILP in the pro-
gram, but it typically increases the logic
delay through the canonical pipeline
stage. The effect of increasing logic
delay on overall performance ultimately
depends on the next differentiating
factor.

o Subpipelining. A canonical pipeline
stage is nominally one cycle in dura-
tion, but could be subpipelined deeper
to achieve a higher clock frequency.

o Stage-specific design choices. Multiple
alternatives often exist for handling cer-
tain microarchitectural issues, such as
speculation alternatives, recovery alter-
natives, and so forth. These alternatives
present a range of costs and benefits;
moreover, the costs and benefits often
depend on specific instruction-level
behaviors in the program.

Verified synthesizable RTL is the essential
starting point for physical design, whether
using automated synthesis, place-and-route,
and memory compilers or full-custom design.
Industry is trending in the direction of syn-
thesis, ™ particularly for time-to-market sen-
sitive and soft-IP driven SoCs. Moreover,
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future technologies are less predictable, favor-
ing robust standard cells. The combination of
RTL design generators (such as FabScalar)
and physical design automation significantly
boosts designer productivity.

To be clear, because we're attacking the
design-effort problem, we ultimately intend
for FabScalar to be used for the design, ver-
ification, and fabrication of chips comprised
of microarchitecturally diverse superscalar
cores. Although it’s still in the academic
stages at this point, this is the trajectory
we’re aiming for. That said, FabScalar is
also useful for general computer architecture
research. In this article, we discuss this work’s
implications for both processor development
and architecture research.

Template and CPSL

Figure 1 shows the canonical superscalar
template defined by FabScalar. It consists
of nine canonical pipeline stages: Fetch, De-
code, Rename, Dispatch, Issue, Register
Read, Execute, Writeback, and Retire.

The CPSL ISA is the SimpleScalar ISA,* a
close derivative of the MIPS ISA (minus load
and branch delay slots).

The CPSL contains many synthesizable
RTL designs for each canonical pipeline
stage that differ in their superscalar width
and depth of subpipelining. Table 1 summa-
rizes the microarchitectural diversity available
in the current CPSL. The first column iden-
tifies the canonical pipeline stage. The sec-
ond column shows ranges of width and
depth. All front-end stages (Fetch through
Dispatch) and the Retire stage vary from
1-way to 8-way superscalar. The minimum
width of all back-end stages (Issue through
Weriteback) is currently 4 because at least
four different function units are required:
one each of simple arithmetic logic unit
(ALU), complex ALU, load/store port,
and branch unit. One can accommodate
narrower-issue widths by aggregating multi-
ple function-unit types into one execution
lane, which we left for future work. The
maximum width of all back-end stages is
8-way superscalar.

Table 1’s second column also shows
ranges of subpipelining depth. Subpipelining
was guided by natural logic boundaries within
each canonical pipeline stage design and

timing results from synthesis. Our paper
for the 38th IEEE/ACM International Sym-
posium on Computer Architecture describes
each stage’s partitioning in detail

The table’s third column lists the struc-
tures of each canonical pipeline stage. Sizes
of all stage-specific structures are parameter-
ized in the RTL description. Consequently,
their sizes can take on arbitrary values, and
no ranges are specified for them in the table’s
third column.

Table I’s final column considers another
dimension for microarchitectural diversity:
design choices specific to each canonical
pipeline stage. It’s outside this article’s
scope to cover all of these techniques in the
CPSL, at the level of synthesizable RTL
code. Nonetheless, we felt it would be of in-
terest to enumerate notable examples in
Table 1 to emphasize the potential for grow-
ing the CPSL in the future, and to under-
score the specificity with which one might
target microarchitectural diversity to specific
instruction-level behavior. For example, cer-
tain program phases will favor one branch-
misprediction recovery strategy over another
depending on the frequency of mispredicted
branches, their distribution, and the critical-
ity of their backward slices. As another exam-
ple, techniques that do not benefit subsets of
the workload space can be excluded from a
core to streamline its frequency and static
and dynamic power.

Methodology

Here, we summarize our methodology for
evaluating the quality of FabScalar-generated
cores. Table 2 shows the electronic design
automation (EDA) tools used for functional
verification, synthesis, and place-and-route.
For synthesis, we used the FreePDK 45-nm
standard cell library.®

Because specialized, highly-ported RAMs
and CAMs are so pervasive and essential to
a superscalar processor, we have developed
a tool (FabMem®) for generating their phys-
ical layouts and extracting timing, power,
and area. For simulation, RAMs and CAMs
are implemented with Verilog modules. For
synthesis and place-and-route, we use electri-
cal and physical views (in Liberty and Library
Exchange Formats, respectively) generated by
FabMem.



Table 1. Overview of stage designs available in the canonical pipeline-stage library (CPSL).

Canonical Dimensions Stage-specific structures
pipeline (W = width, D = depth) (sizes parameterized in
stage the RTL description) Microarchitectural approaches*
Fetch W=1t08 D=2to5 Branch or pattern history table Branch prediction algorithm
Fetch-1: 1 or 2 substages (BHT or PHT) No interleaving vs. two-way interleaving
Fetch-2: 1 to 3 substages Branch target buffer (BTB) Block-based BTB vs. interleaved BTB
Return address stack (RAS) Multicycle fetch:
Level-1 (L1) instruction cache Unpipelined
pipelined using block-ahead prediction
Decode W=1t08 D=1t03 Fetch queue Micro-operation cracking

Renameand W=1t08 D=1t03

Retire W=1t08 D=2
Dispatch W=1t08 D=1
Issue W=4t08 D=1t 3

Subpipelining variants:®
11, 211, 2/2, 3/3, 3/2

Register Read W =4t08 D=1to4
Execute W = 4 to 8, D = FU specific

No. of simple arithmetic logic
units (ALUs): 1to 5, D =1
No. of complex ALUs: 1, D = 3
No. of load/store ports: 1, D = 2
No. of branch units: 1, D = 1

W =410 8
D = matches Register Read

Writeback/

Rename map table (RMT)
Architectural map table (AMT)
No. of shadow map tables: 0 or 4
Free list

Active list

Physical register ready bit table

Issue queue (IQ) freelist
1Q

Physical register file
Load queue (LQ)
Store queue (SQ)
L1 data cache

Nonspeculative vs. speculative decode (if variable-
length instruction-set architecture [ISA])
AMT vs. no AMT
Branch misprediction recovery
checkpoint (shadow map)
handle like exception
walk active list forward from head
walk active list backward from tail
Exception recovery
restore RMT using AMT
restore RMT by walking active list backward
Freeing registers
read previous mapping from RMT, active list
pushes freelist
read previous mapping from AMT, AMT
pushes freelist
Collapsing 1Q vs. freelist-based 1Q
In-order vs. out-of-order
Collapsing 1Q vs. freelist-based 1Q
Multiple schedulers vs. single scheduler
Pipelined wakeup+-select:
one-cycle producers nonspeculatively
wake up dependents
one-cycle producers speculatively wake up
dependents
Load hit/miss:
predict hit always
predict miss always
hit predictor
Load conflict with unknown store address:
predict no conflict always
predict conflict always
memory dependence predictor
Recovery for speculative wakeup & load conflict
speculation:
replay from IQ
replay from replay buffer
handle like exception (squash)
Split stores
N/A
Store-load forwarding vs. no forwarding
Many LQ/SQ designs possible for reducing
associative searches (NLQ, SVW, SQIP)

Full bypasses vs. hierarchical or partial bypasses

* Bold text indicates specific design choices represented in the current CPSL.
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Table 2. Application-specific integrated circuit (ASIC) flow.

EDA tool used

Functional verification
Logic synthesis
Place-and-route

Cadence NC-Verilog, version 06.20-s006
Synopsys Design Compiler, version X-2005.09-SP3
Cadence SoC Encounter, version 7.1
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We use FabMem-generated RAMs and
CAM s for the rename map table, architectural
map table, active list, free list, fetch queue (sep-
arates the decode and rename stages), issue
queue wakeup CAM and payload RAM,
physical register file, load queue CAM and
RAM, and store queue CAM and RAM.

The Level-1 (L1) instruction and data
caches, branch target buffer (BTB), and con-
ditional branch predictor are handled simi-
larly, except that electrical and physical
views are derived from CACTI 5.1 data;
we adjusted CACTT’s device and wire
parameters to match those of FreePDK.

Each canonical pipeline stage has many
underlying implementations in the CPSL
that differ in their superscalar width and
depth of subpipelining. For each CPSL de-
sign, we performed multiple synthesis runs
with successively tighter timing constraints
until the constraint could not be met. In
this way, we converged upon the minimum
propagation delay.

Evaluating RTL quality

Here, we evaluate the quality of RTL
designs produced by FabScalar. We perform
validation along three fronts: functional and
instructions-per-cycle (IPC) validation, timing
validation, and suitability for physical design.

For functional and IPC validation, we gen-
erate a dozen different cores covering a range
of widths, sizes, and depths. They all success-
fully run 100 million instruction SimPoints of
SPEC integer benchmarks. The IPC results
are within expected ranges for SPEC, IPC dif-
ferences among cores correspond well with
their microarchitectural differences, and IPCs
closely track the IPCs produced by FabScalar’s
cycle-accurate C++ simulator.

For timing validation, we also evaluate the
quality of the RTL and FabMem in terms of
cycle time. We compare three commercial
reduced-instruction-set-computing (RISC)

superscalar  processors  with  similarly

configured FabScalar-generated cores. Vali-
dating cycle time is challenging and imperfect
for several reasons, including the following:

o Different technology nodes, technology
libraries, and foundry processes. We deal
with this issue by converting cycle time
into the number of fanout-of-4 (FO4)
inverter delays of the technology, yielding
a technology-independent comparison.

o Different degrees of custom design, includ-
ing the extent of circuit optimization, dy-
namic logic, and latch-based design for
accommodating logic partition imbalances.
We deal with this issue only partially by
employing multiported RAMs and
CAMs generated by FabMem. We
also draw comparisons with a commer-
cial fully synthesized embedded core at
one end of the spectrum. Regarding
latch-based design, in addition to com-
paring cycle time, we also examine raw
total logic delay through the pipeline
from Fetch to Execute.

o Different ISAs and unique microarchitec-
ture features. For example, the current
CPSL doesn’t have Issue-stage designs
with multiple schedulers (see Table 1,
last column) or replicated register files.
Multiple smaller schedulers reduce the
select logic delay by reducing the num-
ber of instructions contending for a
given execution lane, at the cost of
some load imbalance among the muld-
ple issue queues. More importantly,
when there are multiple function units
of the same type, providing each func-
tion unit with a dedicated issue queue
avoids cascading select trees, a big
delay savings. Replicated register files
reduce the number of read ports in
each register file copy, improving their
access times. Although the CPSL
doesn’t yet represent these techniques,
we can model their effect for timing
validation purposes by applying a
smaller and simpler issue queue and a
register file with fewer read ports.

Finally, for physical-design suitability, we
demonstrate the generated RTL’s suitability
for full synthesis and place-and-route by a
standard application-specific integrated cir-
cuit (ASIC) flow.



Table 3. Cores used for functional and instructions-per-cycle (IPC) validation experiments.
Parameter or Core Core Core Core Core Core Core Core Core Core Core Core
structure 1 2 3 4 5 6 7 8 9 10 11 12
Fetch/Decode/ 4 4 5 6 8 2 4 4 6 6 4 4

Rename/Dispatch
width
Issue/Register Read/ 4 6 5 6 8 4 4 4 6 6 4 6
Execute/Writeback/
Retire width
Function unit mix 1.1, 3.1, 2,1, &1l 51, 1,1, 1,1, 1.1, &1, 3,1, 1.1, 3,1,
(simple, complex, 1,1 1,1 1,1 1.1 1.1 1.1 1,1 1,1 1,1 1,1 1,1 1,1
branch, load/store)
Fetch queue 16 16 32 32 64 8 16 16 32 32 16 16
Active list (reorder 128 128 128 256 512 64 128 128 256 256 128 128
buffer [ROB])
Physical register file 96 128 128 192 512 64 96 96 192 192 96 128
(PRF)
1Q 32 32 32 64 128 16 16 32 64 64 32 32
LQ/SQ 32/32 32/32 32/32 32/32 32/32 16/16 32/32 32/32 32/32 32/32 32/32 32/32
Branch predictor Bimodal Bimodal with gshare
block-ahead
BHT (no. of entries) 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K 64K
BTB (no. of entries) 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K
RAS 16 16 16 32 64 8 16 16 32 32 16 16
Branch order buffer 16 16 32 32 32 8 16 16 32 32 16 16
(BOB)
Fetch depth 2 2 2 2 2 2 2 2 8 3 2 2
Rename depth 2 2 2 2 2 2 2 2 2 2 2 2
Issue depth: total/ 2/2 2/2 2/2 2/2 2/2 11 11 3/2 2/2 3/2 2/2 2/2
wakeup-select loop
Register Read (and 1 1 1 1 1 1 1 4 2 4 1 1
Writeback) depth
Fetch-to-execute 10 10 10 10 10 9 9 14 12 15 10 10
pipeline depth

Functional and IPC validation

We used the FabScalar tool to generate
the RTL designs for the 12 cores described
in Table 3.

We selected Cores 1 through 6 primarily
to explore stage widths and structure sizes.
Except for Core 6, depths are the same across
these cores. Core 6 is a particularly narrow
core (two-way superscalar in the front end).
Core 2 has different widths in the front
end (4) and the back end (6). Core 5 is a par-
ticularly wide core (eight-way superscalar
fetch and execute with large resources).

Cores 6 through 10 aim to explore depths
of stages and the fetch-to-execute pipeline
depth. Cores 7 and 8 resemble Core 1,

except that Core 7 is shallower (fetch-to-
execute = 9) and Core 8 is deeper (fetch-
to-execute = 14). They differ in their Issue
and Register Read depths. Cores 9 and 10
are unique in that their Fetch-1 substage of
Fetch is pipelined into two cycles, using
block-ahead branch prediction. This yields
a total Fetch depth of three cycles. Cores 9
and 10 differ in their Issue and Register
Read depths. Core 10 is the deepest of the
12 cores (fetch-to-execute = 15), although
not the deepest possible with the CPSL be-
cause Rename and Fetch (the Fetch-2
logic) can be deepened further.

Cores 11 and 12 are the same as Cores 1
and 2, respectively, except they use the gshare
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Figure 2. Results of executing 100-million instruction SimPoints of six benchmarks—bzip (a), gap (b), gzip (c), mcf (d),
parser (e), and vortex (f)—on the 12 cores. Results are shown for both RTL (“*Verilog'') and the cycle-accurate C++
simulator ("C++").
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instead of the bimodal branch predictor. Be-
cause the gshare predictor can only conven-
iently supply one branch prediction per
cycle, Fetch stage designs in the CPSL
employing gshare present a tradeoff between
slightly reducing fetch bandwidth and increas-
ing fetch accuracy.

Figure 2 shows the results of executing the
100-million instruction SimPoints of six
benchmarks. Results are shown for both
RTL (“Verilog”) and the cycle-accurate
C++ simulator (“C++7). Block-ahead predic-
tion is not yet implemented in the C++, so
its data points are missing for Cores 9 and
10. The first thing to note is that the cores
execute the benchmarks successfully. Second,
IPCs are within the norm for SPEC integer
benchmarks, especially considering the con-
servative method for recovering from load mis-
speculations (load issues before a conflicting
store) and branch mispredictions employed
by these cores. Third, the RTL and C++ fol-
low each other closely. The latter result
increases confidence in the RTL modeling of
the design: if performance anomalies are
observed, they’re more likely inherent in the
design rather than in the design’s RTL model.

Differences in IPCs among cores tend to
correspond with their microarchitectural dif-
ferences. For example, among Cores 1
through 5, we expect Core 5 to have the
highest IPC because it’s the most aggressive
core, the depths are the same, and no

negative cycle time consequences are applied
in an IPC-only comparison. Cores 8 and 10
are the deepest pipelines, and they have lower
IPCs than other configurations as a
result. Some pairwise comparisons of cores
could go either way owing to increasing
some parameters and decreasing others, lead-
ing to potentially nonmonotonic cores. For
example, Core 6 has the same or higher
IPC than Core 2 in all benchmarks except
bzip. Core 6 is narrow (two-way fetch) but
its advantage over other configurations is its
one-cycle wakeup-select loop. In the case of
bzip, however, there is apparently sufficient
ILP to outweigh the longer wakeup-select
loop.

Anomalies—for example, a more aggres-
sive core having lower IPC than a simpler
core of the same pipeline depth—are some-
times caused by more frequent load misspecu-
lations or branch mispredictions that stem
from larger window sizes. Extra recoveries
are performance debilitating when recovery

is a full squash from the head of the active list.

Timing validation

For timing validation, we compare cycle
times and fetch-to-execute delays of FabScalar-
generated cores with three commercial pro-
cessors: 90-nm Power5,” 180-nm Alpha
21364,° and 65-nm MIPS32 74K.> All
three implement RISC ISAs and represent
extremes from highly custom-designed to



Table 4. Delay comparisons of commercial processors with similarly configured FabScalar-generated cores.
Parameter or structure Power5 Alpha 21364 MIPS32 74K
Fetch width 8 4 4
Dispatch width 5 4 2
Issue width 8 6 1
Fetch queue 24 24 12
Issue queue(s) Int-+Ld/St: 36, FP: 24, Int: 20, FP: 15 Int: 8, Agen: 8
Br.: 12, CR: 10
Physical register file(s) Int: 120, FP: 120 Int: 80, FP: 72 64
Load queue/Store queue 32/32 32/32 8/8
L1 instruction cache/L1 data cache (Kbytes) 64/32 64/64 32/32
Fetch-to-execute pipeline depth 12 6 12
Cycle time of commercial core 23 FO4* 25 FO4 33 FO4
Cycle time of FabScalar core 29 FO4 37 FO4 32 FO4
Cycle time of deeper FabScalar core 25 FO4 (depth = 15) 26 FO4 (depth = 11) N/A
Raw fetch-to-execute delay of FabScalar core 291 FO4 188 FO4 384 FO4
G il aai Ebsen e ca i el bieiseneileedon e SR NS
* The time unit is the number of fanout-of-4 (FO4) inverter delays of the technology.

fully synthesized (MIPS32 74K). Table 4
shows the three processors’ major microarch-
itecture parameters.

All delays are converted into the number
of FO4 inverter delays for the underlying
technology. We obtained the number of
FO4 delays in a pipeline stage for each com-
mercial processor, from published data.>”®

Table 4’s shaded section shows delay
comparisons between the commercial cores
and similarly configured FabScalar-generated
cores. Five numbers are shown:

1. The commercial core’s cycle time.

2. Cycle time of the similarly configured
FabScalar core of the same pipeline depth.

3. Cycle time of a deeper version of the
FabScalar core, with its fetch-to-execute
pipeline depth shown in parentheses.
This shows how much additional sub-
pipelining is needed to compensate for
the FabScalar core’s lesser degree of cus-
tom design.

4. The FabScalar core’s raw fetch-to-
execute delay. This is the sum of propa-
gation delays of all the stages between
Fetch and Execute.

5. The final number is #4 above divided by
the commercial core’s fetch-to-execute
pipeline depth. This corresponds to the
FabScalar core’s hypothetical cycle time
if pipeline registers evenly divided up

the raw fetch-to-execute delay (no im-
balance among pipeline stages). This
cycle time is the best that could be
achieved with careful latch-based design,
for the same pipeline depth.

The FabScalar-Power5’s cycle time is rel-
atively close to that of the Power5: FO4 of
29 compared to 23, respectively. Slightly
deeper pipelining (15 deep instead of 12
deep) yields an even closer 25 FO4 cycle
time. We can also achieve the same cycle
time of 24 FO4 with ideal latch-based de-
sign. All these comparisons, and especially
the latter (raw fetch-to-execute delay), con-
firm that the FabScalar-generated RTL and
the FabMem-generated RAMs and CAMs
are of reasonable quality from a propagation-
delay standpoint.

We observe a larger difference for the
FabScalar-21364 and 21364: FO4 of 37
compared to 25. What's interesting is that
the 21364 has a cycle time close to the
Power5 despite the 21364 being half as
deep. This is partly due to lower superscalar
complexity of the older 21364, but it also
suggests a significant degree of total delay
optimization (Alpha processors gained a rep-
utation as “‘speed demons”). Indeed, the
deeper FabScalar-21364 needs nearly twice
the pipeline depth to reach the 21364 cycle
time, despite being similarly configured.
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Figure 3. Physical design of a four-way superscalar processor (a); the same design synthesized to a Virtex-5 field-

programmable gate array (b).
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The MIPS 74K is a fully synthesized de-
sign. This means that structures normally
implemented with custom RAMs and CAMs
are synthesized to flip-flops (except for
caches). Accordingly, for a fair comparison,
the delays for FabScalar-74K are also based
on synthesis alone: FabMem isn’t used.
The cycle times of these two fully synthesized
cores are nearly identical: FO4 of 32 for the
FabScalar-74K versus 33 for the 74K. That
both cores are fully synthesized, use virtually
the same ISA, and have the same cycle time
further supports the assertion that the RTL is
of reasonable quality from the propagation-
delay standpoint.

Suitability for standard ASIC flows

To demonstrate that we can take FabScalar-
generated RTL through standard ASIC
flows, we synthesized and placed-and-routed
a four-way superscalar processor. Figure 3a
shows the physical design.

We synthesized the same core to a Virtex-
5 field-programmable gate array (FPGA),

shown in Figure 3b. The FPGA prototype
matches Verilog simulation and is 2,000
to 5,000 times faster, achieving modeled-
processor frequencies of 7 to 15 MHz.

The future of processor design

The FabScalar project represents the first
attempt to automate superscalar processor
design (see the “Related Work in Core Gen-
erators and Superscalar Models” sidebar for
related efforts). In general, regardless of
where it has been applied, automation is
transformative because engineers can focus
on creatively using a technology rather than
the technology itself. It also puts the technol-
ogy into more people’s hands.

Superscalar processors have been success-
ful for many years because they exploit paral-
lelism transparently. Several factors lead us to
believe that now is the time to automate their
development.

First, we can. Academic and industry
practitioners have advanced superscalar pro-
cessors’ performance and efficiency, refined



Related Work in Core Generators and Superscalar Models

The lllinois Verilog Model (IVM) provides the Verilog for a semipara-
meterizable four-issue superscalar processor.' The current VM's draw-
backs are its unsynthesizable or poorly synthesizable (low-frequency)
Verilog modules. More impartantly, IVM's superscalar width and pipeline
depth are inflexible. These aspects aren't easily parameterized and re-
quire FabScalar's approach: an RTL generator that uses the canonical
superscalar template and canonical pipeline stage library (CPSL) to com-
pose a core of desired width and depth. Finally, FabScalar runs SPEC
benchmarks out of the box and has been validated in terms of instruc-
tions-per-cycle (IPC), cycle time, and synthesizability via standard appli-
cation-specific integrated circuit (ASIC) flows.

Strozek and Brooks developed a framework for high-level synthesis of
simple cores for embedded systems.? The Program-In-Chip-Out (PICO)
framework out of HP Labs is closely related in that it customizes very
long instruction word (VLIW) cores and nonprogrammable accelerators
for embedded applications.® Tensilica's Xtensa Configurable Processors
(http://www_tensilica.com/products/xtensa-customizable.htm) automate
the designer’s task of customizing instructions, functional units, and
even VLIW data paths. FabScalar is unique in that it generates complex
superscalar processors, which is evident in the novel composable CPSL.

Palacharla, Jouppi, and Smith developed models for estimating prop-
agation delays of key superscalar pipeline stages (rename, issue, and
bypasses).* Li et al. describe McPAT, a comprehensive power, area,
and timing modeling framewaork for multicore systems.> The timing mod-
els extend Palacharla’s approach to multiple microarchitectural styles.
FabScalar extends delay modeling to other critical pipeline stages
such as instruction fetch, arbitrary core logic, and the whole core; it

considers subpipelining and its imbalances; and it produces RTL imple-
mentations of cores. FabScalar's RTL output underscores a crucial dis-
tinction with computer architecture tools: FabScalar aims to streamline
the design, verification, and fabrication of chips—that is, it's meant to
serve as a development tool for designing heterogeneous multicore
chips, not just an estimation tool for research.
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our understanding of them, and classified
them. We understand them deeply and can
define a good template that unifies them
yet also facilitates diverse variants.

Second, technology is driving specializa-
tion and diversity. In the past, technology
scaling delivered faster and lower-energy
transistors at an exponential pace. It was rea-
sonable to overlook the fact that a single
generic microarchitecture leaves some perfor-
mance and power on the table for diverse
program phases. With technology no longer
delivering exponential efficiency gains, spe-
cializing the microarchitecture to instruc-
tion-level behavior is necessary to get the
most performance and energy efficiency
from silicon. To achieve an overall robust
processor, specialization must be coupled
with diversity: providing sufficiently many
specialized cores to cover arbitrary program
behaviors. The single-ISA heterogeneous

multicore paradigm is one response to spe-
cialization and diversity. Superscalar design
automation makes it more practical.
Finally, the smart-phone, tablet PC, and
embedded appliance markets demand super-
scalar performance, microarchitectural diver-
sity, and short time to market. The recent
introduction of superscalar-based application
processors in these devices is driven by increas-
ing software complexity (for example, the
ARM Cortex-A15, Qualcomm Scorpion and
Krait, AMD Bobcat, and MIPS 74K). Micro-
architectural diversity is driven by performance
and energy optimization within devices (sin-
gle-ISA heterogeneous multicore) and different
form factors across devices. Short time to mar-
ket is critical in high-growth markets. With
this in mind, the Bobcat and 74K designers
advocate automated synthesis and place-and-
route.” Synthesized application processors
are the logical conclusion of several factors:

MAY/JuNEe 2012



Top PICKS

ﬁﬂ [EEE MICRO

short time to market, soft-IP-rich designs,
lower-frequency operation of application
processors in the handheld market (1 to 2
GHz), unabated transistor miniaturization,
less-predictable technology (favoring robust
standard cells), and decades of investment
in CAD tools. Superscalar design automa-
tion coupled with physical design automa-
tion makes it possible to meet the demand
for superscalar performance and microarchi-
tectural diversity, with short time to market.

This work also has implications for com-
puter architecture research. Computer archi-
tecture research is increasingly driven by
technology-related problems (Moore’s law
scaling, power, temperature, reliability, and
variability). Open source synthesizable Veri-
log models of arbitrary superscalar processors
are invaluable because they enable exploring
architecture—technology interactions in a
complete context (whole pipelines), they en-
able sensitivity studies across different micro-
architecture configurations, and they increase
result fidelity and detail.

Additionally, FabScalar will enable the ex-
tensive use of whole-pipeline RTL models
for processor research. Although RTL mod-
eling might seem constraining, the con-
straints are of a nature that will likely
uncover surprising opportunities for micro-
architecture innovation. It’s enticing simply
to revisit alternative processor architectures
and techniques from past decades in the con-
text of RTL modeling. Coupling these with
heterogeneity offers even greater possibilities.
Past proposals discarded due to narrow ap-
plicability are by contrast valued in the con-
text of specialization and diversity. This isn’t
to mention the benefits of routinely quanti-
fying the cycle time, area, and power costs
and savings of new microarchitecture tech-
niques. We'll need a corresponding leap in
RTL simulation capability—namely, auto-
matic mapping of arbitrary superscalar con-
figurations to single FPGAs. The past
several years have witnessed significant prog-
ress in this area.” In this article, we proto-
typed a four-way superscalar core on a
single Virtex-5 FPGA, and since then we’ve
developed a tool that automates mapping ar-
bitrary configurations to the FPGA. The
FPGA prototypes are several orders of magni-
tude faster than Verilog and C++ simulation.

F abScalar streamlines the design of
superscalar cores through automation,
opening up processor design to microarchi-
tectural diversity and the many exciting
opportunities that it presents. As a research
tool, it puts the experience of hardware
prototyping within reach of more computer
architecture researchers and acts as a catalyst
for microarchitecture innovation by expres-
sing implementation constraints. We are
optimistic that, with further refinements and
enhancements, FabScalar will evolve into an
EDA tool with industrial applications.  HIf0
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