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Abstract—We propose synergistic software and hardware
mechanisms that alleviate the address translation overhead,
focusing particularly on virtualized execution. On the software
side, we propose contiguity-aware (CA) paging, a novel physical
memory allocation technique that creates larger-than-a-page
contiguous mappings while preserving the flexibility of demand
paging. CA paging applies to the hypervisor and guest OS
memory manager independently, as well as to native systems.
Moreover, CA paging benefits any address translation scheme
that leverages contiguous mappings. On the hardware side, we
propose SpOT, a simple micro-architectural mechanism to hide
TLB miss latency by exploiting the regularity of large contiguous
mappings to predict address translations in both native and
virtualized systems. We implement and emulate the proposed
techniques for the x86-64 architecture in Linux and KVM, and
evaluate them across a variety of memory-intensive workloads.
Our results show that: (i) CA paging is highly effective at creating
vast contiguous mappings, even when memory is fragmented, and
(ii) SpOT exploits the created contiguity and reduces address
translation overhead of nested paging from ∼16.5% to ∼0.9%.

Index Terms—virtualization, address translation, virtual mem-
ory, memory management

I. INTRODUCTION

Page-based address translation overheads are alleviated by

caching translations in Translation Look-aside Buffers (TLBs).

However, the growing demand for physical memory is limiting

the efficacy of TLBs, increasing the rate of costly TLB misses.

To make things worse, the adoption of virtualized cloud infras-

tructure amplifies these overheads. The state-of-practice MMU

virtualization technique (hardware-assisted nested paging [1])

requires two-dimensional address translation that increases the

TLB miss penalty up to 6× compared to native execution.

Looking forward, persistent memory will hugely increase

physical memory, requiring 5-level paging [2], further exacer-

bating the cost of TLB misses. Ideally, software and hardware

support for address translation should minimize overheads,

maintain memory availability with flexible allocations, avoid

memory waste by minimizing fragmentation and preserve

resource-saving mechanisms like demand paging and copy-

on-write, under both native and virtualized systems.

In response, industry has increased the page size and trans-

lation hardware [3]. We show that 2MB huge pages still fail

to cover the needs of irregular workloads, and nested paging

magnifies the problem. Even though increasing the page size

might seem tempting, larger pages increase internal fragmen-

tation and restrict fine-grained memory management [4]–[8].

Prior works [9]–[16] have shown the potential of breaking

the traditional page-based mapping between hardware transla-

tion and OS memory management. They usually exploit larger-

than-a-page contiguous mappings [17] but fail to achieve the

desired flexibility. For example, previous proposals rely on

pre-allocation [10], [11], which suffers from external frag-

mentation, and is antagonistic to demand paging. Additionally,

prior hardware schemes [11], [16] track the exact boundaries

of contiguous mappings, requiring complex extensions when

applied in virtualized execution. Finally, prior approaches for

increasing TLB reach have been limited by indexing and

alignment requirements [12]–[16] reducing their efficacy.

In this paper, we aim to reduce the address translation

overhead, focusing particularly on virtualized execution. We

generate and exploit larger-than-a-page contiguous mappings

while avoiding pre-allocation to preserve the flexibility of

existing paging-based mechanisms. We base our approach on

the key observation that contiguity can be expressed simply

through offsets, decoupling contiguous mappings from virtual

boundary checks. To capitalize on our observation, we take

a two-fold approach: (i) we introduce contiguity-aware (CA)
paging which promotes contiguity as a first-class citizen in

the OS memory manager, and (ii) we harvest the generated

contiguity to accelerate address translation via SpOT at the

microarchitecture level. Note that, these proposed mechanisms

can improve both native and virtualized execution.

CA paging enables the OS memory allocator to generate

contiguous mappings beyond the page-size limit, using min-

imal per-process metadata. Specifically, CA paging allocates

contiguous physical pages to map contiguous virtual memory

regions of processes, working across page faults and on a

best-effort basis. In this way, CA paging creates and extends

contiguous mappings gradually while preserving the increased

memory utilization and low tail latency of demand paging. CA

paging can improve the performance of any hardware design

that relies on contiguous mappings [11]–[16] and can be used

both in native and virtualized execution. Our results show that

CA paging significantly boosts the creation of vast contiguous

mappings, achieves performance similar to pre-allocation, and

outperforms it in the presence of external fragmentation.

Compared to asynchronous defragmentation [18], CA paging

operates on the allocation path and generates contiguity in-

stantly, increasing the opportunity to exploit contiguity and

avoiding the cost of the post-allocation page migrations.

515

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00050



Contiguous mapping

vma

O sset
VA

PA

(a)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

%
M

em
or

y 
Fo

ot
pr

in
t 

Consecutive Runs 

CAPaging

Ranger

Eager

(b)

0

20

40

60

80

100

120

%
M

em
or

y 
Fo

ot
pr

in
t 

Time 

CA Paging

Ranger

Eager

(c)

Fig. 1: (a) Larger-than-a-page contiguous virtual-to-physical mapping. (b,c) Trade-offs between pre-allocation (eager paging),

asynchronous defragmentation (ranger), and CA paging. (b) Pre-allocation suffers from external fragmentation, as the coverage

of 32 largest mappings drops when PageRank runs repetitively. (c) Asynchronous defragmentation delays contiguity generation.

To better exploit the large generated contiguous mappings

of CA paging, we propose Speculative Offset-based Address
Translation (SpOT). SpOT is a simple hardware mechanism on

the TLB miss path that speculates based on large contiguous

mappings to predict translations while performing verification

of page walks in the background. SpOT exploits the OS

provided contiguity at the micro-architectural level, requiring

minimal hardware support. In contrast to prior speculation

designs [19], [20], SpOT predicts translations far beyond the

huge page limit and is completely independent of virtual

addressing and alignment. SpOT supports both native and vir-

tualized systems. Our evaluation in a virtualized system shows

that SpOT combined with CA paging reduces the address

translation overhead of nested paging from ∼16.5% to ∼0.9%

on average. SpOT performs close to prior schemes [10], [11]

but without pre-allocation and complex virtualization exten-

sions at the architecture level. While speculation introduces

security concerns, SpOT uses the same generic mitigation

mechanisms proposed [21], [22] for other speculation attacks.

II. BACKGROUND

Virtualization introduces an extra layer of indirection between

guest applications and physical memory: (i) the guest virtual

(gVA), (ii) the guest physical (gPA), and (iii) the host physical

(hPA) address space. With nested paging [1], the guest OS con-

trols guest page tables (gPT) that hold gVA→gPA mappings,

and the hypervisor maintains nested page tables (nPT) that

hold gPA→hPA mappings independently. In case of a TLB

miss, the 2D address translation (gVA→hPA) is retrieved by

the hardware, which walks both tables in a nested fashion,

requiring up to 24 memory references.

Huge pages increase the TLB reach and decrease the page

walk latency by reducing the required memory accesses. Their

efficiency [23] has made them the state-of-practice mitigation

technique and modern operating systems support transpar-

ently 2MB pages (e.g., THP [24]). However, they still fail

to eliminate translation overheads for big-memory irregular

workloads. Section VI shows that ∼16.5% of applications

execution time is still spent in nested page walks even when

>99% of their footprints is backed by 2MB.

Huge page sizes larger than 2MB can push the translation

performance barrier further away. In x86-64, though, the out-

of-the-box eligible sizes are 1GB and 512GB due to the page

table layout. However, such huge gaps bear challenges. First,

paged translation requires alignment, but large aligned free

blocks quickly become scarce in long running systems [18].

Moreover, transparent management is not straightforward.

For example, intermediate sized mappings will either use

larger pages wasting physical resources or will use multiple

smaller ones suffering from translation penalties. In fact, all

considerations around 2MB management, including page fault

tail latency, fairness, and NUMA placement [4]–[8], manifest

more severely as the page size increases.

Segmentation. Direct Segments [9], [10] use segmentation for

a primary virtual region of an application that is contiguously

mapped to a physical segment. Paging for that region is

disabled but not for the rest of the virtual address space. The

translation for addresses falling into the region is fast but the

method is rigid in terms of memory management as segment

memory cannot be reclaimed until the application terminates.

Contiguous mappings. State-of-the-art approaches [11]–[16]

preserve paging and increase the TLB reach by leveraging

contiguous mappings, i.e., contiguous virtual pages mapped to

contiguous physical pages (Figure1a). TLB coalescing [12]–

[14], [16] compacts such mappings to a single translation entry

cached to slightly modified TLBs. However, it provides limited

reach due to indexing and alignment restrictions. Redundant

Memory Mappings (RMM) [11] extend Direct Segments by

introducing range translations, i.e., [Base,Limit,Offset] repre-

sentations of unaligned mappings with unlimited size, redun-

dant to paging. However, RMM relies on pre-allocation and

requires complex extensions to track and retrieve the exact

boundaries of contiguous mappings (Section IV).

III. SOFTWARE TECHNIQUE: CONTIGUITY-AWARE PAGING

A. Key design concepts

All the state-of-the-art techniques that increase TLB reach

require contiguity across pages [11]–[16]. Prior proposals lie

on two extremes: they either rely on randomly generated conti-

guity [12]–[14], [16], or on brute-force pre-allocation schemes

via reservation [9], [10] and eager paging [11]. The former

clearly wastes opportunities for contiguity, while the latter

abandons key OS mechanisms for flexible memory allocation

and is sensitive to external fragmentation. Translation Ranger

[18] is a recent technique that creates contiguity performing

asynchronous and iterative memory defragmentation. A system

daemon scans periodically process memory and migrates ran-

dom physical pages to contiguous ones. Ranger is an effective

contiguity mechanism, but migrations may delay to coalesce
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an application’s footprint; migrations also penalize memory

accesses latency and trigger costly TLB shootdowns [25], [26].

We propose CA paging, an extension to the core OS

memory manager that operates at allocation time and creates

large contiguous mappings preserving the flexibility of demand

paging. Figure 1b shows the percentage of the PageRank’s

memory footprint that is covered by the 32 largest contiguous

mappings for 10 consecutive runs of the benchmark (Sec-

tion V describes our methodology in detail). We observe that

eager paging is sensitive to external fragmentation as the

coverage drops progressively. CA paging, instead, sustains

contiguity, harvesting unaligned physical contiguity in the

system. Figure 1c shows the percentage of XSBench’s memory

footprint that is covered by the 32 largest contiguous mappings

during the entire execution of the benchmark. We observe

that Ranger’s migrations delay to coalesce the application’s

footprint to contiguous memory. CA paging, instead, avoids

unnecessary post-allocation migrations harvesting the system’s

available contiguity at page fault time.

B. Overview of CA paging

Contiguity-aware (CA) paging relies on the existing demand

paging mechanism, but instead of allocating physical pages

randomly, it steers the allocation of physical pages to create

contiguous mappings. We introduce lightweight mechanisms

and policies to the core physical OS allocator to lazily create

vast contiguous mappings across page faults. CA paging

requires minimal metadata, i.e., an Offset per virtual memory

area (VMA) and a system-wide contiguity map. To decide

the placement of a VMA’s pages, CA paging uses a next-fit

policy. CA paging deals with external fragmentation, supports

multithreaded applications, and serves all common page fault

types. We design and prototype CA paging in Linux for native

and virtualized systems with KVM nested paging.

Demand Paging. Process VMAs are contiguous virtual ad-

dress ranges, not necessarily backed by physical memory,

represented by the vma struct in Linux. The OS allocates

physical memory on demand, when each virtual page of

a VMA is touched for the first time. The core memory

manager is a power-of-two buddy allocator, maintaining [0,

MAX ORDER] lists. Each list is populated by free aligned

blocks of 2order pages. Allocation requests are served by

the first available block of order 0 (4KB) or order 9 (2MB

pages [24]) lists. Demand paging enables flexible memory

management, but its random page allocations inhibit the cre-

ation of large contiguous mappings. Similar mechanisms are

used by other OSes and hypervisors for demand paging.

Basic mechanism. CA paging leverages the unaligned and un-

limited Offset representation of larger-than-a-page contiguous

virtual-to-physical mappings. Offset is defined as the common

[virtual address−physical address] identifier for all pages

belonging to the same mapping. CA paging tracks the Offset of

the first page mapping created for each VMA (first page fault)

and stores it as minimal metadata to the corresponding vma
struct. On a future fault in the same VMA, CA paging uses

the Offset to identify a target physical page for allocation. It
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Fig. 2: Overview of contiguity-aware paging.

examines the occupational status of the target page, and if free,

allocates it, extending the current VMA mapping contiguity.

Figure 2a illustrates how CA paging exploits the notion of

Offset to perform contiguous allocations.

CA paging examines the availability of the target page rely-

ing completely on existing OS metadata. In Linux, it retrieves a

handle to the target page’s structure using the system memory

map (mem_map), indexed by page physical address. Dedicated

attributes (_mapcount, _count) indicate if the target page

is already in use. If the target page is free, it can be of the

requested size or part of a larger block. In the latter case,

CA paging splits the block using the default buddy allocator

routine. In both cases, it retrieves the target page from buddy’s

lists (Figure 2b). CA paging is independent to the allocation

order and serves both 4KB and 2MB page faults.

Contiguity Map. The first page allocation for a VMA can

greatly affect the later-on generated contiguity. To maximize

contiguity, CA paging directs the mapping to a region of the

physical memory where there is enough free contiguity. To

achieve this, a map of the system’s free contiguous space

is necessary. In Linux, the maximum size of tracked free

memory is limited by the MAX ORDER attribute. Typically

that equals to 11, and the allocator maintains up to 4MB

aligned free blocks. Prior research [11] proposes increasing

MAX ORDER but that approach is sensitive to external

fragmentation (Section VI-A).

We introduce the contiguity map, an indexing structure on

top of the buddy allocator’s MAX ORDER list (Figure 3) to

record unaligned contiguity at scales larger than the buddy

heap. Each entry of the map represents a variable length

sequence (cluster) of free MAX ORDER blocks. It stores the

starting physical address and the total size of the cluster. Up-

dates to the map are triggered by all insertions/deletions to the

corresponding buddy list. To avoid search operations on every

update, all physically indexed base blocks of a cluster point to

their corresponding contiguity map entry (re-purposing the

existing mapping attribute of the page struct which is

not used when a page is free). We currently implement the

map as a linked list sorted by physical address. Even if a

tree could yield better performance, our evaluation shows that

keeping the map up to date does not affect performance. A

separate contiguity map instance is maintained per NUMA

node (struct zone), as the OS maintains a separate buddy

instance per NUMA node.
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C. CA paging Mechanism

Placing the first page. During the first page fault for a VMA,

CA paging searches the contiguity map for a free physical

region that could fit it. Using the total VMA size as a key,

it applies the next-fit placement policy; it searches for an

available free block of the requested size, starting from where

it left off the previous time. If no block larger or equal to the

requested size is available, next-fit selects the largest found.

CA paging allocates the first page of the selected region and

sets the Offset attribute of the corresponding vma struct.

Figure 4 visualizes the steps following the first fault in a VMA.

Note that with CA paging, unlike the traditional segmentation

case, a placement decision does not result in the allocation of

the entire VMA. Instead, CA paging directs the forthcoming

page faults of the same source VMA to the selected free block

through the Offset attribute (best effort approach).

As CA paging does not allocate memory beyond the page

size, competition for the same free blocks can arise when

multiple faults by different processes or different VMAs of

the same process trigger placement decisions. We opt for next-

fit policy because it can defer such racing. The block that is

selected to serve a placement request is the last one to be

considered for the next request. To implement next-fit, we use

a simple rover pointer over the contiguity map.

Handling unsuccessful CA allocations. A CA paging allo-

cation target may be unavailable, either because the end of a

free physical block is reached or some other running process

has allocated the target page. Upon failure, if the fault is for

a huge page, CA paging runs again the placement decision

routine using as key the size of the remaining unmapped VMA

region (see below sub-VMA placement) and tracks the new

Offset. If, instead, the fault is for a 4KB page, CA falls back

to the default arbitrary allocation mechanism and skips the

Offset tracking. Making decisions on top of huge pages is

more effective when targeting vast contiguous mappings. Also

huge allocations amortize placement overhead as they include

costly large block zeroing operations.

Dealing with external fragmentation. If there is no available

free block to fit an entire VMA (due to external fragmentation),

CA paging makes multiple sub-VMA placement decisions and

distributes the VMA to multiple smaller free physical blocks.

The sub-placement decisions are triggered by unsuccessful

allocation attempts (see above). In such scenarios CA paging

performance depends on the fault pattern. To support multiple

sub-VMA regions, we track multiple Offsets per VMA (instead

of a single one) combined with the virtual address of the

fault that created them. During a page fault, CA paging picks
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Fig. 4: Placement avoids fragmented regions: 1) first page fault

2) contiguity map search for free region, 3) allocation, 4)

Offset update, 5) next-fit rover pointer update.

the Offset associated with the virtual address closest to the

currently faulting. To control the search latency we track up

to 64 Offsets per VMA and apply a FIFO policy.

To restrain fragmentation, we also apply a general opti-

mization. We keep the MAX ORDER buddy list sorted by

physical address, using neighbors address computation and

recursive logic for fast operation (similar to buddy coalescing).

This sorting prevents small random (4KB) page allocations

(e.g., the fallback path for CA failures) from using scattered

physical pages and fragmenting large free contiguous blocks.

As discussed in Section VI, CA paging acts as a prevention

strategy with respect to external fragmentation. Keeping an

application’s footprint coalesced and isolated from other pro-

cesses reduces the fragmentation of the physical address space.

Avoiding multithreading pitfalls. In multithreaded appli-

cations, different threads may fault concurrently triggering

parallel allocations for different virtual addresses. We use

spin locks to protect CA paging VMA metadata updates.

Nevertheless, concurrent allocations inside the same VMA

stress the Offset selection of CA paging. For example, if two

different threads fault for virtual addresses of the same sub-

VMA region and both fail (target physical pages occupied),

they will both trigger re-placement decisions. Without proper

handling, this race results in multiple Offset updates for the

same region and unnecessarily stresses the next-fit mechanism.

To handle such cases and support concurrent faults, CA

paging allows only the first thread that enters the allocation

path to trigger a re-placement and Offset update in case of a

failure (with an atomic flag per VMA). If another thread fails,

there are two options: (i) fallback to the default allocation,

or (ii) retry until replacement is allowed or the allocation

succeeds. We choose the latter to not penalize fault latency.

Supported faults. CA paging supports all anonymous and

copy-on-write (4KB or 2MB) page faults, preserving demand

paging. CA paging works also for the readahead alloca-

tions of the system’s page cache, tracking an Offset attribute

per file (struct address_space). Page cache mappings

improve the performance of applications that use memory-

mapped files. However, readahead allocations are usually

interleaved with anonymous faults, as applications tend to read

file data to populate heap structures. Moreover, page cache

mappings tend to outlive processes, increasing the possibility

to be reused. If they are scattered, they tend to fragment the

physical address space. Instead, CA paging allocates them

contiguously restraining fragmentation.
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Virtualized execution. As CA paging is embedded in the

OS memory management, it is applied in each dimension

(guest/host) independently, elegantly enabling contiguous allo-

cations to span the virtualization level and complying to nested

paging. In the guest OS, it boosts the creation of gVA→gPA

contiguous mappings across guest page faults (1st dimension)

and in the host, the creation of gPA→hPA across nested faults

(2nd dimension). A larger-than-a-page mapping is effectively

contiguous, only if contiguous in both dimensions.

Independently using CA paging in each dimension creates

such mappings on a best-effort basis. On a freshly booted

virtual machine (VM), all guest page faults lead to nested

faults as the guest physical pages are not mapped to host

physical memory. In this early phase, CA paging is triggered in

both dimensions consecutively. However, with nested paging

the mappings of the second dimension (gPA→hPA) remain

as long as the virtual machine is alive or until the host OS

reclaims them. Thus, the 2nd dimension contiguity persists

as a VM ages, while the guest CA paging creates new 1st

dimension contiguous mappings for new applications running

inside the VM. This leads to a less controlled generation of

full 2D contiguous mappings, e.g., 1st and 2nd dimension

mappings can be unaligned, smaller or larger with respect

to each other (Figure 5). Our experiments indicate that CA

though is still effective and creates significant 2D contiguity.

D. Discussion

VMA size. CA paging targets big-memory applications that

suffer from high translation overheads. Such applications

typically have a few large VMAs. If an application has mul-

tiple small VMAs, CA paging will inherently create multiple

contiguous mappings due to the discontinuities in its virtual

address space. Such applications may not benefit from the

translation schemes that CA paging supports.

Reservation. Under severe memory pressure, different pro-

cesses or VMAs may end up competing for the same scarce

contiguous physical blocks. To shield contiguity, CA paging

could employ reservation [15], [27]. In this paper we opt for

best-effort strategies and consider reservation for future work.

IV. HARDWARE TECHNIQUE: SPECULATIVE

OFFSET-BASED ADDRESS TRANSLATION

To exploit the contiguity of CA paging and improve appli-

cation performance, we propose Speculative Offset-Based Ad-
dress translation (SpOT), a simple micro-architectural mech-

anism to predict missing address translations.

A. Motivation

Any address translation scheme that leverages contiguous

mappings [11]–[16] benefits from CA paging (Table I). How-

ever, the goal of our work is to mitigate translation costs

in the challenging setup of virtualization. In this scope, we

find that the most prominent, high performant and paging

compatible, proposals [11], [16], were originally proposed

for native execution. Their complex design [11] or alignment

restrictions [16], though, make them expensive or less ef-

fective for virtualization. In response, we propose SpOT, a

micro-architectural speculation mechanism that predicts ad-

dress translation with minimal and simple hardware support,

sustains comparable performance, and supports both native

and virtualized systems.

RMM [11] is extremely effective in capturing contiguity

through range translations. However, RMM requires extensive

architectural support analogous to and redundant to paging: a

hardware range TLB per processor, OS-managed range tables

per process, and hardware range table walkers. Virtualizing

RMM (named as vRMM in this paper) would require a

mechanism to traverse the ranges of both dimensions and

retrieve a full 2D (gVA→hPA) range translation to be cached

in the range TLB (Figure 5). A straightforward implementation

of vRMM would add nested range tables per virtual machine

and include hardware walkers to perform nested range walks.

However, nested walking of the range tables is challenging

as they are B-trees. Moreover, guest/host ranges would often

mismatch in their size and alignment, i.e., one guest range may

be backed by two or multiple host ranges. Therefore the nested

walker should include logic to intersect guest and host ranges.

All this additional overhead to an already complex and most

importantly redundant design makes vRMM a less appealing

design choice for adoption by processor vendors.

Hybrid coalescing [16], on the other hand, combines contigu-

ous page translations into one translation entry, and augments

TLBs to hold both coalesced and regular page translations. The

coalesced entries are aligned at variable granularity (anchor

distance). The OS stores the coalesced entries in modified

page tables, and dynamically adjusts the anchor distance to

reflect the process’s average contiguity. Virtualizing hybrid

coalescing (named as vHC in this paper) involves separate

anchor distances for the guest and the host OS and therefore

would require: (i) the hypervisor to maintain the host coalesced

entries in the nested page tables, and (ii) an augmented nested

page walker to intersect guest/host entries and calculate the

2D coalesced entry, respecting guest alignment. Even though

the nested walk complexity increases, vHC requires simpler

architectural support than vRMM. However, vHC suffers from

its alignment restrictions. Table I shows the number of vRMM
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ranges and vHC coalesced entries required to cover the 99%

of big-memory workload’s footprint in virtualized execution.

We observe that CA successfully supports both techniques,

significantly reducing the total number of entries for both

methods compared to default THP. However, we observe that

vHC fails to fully exploit the contiguity generated by CA as

the anchor entries are 38× compared to ranges. This is due

to the method’s virtual alignment restrictions, confirming the

important performance potential of unaligned contiguity.

Observation. We find that the root cause of vRMM’s com-

plexity and vHC’s low performance potential is the require-

ment for explicit tracking of the mappings’ virtual and physical

boundaries. We pose the research question: Can we have high
performance translation leveraging unaligned contiguity of
unlimited size with simpler hardware support? Figure 5 shows

the key idea of SpOT; instead of tracking mappings boundaries

in guest and host, SpOT tracks only gVA→hPA offsets (red

arrows) and uses them to predict missing address translations.

B. Overview of SpOT

We present SpOT in the context of virtualized execution as

its operation in native execution can be inferred in a straight-

forward manner. SpOT works on the micro-architectural level

and it primarily consists of a simple prediction table that

caches [2D offset, permissions] translation tuples (Figure

6a). Each offset maps from gVA→hPA and is dynamically

calculated and stored in the prediction table by the nested

page walker (HW) at the end of the walk for a missing gVA

translation. On a last level TLB miss, SpOT uses the offset

Mem. default THP CA paging
(GB) Ranges vHC entries Ranges vHC entries

SVM 29G 3759 6224 10 422
PageRank 78G 37453 39355 11 828
hashjoin 102G 4152 4260 7 403
XSBench 122G 4658 4968 11 644
BT 931 7061

geomean - 7223 8485 23 914

TABLE I: Number of ranges (vRMM), and anchor entries

(vHC) to map 99% of the footprint of big-memory workloads,

using (i) default THP, (ii) CA paging in virtualized execution.

generated by the previous TLB miss of the same memory in-

struction and predicts a host physical address (hPA). In a sense,

SpOT speculates that the specific instruction is accessing a

contiguously mapped range of pages and transparently tracks

its corresponding offset to perform predictions. SpOT feeds

the processor with the predicted hPA to continue execution in

a speculative mode and the verification page walk happens in

background. Thus, SpOT hides the latency of page walks.

Speculating address translation has been proposed by

SpecTLB [19] and Glue [20]. SpOT, albeit motivated by those

designs, differs in some key ways. Their target is to predict

the physical addresses of multiple reserved (SpecTLB) or

splintered (Glue) base 4KB pages that belong to a huge 2MB

page. Because such base pages are aligned with respect to their

huge page boundaries, they are promoted to a single specu-

lative huge page TLB translation entry. Hence, SpecTLB and

Glue target to sustain huge page performance under different

memory management conditions. We are the first, on the other

hand, to leverage speculation to exploit unaligned, larger-than-

a-(huge)-page contiguous mappings while completely avoiding

the complexity of maintaining them in software (OS) and

hardware. SpOT targets to predict translations far beyond the

huge page limit and the mechanism is completely independent

to virtual addressing and alignment. In a sense, SpOT builds

on top of the idea of range translations without tracking them;

instead it exploits instructions memory locality combined with

inferred mappings contiguity to predict translations. Finally,

SpOT’s prediction mechanism bears similarities to SIPT [28]

as they both use a PC indexed prediction table of offsets, but

they target different problems and use different mechanisms.

SIPT targets to speculatively index larger L1 data caches,

predicts just a few (e.g., 1-3) bits of a physical address,

and requires a complex perceptron confidence mechanism to

throttle mispredictions. Instead, SpOT targets to predict the

entire physical address translation to hide the cost of TLB

misses without any complex confidence mechanism.

C. SpOT Mechanism

Prediction Table. To lookup and fill the prediction table with

offsets, we use the program counter (PC) for indexing and tag

matching. Only a few instructions are typically responsible for

most TLB misses and therefore PC-indexing keeps the table
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size small (64 entries in our experiments). It also serves the

core idea of SpOT to correlate instructions with contiguous

mappings. In the presence of a contiguity-aware allocator

(CA paging) and thanks to locality, each memory instruction

usually performs accesses (regular or irregular) inside a con-

tiguously mapped range of pages at different execution phases.

TLB miss path. We consider address translation specula-

tion only for the last-level TLB misses. Such misses trigger

both the default nested page walk and a parallel lookup in

SpOT’s separate prediction engine (Figure 6b). SpOT uses

the [offset,permissions] retrieved by the prediction table to

predict a host physical address (hPA) translation for the

guest virtual address (gVA) that caused the miss (Figure 6a).

It subtracts the offset from the gVA and predicts a spec
hPA = gV A − offset. It also speculates that this memory

access will have the same permission rights as the previous

access of the same instruction. Then it feeds the processor

with the spec hPA to continue its execution but in speculative

mode. It is worth mentioning that unlike previous designs [20],

we do not fetch the predicted translation in the regular TLB

hierarchy, leaving the TLB design intact.

As the speculative execution proceeds, the verification

nested page walk happens in the background (Figure 6b,

6c). When the walk completes, the spec hPA is compared

to the original hPA retrieved from the nested page table

entry (NPTE) and two scenarios exist: (i) the speculation was

correct and SpOT managed to hide the walk latency with

useful speculative execution, (ii) the speculation was incorrect
and SpOT must flush the pipeline and replay the memory

instruction. Flush is necessary because following instructions

may have consumed incorrect data. Incorrect predictions (mis-

predictions) affect performance, as the cost of flushing is added

on top of the regular nested page walk latency.

Prediction table fills. The prediction table is updated at

the end of a nested page walk. The offset of the missing

translation is calculated (offset = gV A−hPA) and fetched

in the table along with the permission rights of the access. To

minimize possible PC conflicts, SpOT’s prediction table is a

set associative structure and uses an LRU replacement policy.

Building confidence. As mis-predictions restricts SpOT’s

effectiveness, we add a 2-bit saturating counter for each

prediction entry. When an offset is firstly fetched into the

prediction table the counter is set to 1. Correct predictions

increase the counter by 1 and mis-predictions decrease it.

Predicted physical addresses are fed to the processor only

when the counter is >1. When the counter is <=1 no spec-

ulation is performed. Predictions, though, are still calculated

and compared to the original hPA at the end of each nested

page walk to update the confidence counters. Finally, an entry

is replaced with a new offset only when the counter equals 0.

Preventing thrashing. To further boost SpOT accuracy, we

involve the OS into filtering offsets with low prediction

potential. If the prediction table is updated on every TLB miss,

offsets that do not belong to large contiguous mappings may

thrash it. Such offsets will never gain confidence to enable

predictions and will evict valuable offsets from the table.

We mark translations that belong to larger contiguous map-

pings using a reserved bit in their corresponding page table

entry (PTE), similar to [11]. In detail, the OS (CA paging)

sets this bit at the end of a successful allocation (page fault)

when updating the PTE. The OS checks if the neighboring

PTEs have the bit set, i.e., belong to contiguous physical

pages. If that bit is not set, the OS examines whether the last

allocation extended a contiguous mapping beyond a threshold
size. If so, the OS sets the bit to all PTEs that belong to

that contiguous mapping, establishing its offset as candidate to

trigger predictions. Even CA paging could dynamically adjust

the threshold based on its contiguity statistics, we currently

empirically set it to 32 contiguous pages. With nested paging,

the guest and host OS sets the bit in the gPTs and nPTs,

and the nested page walker updates the prediction table only

if both bits are set. This optimization crosses the border of

micro-architecture but we consider it a very simple and cheap

mechanism. Note that even if the OS is involved, still the

accurate size and boundaries of contiguous mappings are not

calculated or tracked.

Hiding the verification page walk cost. With SpOT the

page walk can be entirely or partially overlapped with useful

work in case of correct prediction. Useful work can include

prefetching data using the speculative address translation,

overlapping the page walk with the data fetch cost [20], [29],

[30]. In case the processor allows aggressive speculative exe-

cution, it can execute instructions that depend on the missing

translation/data, increasing further performance opportunity.

D. Security Considerations

Speculation has been identified as a source of security

vulnerabilities through cache side-channel attacks [31], [32].

Transient unsafe loads (USLs [32]) executed at a hardware

mis-speculated control/data path can transmit secret data via

micro-architectural covert channels before the mis-speculation

is resolved. In example, USLs are the loads that are executed

after branch predictions (Spectre attacks [33]) or the loads

executed after exceptions (Meltdown attacks [34]). SpOT

introduces a new unsafe memory instruction, i.e., load miss-

ing in the TLB, that an attacker can exploit to read data

from unauthorized memory locations. The loads that follow

a SpOT prediction are considered USLs until the prediction

is verified. Fortunately, proposed mitigation techniques [21],

[22], [35] for Spectre/Meltdown-type attacks also mitigate

SpOT’s vulnerabilities. Specifically, those techniques fetch

and keep the data of USLs in a speculative buffer and do

not commit their changes to the cache hierarchy until the

loads are considered safe. Preventing USLs from changing

the cache micro-architectural state effectively blocks all cache

side channel attacks. Note that such mitigation techniques are

necessary for secure execution regardless of SpOT’s presence.

Section VI-B discusses the performance impact of SpOT when

such mitigation techniques are employed. Finally, SpOT does

not speculatively change the TLB state, so no additional

mitigation for MMU attacks [36] is required.
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Native Environment

Processors 2-socket Intel Xeon CPU E5-2630 v4 (Broadwell)
10 cores/socket, hyperthreading disabled, 2.2GHz

L1 DTLB 4K: 64-entry, 4-way set associative
2M: 32-entry, 4-way set associative

L2 DTLB 4K/2M: 1536-entry, 6-way set associative

Memory 256G (128G per socket)

OS Debian Linux v4.19

Fully-Virtualized Environment

VMM QEMU (KVM) v2.1.2 20vCPUS 2-socket

Memory 256G (128G per socket)

Host/Guest OS Debian Linux v4.19

Emulated hardware

Direct Segment Dual direct mode (single 2D segment)

vRMM Range TLB: 32-entry, fully associative

SpOT Prediction Table: 32-entry, 4-way set associative

TABLE II: System Configuration.

V. METHODOLOGY

OS prototype and server machine. We prototype CA paging

in Linux v4.19 for anonymous/copy-on-write page faults and

page cache allocations. We use Qemu/KVM v2.1.2 for virtu-

alized execution. Our code and scripts are publicly available

on GitHub1. Table II summarizes the configuration details of

our experimentation system. In our study, we focus only on

the costly L2 STLB misses that trigger page walks; hence, we

refer to those as TLB misses for simplicity.

Contiguity results. We collect statistics for contiguous map-

pings through page table information. We use the standard

pagemap [37] API for native execution, and we develop an

in-house virtual-machine introspection (VMI) tool with similar

functionality for virtualized execution. For the latter, the guest

OS exposes the application’s guest page table to the host

(registering its location in the guest physical address space),

and then the host reads and combines the guest and the nested

page tables info to calculate a full 2D translation.

Hardware emulation. We emulate various hardware address

translation schemes by instrumenting the TLB misses that

trigger page walks in our real system as applications run with

BadgerTrap [38] in the guest OS. BadgerTrap uses page table

marking to force TLB misses to cause page faults and enables

hardware emulation in special fault handlers. For SpOT, we

use a 4-way set associative prediction table of 32 entries. For

Direct Segments (DS), we use the dual direct mode [10] that

allows direct 2D gVA→hPA translation through a single direct

segment. For vRMM, we use a fully-associative range TLB of

32 entries and we implement the guest and nested range tables

as flat arrays, rather than B-trees. To identify the boundaries

of 2D translations inside the guest OS, we expose the nested

range table to the guest at a reserved guest physical address

area, using the standard nested page tables.

Performance model. We collect statistics from performance

counters with perf (CPU cycles, TLB misses, page walk

1https://github.com/cslab-ntua/contiguity-isca2020.git

Workloads

OpenMP
(10 threads)

hashjoin microbenchmark 102G

XSBench [39] 128G

Serial
Liblinear SVM [40], kdd12 dataset 29G

Ligra PageRank [41], friendster graph [42] 78G

BT (NPBe [43]) class E 167G

TABLE III: Workloads description and memory footprint.
Performance Model

Ideal execution time Tideal = TTHP − CTHP

Native 4K/THP overhead O4K/THP = C4K/THP /Tideal

Virtual. 4K/THP overhead Ov4K/vTHP = Cv4K/vTHP /Tideal

vRMM overhead OvRMM =(MSIM ∗ AvgCvTHP )/Tideal

DS overhead OverDS =(MSIM ∗ AvgCv4K )/Tideal

SpOT overhead OSpOT =((NPSIM ∗ AvgCvTHP )+MPSIM∗
(AvgCvTHP + MPpenalty))/Tideal

T: Total execution cycles AvgC: average cost of page walk
C: Cycles spent in page walks MSIM : Simulated page walks
MPpenalty : 20 cycles MPSIM : Simulated mispredictions
v4K/vTHP: 4K+4K/THP+THP NPSIM : Simulated no predictions

TABLE IV: Performance model based on hardware perfor-

mance counters and hardware emulation with BadgerTrap [38].

cycles) to quantify virtual memory overhead. In more detail,

we use PAPI [44] commands injected in the benchmarks

code to exclude their initialization phase. To keep a common

baseline, we adopt the same methodology of prior works [9]–

[11], [14], [20]. We identify the ideal execution time of zero

address translation overhead (Tideal) and then compare all

measured and simulated overheads to the ideal execution time

using a simple linear performance model. For vRMM, we

assume that the latency of the nested range table walk is

hidden entirely in the background. For SpOT, we assume

that: (i) correct speculations hide the entire TLB miss cost,

(ii) decisions to not apply speculation expose the entire TLB

miss cost, and (iii) mis-speculations add extra 20 cycles for

flushing the pipeline [20] on top of the TLB miss cost. For

DS, we assume the dual direct mode that provides gVA→hPA

address translation. Table IV summarizes how we compute

virtual memory overheads for the various configurations.

Workloads. We use a set of memory/TLB intensive work-

loads, single- and multi- threaded, from graph analytics, high

performance, and machine learning domains (Table III). Note

that we run PageRank with a single thread to enable compari-

son with Translation Ranger [18] as multi-threaded execution

was erroneous. CA paging results remain similar for both the

single- and multi-threaded version.

VI. RESULTS

We first evaluate the impact of CA paging on the creation

of contiguous mappings in both native and virtualized envi-

ronments. We then evaluate SpOT that exploits the contiguity

of CA paging to mitigate the address translation overhead in

virtualized execution.

A. Contiguity-aware Paging

We compare CA paging with: (i) default paging–THP, the

default OS technique that supports transparent 2M allocations,
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Fig. 7: Contiguity performance without memory pressure for native execution.

(ii) Ingens [4], a transparent huge page management frame-

work that performs asynchronous huge page promotions, (iii)

eager paging [11] that increases the kernel MAX ORDER

attribute to allow the buddy allocator to maintain larger blocks

and uses them to perform pre-allocations, (iv) translation
ranger [18] that coalesces application’s memory footprint

asynchronously using post-allocation page migrations, and (v)

ideal paging that applies an offline best-fit algorithm to find

the maximum contiguity that could be provided based on the

contiguity map’s state before execution. As CA paging is

applicable to native and virtualized execution (Section III),

we first present extensive native results to allow comparison

with the other techniques. We summarize virtualized execution

performance at the end of this section.

To evaluate the impact on the virtual-to-physical mapping

contiguity, we use the memory footprint coverage of the 32 and

128 largest mappings (higher is better) and the average number

of mappings required to cover 99% of the total footprint

(lower is better), averaged throughout application’s execution

time [18]. For all configurations, we use a modified TCMalloc

[45], that increases maximum allocation as proposed for eager

paging [11]. Note that, CA paging and ranger are independent

to the user space allocator. We did CA paging experiments

with standard libc and the results remain unchanged.

Contiguity in the absence of memory pressure. Figure 7

summarizes the contiguity results when applications execute

natively on a machine without external fragmentation. Both

THP and Ingens perform similarly, generating thousands of

non contiguous mappings to cover applications footprint. This

is expected behavior as both techniques control and manage

contiguity up to 2MB (huge page). CA paging generates

contiguity comparable to that of eager paging and improved

compared to translation ranger, avoiding pre-allocations and

page migrations. It covers on average 99% of applications

footprint with ∼27 mappings, orders of magnitude less than

default paging. The effectiveness of translation ranger for

XSBench and hashjoin decreases, as their allocation phase

is significant compared to total execution, and post-allocation

migrations takes time to fully coalesce their footprints (Figure

1c). CA paging performance drops for the BT workload as

irregular faults compete for the last contiguous free blocks of

the first NUMA node, right before it spans to the second. We

plan to study this side-effect in the future.

Note that we exclude hashjoin from eager paging results

and BT from both eager paging and translation ranger results.

The two benchmarks, either due to memory bloat (hashjoin)

or own requirements (BT), span over two NUMA nodes and

those techniques currently do not support NUMA topologies.

Fragmentation Impact. To profile external fragmentation

impact we use a “hog” micro-benchmark [4], [12], [13]. Due

to the increased memory pressure, all workloads footprint span

two NUMA nodes as there is not enough free memory in a

single node to cover them. For that reason, we turn NUMA

off, via Linux kernel boot parameters, to enable comparison

of CA paging with the other techniques. Figure 8 summarizes

the geometric mean contiguity results for all benchmarks when

memory pressure increases from 0% to 50%. We exclude BT

as its 167G footprint does not fit in the ”hogged” memory.

Both THP and Ingens perform poorly and similar to the

no memory pressure case. This is expected as our hogging

micro-benchmark fragments physical memory in coarse gran-

ularities (>2MB) and thus, there are plenty of free huge

pages to back benchmarks’ footprints. CA paging is fairly

robust, outperforming eager paging. It covers ∼94% of the

footprints with only 128 mappings under maximum pres-

sure (hog-50) and always follows Ideal paging (with small

deviations). Therefore, CA paging manages to fully exploit

the available unaligned free contiguity in the system. On the

other hand, eager paging is highly sensitive to fragmentation

due to alignment restrictions. It relies on buddy allocator’s

higher order blocks and the allocator tracks only aligned

contiguous blocks. Finally, translation ranger remains almost

unaffected by the increasing memory pressure, outperforming

all allocation techniques in 32 mappings coverage (better than

Ideal paging), as it relies on post-allocation migrations. CA

paging, however, achieves similar performance with respect to

128 mappings and 99% coverage. Generally, we consider the

two approaches orthogonal and mutually assisted; CA paging
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Fig. 8: Contiguity performance under memory pressure/external fragmentation. Geomean results for all benchmarks.
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TABLE V: Total number of page faults and 99th latency (us).

99th latency (us) Total Number of page faults

THP CA paging Eager paging THP CA paging Eager paging

515 526 80372 45148 45148 67

TABLE VI: Bloat [memory (overhead%)] compared to 4KB.

SVM PageRank hashjoin XSBench BT

THP (MB) 13.3(0.0%) 5.2(0.0%) 3.8(0.0%) 4.7(0.0%) 136(0.1%)
Ingens (MB) 1.4(0.0%) 3.3(0.0%) 0.4(0.0%) 1.4(0.0%) 89(0.0%)
CA (MB) 13.1(0.0%) 6.8(0.0%) 3.3(0.0%) 6.2(0.0%) 137(0.1%)
eager (GB) 2.3(8.0%) 5(6.5%) 48(47.5%) 0.5(0.4%) 0.1(0.1%)

can generate early-on contiguity, and if required, ranger’s mi-

grations can further boost it, similarly to how khugepaged [24]

complements THP allocations.

Fragmentation restraint. Previously we evaluated contiguity

on an already fragmented machine; CA paging, though, can

delay fragmentation as a machine ages. Figure 9 depicts the

distribution of the unaligned free block sizes after a set of

benchmarks runs to completion using default and CA paging.

We notice that a significantly larger portion of free memory

is backed by >1GB blocks. This is attributed to the allocation

(and consecutive release) of contiguous pages and to the long-

lived contiguous page cache mappings (Section III).

Multi-programmed case. Figure 10 depicts contiguity results

while running two instances of the SVM workload with-

out fragmentation. CA paging provides increased contiguity,

avoiding eager pre-allocations, as the next fit placement policy

successfully prevents workloads interference over the same

free blocks. Translation ranger fails to coalesce the two

footprints, migrating pages between them across the entire ex-

ecution. Note that the code released for ranger is not optimized

to serve multiple processes. Multi-programmed workloads

require ranger to scan serially all processes’ footprint at every

defragmentation epoch, penalizing its response time.

Software Overhead Analysis. We evaluate the isolated

software overheads of the different mechanisms when there

is no gain from novel larger-than-a-page address translation

schemes. Figure 11 depicts the normalized execution time of

benchmarks running on our commodity hardware. Hashjoin

does not run with eager paging as the benchmark spans to

two NUMA nodes with this method and this is not supported.

Translation ranger penalty is ∼3% on average due to page

migrations. Eager and CA paging add no overhead. We also

run a set of TLB friendly workloads from Spec2017 and find

that the execution time is not affected by CA paging. However,

the two paging methods behave differently with respect to
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Fig. 9: Free block size distribution after benchmarks execution.
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Fig. 10: 32 largest mappings coverage while running two

instances of SVM (straight and dotted line for every method).

tail latency and resource utilization. Table V summarizes the

number of page faults and their average latency (us) measured

for all benchmarks with ftrace [46]. CA paging does not affect

latency while eager paging magnifies it due to zeroing large

blocks. The latter though decreases the total number of faults.

Finally, Table VI summarizes the extra memory allocated

by the different techniques compared to demand paging (bloat)

with 4K pages. We observe that CA paging and THP perform

the same (bloat up to 136MB), as CA paging builds on top

of THP and does not affect the page size decision. Ingens,

on the other hand, decreases it as it asynchronously promotes

4K pages to huge based on utilization. Note that CA paging

can add mechanisms from Ingens to boost contiguity while

preserving the low internal fragmentation that Ingens offers.

We plan to study this combination for future work. Finally,

eager pre-allocation suffers the most as it leads to occupation

of multiple GBs that the application will not eventually use.

Virtualized execution. Figure 12 summarizes the results for

virtualized execution. We employ CA paging in both guest and

host OS independently, without any form of coordination, and

measure the 2D gVA→hPA mappings contiguity. On average,

CA paging decreases the number of mappings required for

99% coverage by an order of magnitude (∼90) compared to

default paging and covers ∼86%/∼96% with 32/128 map-

pings. However, we observe that 32 mappings coverage is

slightly worst compared to native execution. This is expected

as the contiguous mappings in the guest and host dimensions

are created independently and on a best-effort basis. Note also

that our applications run consecutively without VM reboots.

Therefore, unaligned mismatches between the guest and the

host contiguous mappings are more frequent, as the gPA-to-

hPA mappings persist across benchmarks runs (Section III).
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Fig. 12: Contiguity performance without memory pressure for virtualized execution.

B. SpOT

We now quantify the execution overhead of address trans-

lation and evaluate SpOT in virtualized execution. Figure 13

summarizes our findings. We use performance counters to

measure the translation penalty in native (blue hashed bars)

and virtualized (blue solid bars) execution with base pages

(4K, 4K+4K) and Transparent Huge Pages (THP, THP+THP)

and emulate the performance of SpOT, vRMM and DS [10].

Paging Overheads. For native execution, our results cor-

roborate all past studies indicating that address translation

overheads are exceptionally high with 4K pages. Overheads

above 100% are due to overlapped page walk cycles and

comparison with the ideal baseline. THP reduces substantially

the overhead but fails to eliminate it, bringing it to ∼7%

on average and up to ∼13% for SVM. Note >99% of the

memory footprint of the workloads is mapped with 2M pages.

In virtualized execution, the address translation overhead is

magnified due to nested page walks. Even with THP on, it

grows to ∼16.5% on average and up to ∼28% for SVM.

SpOT Performance. For the evaluation of SpOT we apply

CA paging in both the guest and host OS. SpOT reduces the

overhead to ∼0.85% on average. The performance improves

significantly for all applications, but less for SVM and BT.

For BT, CA paging (Figure 7a,12a)) fails to provide optimal

contiguity when the application expands to the second NUMA

node as discussed earlier in this section. For SVM, despite CA

paging successfully maps 99% of the application’s footprint

with less than 32 mappings (Figure 12a), a portion of the

observed TLB misses (∼4%) are on a few virtual addresses

that fall outside these mappings. SVM has also high number

of irregular TLB misses triggered by the same instruction.

SpOT sensitivity to the access pattern is highly exposed by the

hashjoin micro-benchmark as well. Note however that hashjoin

makes random accesses. To better understand SpOT perfor-

mance, Figure 14 breaks down the percentage of TLB misses

predicted correctly, mis-predicted, and not predicted at all. We

observe that correct predictions can be over 99% (PageRank),

while mis-predictions never more than 4% (hashjoin).

Comparison with RMM and Direct Segments. For vRMM

we use CA paging in both the guest and host OS. Note that

vRMM was proposed with eager paging [11] pre-allocation.

We observe that vRMM with CA paging reduces the transla-

tion overhead to less than 0.1%. It performs slightly worse for

SVM and BT due to CA paging stressing, discussed also in

the previous paragraph. However, RMM requires architectural

support that (as discussed in Section IV) increases significantly

in virtualized execution. Finally, we compare SpOT with

direct segments (DS) dual mode [10]. We observe that DS

eliminate TLB miss penalty. Despite its prominent efficiency,

the method is rigid, reserving the segment when a virtual

machine boots and abolishing paging. SpOT, combined with

CA paging, preserves the benefits of demand paging sustaining

high address translation performance comparable to DS.

Security mitigation techniques discussion. As discussed

in Section IV, SpOT can be exploited to leak data from

unauthorized memory locations through cache side-channel

attacks. Fortunately, proposed Spectre/Meltdown mitigation

techniques [21], [22], [35] can also mitigate SpOT vul-

nerabilities. However, such techniques introduce performance

overheads proportionate to the number of Unsafe Loads

(USLs) [22], i.e., loads that are executed in speculative state.

Studying accurately the impact of SpOT USLs requires full
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Fig. 13: Execution time overheads due to data TLB misses that trigger page walks in virtualized execution.
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Fig. 14: Percentage of TLB misses that SpOT made (i) correct

predictions, (ii) mispredictions, and (iii) no predictions.

system cycle-accurate simulation that is prohibitively slow

for our TLB studies. However, we make some rough esti-

mations for the number of SpOT USLs and their impact on

performance, assuming the InvisiSpec design [22], [35]. We

use performance counters to measure the number of TLB

misses, loads, cycles, and the average latency of page walk,

and we calculate the number of SpOT USLs (Equation 2

in Table VII). To put our results into perspective, we also

measure the number of branches, and we compare the number

of SpOT USLs with the number of Spectre USLs, i.e., unsafe

loads that are executed due to branch predictions (Equation

1 in Table VII). We assume a linear distribution of load

instructions over time. Table VII summarizes the results for

all our workloads (geometric mean). We observe that the

events that trigger speculative execution with SpOT, i.e., TLB

misses, are a small fraction (0.25%) compared to Spectre’s

branch predictions (5%). However, SpOT’s transient window

of speculative execution is much larger (the average page

walk latency is ∼81 cycles in our experiments) compared

to branch resolution (∼20 cycles [20]). In total, ∼3% of

total instructions would execute as USLs with SpOT, whereas

the percentage of USLs with Spectre would be ∼16%. As

InvisiSpec for mitigating Spectre USLs has been shown to add

∼5% overhead [35], we expect that extending InvisiSpec for

SpOT USLs would introduce < 2% overhead. Hence, SpOT’s

performance translation benefits would remain still beneficial.

C. Summary

CA paging significantly boosts the creation of contiguous

mappings in native and virtualized execution. It is more

robust compared to pre-allocation while preserving demand

paging. It also performs closely to ranger [18] avoiding page

migrations. We consider the two approaches mutually assisted

and their combination a good strategy to shield contiguity

against external fragmentation. On the hardware level, SpOT

successfully exploits CA paging’s contiguity and reduces

significantly the translation overhead from ∼16.5% to ∼0.9%

requiring minimal micro-architectural support.

Branches/ DTLB misses/ Spectre USL/ SpOT USL/
Instructions(%) Instructions(%) Instructions(%) Instructions(%)

5.87 0.25 16.5 2.9

Spectre USL = #Branches * Branch Resolution Cycles * Loads/cycle (1)

Spot USL = #DTLB misses * Page Walk Cycles * Loads/cycle (2)

TABLE VII: Estimation of Unsafe Load Instructions (USL).

VII. OTHER RELATED WORK

Memory Management. Multiple software proposals [4], [5],

[7], [27] improve huge page management, addressing issues

like fairness, memory bloat, increased tail latency, and frag-

mentation. Instead, CA paging targets the reduction of transla-

tion overheads that persist in the presence of huge pages, and

builds on top of huge page management to create larger-than-

a-page contiguous mappings for novel translation hardware.

Other proposals control external fragmentation [6], [47] again

in the scope of huge pages, focusing on the allocation [6] and

the reclamation [47] OS routines. In contrast, we study frag-

mentation in coarser granularities and show that contiguous

allocation beyond the page size can delay fragmentation.

Address Translation Hardware. Bhargava et al. [1] ana-

lyzed nested paging translation overhead and proposed MMU

caching and large page sizes. Our experiments show that

such support–that is present in commodity processors–is not

sufficient, as the address translation overhead still remains

significant. Other works have focused on the implications of

huge pages and have proposed specialized hardware to support

them better [15], [48]–[54]. Still, those designs provide limited

TLB reach and suffer from alignment issues. SpOT harvests

unaligned contiguity to hide the page walk latency.

Multiple works [55]–[57] combine shadow and nested pag-

ing to minimize the MMU virtualization overhead. Our evalu-

ation focuses on nested paging, the state-of-practice virtualiza-

tion technique, but both CA paging and SpOT are agnostic to

the virtualization technology and directly applicable to shadow

and hybrid paging. Ahn et al. [58] proposed an inverted

shadow page table combined with a flat nested page table,

and used speculative execution to relax the synchronization

between the tables. That design modified paging subsystem

extensively. Instead, our approach is completely compatible

with paging and requires minimal micro-architectural support.

DVM [30] introduces regions for which the virtual address

equals the physical address (identity mappings) and caches

only the translation permissions. An optional enhancement

speculates whether a mapping is identity. DVM restricts the

flexibility of common OS mechanisms, e.g., copy-on-write and

fork. In contrast, our approach is compatible with such mech-

anisms and SpOT predicts translations without any virtual or

physical special address requirements.

Several mechanisms reduce the cost of page walks ei-

ther targeting alternative page table representations [59]–[61],

enhanced MMU caches [62], [63], direct page table index-

ing [64], or page table replication [65]. SpOT is orthogonal

as it hides page walk latency under speculative execution.

TLB prefetching can also reduce TLB misses by predicting

the next missing translation [66]–[68]. Instead, SpOT predicts

the actual address translation itself.

Finally, prior works propose: (i) storing TLB data as part

of the memory subsystem [69], [70], (ii) pinning frequently

accessed pages with poor temporal locality to reduce the

number of TLB misses [71], (iii) modifying TLBs to better

accommodate chip multiprocessors [72]–[74] and (iv) reducing
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TLB shootdown overheads through hardware [75]–[78] or OS

[25], [26], [79] optimizations. Our approach is orthogonal to

those mechanisms.

VIII. SUMMARY

We propose complementary software and hardware methods

to mitigate the address translation overhead, focusing on the

challenging setup of nested paging. On the OS level, we

propose CA paging to generate vast mapping contiguity across

page fault allocations. On the hardware side, we propose

SpOT to predict translations in the TLB miss path. Combined

with CA paging, SpOT significantly reduces the translation

overhead of nested paging from ∼16.5% to ∼0.9%.
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