
Characterizing non-volatile memory transactional systems
Pradeep Fernando1, Irina Calciu2, Jayneel Gandhi2, Aasheesh Kolli3, Ada Gavrilovska1

1Georgia Tech, 2VMware Research, 3Penn State

I. INTRODUCTION

Emerging Non-Volatile Memory (NVM) technologies, like Intel’s
DC Optane persistent memory, offer byte-addressability and orders
of magnitude faster access to storage than traditional storage tech-
nologies. Their key appeal is that they allow applications to access
storage directly using processor load and store instructions rather
than relying on a software intermediary like the file system or a
database [1]. However, ensuring that data stored in NVM is always
in a safe and recoverable state is both hard and incurs performance
overheads [1]–[3].

To ensure data recoverability, application developers have to care-
fully orchestrate data movement from the volatile to the persis-
tent components in the memory hierarchy, subject to application-
specific constraints. This task is especially complex due to two
factors: (1) NVM applications have very diverse crash-consistency
requirements [4]; and (2) the persistence domain is different across
platforms. For example, Intel and Micron guarantee that data becomes
persistent only when it reaches the memory controller of the NVM
device, i.e., the persistence domain of the system includes the memory
controller and the NVM devices [5]. We refer to such systems as
having transient caches. However, HPE’s NVM [6] guarantees that
the entire cache hierarchy is persistent, i.e., the persistence domain
includes the entire memory hierarchy. We refer to such systems as
having persistent caches.

In this context, researchers have proposed various transactional
systems that provide the well known “ACID” guarantees for NVM
applications. These transactional systems significantly simplify NVM
application development and leave the complexities of achieving data
recoverability on various platforms to the low-level systems software
developers. While these systems all provide ACID guarantees, they go
about providing these guarantees in different ways: UNDO vs. REDO
logging, software vs. hardware transactions. Low-level developers
designing ACID transaction systems face a bewildering array of
choices, with varied performance characteristics that change with the
applications and the platform used. For these developers, we aim to
answer the question: how to quickly explore the design space and
arrive at a correct and high-performance implementation of an
NVM transactional system?

Reasoning about implementation details rather than the overall
guarantees provided to the user (ACID) helps transaction system
developers traverse the design-space more efficiently. To provide
ACID guarantees, the underlying transaction system has to correctly
ensure three properties: (1) crash consistency - individual transactions
are failure-atomic, i.e., after a crash, either all or none of the trans-
action has persisted, (2) synchronization - transactions are correctly
isolated from other transactions executed on different threads, and (3)
composability - the crash consistency and synchronization techniques
used compose to provide the overall ACID guarantees, by ensuring
that dependent transactions are correctly ordered.

This new characterization of transaction systems provides a basis
to compare different implementations and to identify the right set of
crash-consistency and synchronization mechanisms for

particular applications and hardware platforms. We perform a detailed
characterization study of systems with different implementations
(hardware transactional memory (HTM) [7], software transactional
memory (STM) [3], and undo/redo logging with locks [3], [8])
under various persistence domains (transient vs. persistent caches).
We perform our study on real hardware using the recently released
Intel’s DC Optane Persistent Memory [9] and using simulation.

Our empirical study results in several interesting insights for NVM
transaction system developers:

1) For all applications, the persistence domain plays the most im-
portant role. The overhead of making transactions persistent is
considerably lower when caches are persistent.

2) In systems with transient caches, HTM is the best choice, despite
its synchronization costs and required architectural changes. This
is due to the high overheads caused by flush and fence instructions
required by undo/redo logs, which are elided by HTM. The
choice between undo and redo logs depends on the application
characteristics and the size of the read and write sets of the
transactions.

3) In systems with persistent caches, the HTM does not require
any architectural changes, but its benefit for supporting persistent
transactions is reduced, as software logging mechanisms do not
require expensive flush and fence instructions anymore. Here,
undo logs are the best choice because redo logs suffer from read-
indirection overheads.

4) The overheads of crash-consistency for an HTM are subsumed
by synchronization overheads. As applications scale, performance
increases despite crash-consistency overheads. When the crash-
consistent HTM does not achieve scalability due to aborts, crash-
consistent STM ensures this property.

Overall, this presentation will illustrate the following:

• We characterize persistent transactions to quickly and methodi-
cally compare different implementations of NVM transactional
systems that provide ACID guarantees.

• Using this new characterization, we study the performance of
various transaction system implementations on different hard-
ware platforms and for different applications.

• We show that there is no one best way to provide ACID
guarantees for NVM applications; the best way changes with
hardware platforms and application characteristics.

• Finally, we believe we are the first work to evaluate the range
of these different transactional systems on real NVM devices.

II. KEY INSIGHTS

In this work, we focus on applications that use a transactional
programming model to get ACID guarantees. For example, updates
within each transaction need to provide all or nothing semantics
when the data gets to NVM. Providing ACID guarantees requires
that the transactional system correctly implement three components:
(1) crash-consistency (also called failure-atomicity), which ensures
all-or-nothing behavior of uncommitted transactions when a failure
happens and the validity of the data after the failure (atomicity

1



and consistency) (2) synchronization, which ensures that partial
updates are not observable by other concurrently running transactions
(isolation), and (3) persistence of the committed transactions in the
correct order, which ensures that committed transaction are made
durable and that the correct dependencies between transactions are
maintained (durability). Note that crash-consistency is a property
of uncommitted transactions, which guarantees that on a failure, a
transaction will either abort, leaving no side-effects, or will commit,
finishing its entire execution. In contrast, persistence is a property of
committed transactions, guaranteeing their permanence in case of a
crash, as well as that dependent transactions’ effects are all visible in
the correct order. We call a correct implementation of the above three
properties that ensures ACID guarantees crash-sync-safe.

As illustrated in Table I, developers have a wide variety of
choices for crash-sync-safe transactions, and choosing between
these different options depends on a variety of factors, such as the
persistence domain, and the application characteristics. To further
complicate matters, some mechanisms offer some of the guarantees,
but not all, and developers need to carefully mix and match tech-
niques to ensure correctness. For example, undo and redo logging
can be used to implement crash-consistent transactions for single-
thread applications, but do not ensure the correct synchronization of
multi-threaded applications, forgoing isolation. Conversely, locking
can be used to provide correct synchronization for multi-threaded
applications, but cannot ensure persistence for these transactions in
case of a failure, forgoing durability, nor crash-consistency, forgoing
atomicity and consistency. Transactional memory provides correct
synchronization for multi-threaded applications, as well as atomicity
and consistency, but cannot ensure persistence for these transactions
in case of a failure, forgoing durability.

In this presentation, we provide a comprehensive evaluation of the
impact of combining existing crash-consistency and synchronization
methods for achieving performant and correct NVM transactional
systems. We consider different hardware characteristics, in terms
of support for hardware transactional memory (HTM) and the
boundaries of the persistence domain (transient or persistent caches).
By characterizing persistent transactional systems in terms of their
properties, we make it possible to better understand the tradeoffs of
different implementations and to arrive at better design choices for
providing ACID guarantees. We use both real hardware with Intel
Optane DC persistent memory and simulation to evaluate a persistent
version of hardware transactional memory, a persistent version of
software transactional memory, and undo/redo logging. Figure 1
illustrates a representative results from our investigation. Through
our empirical study, we show two major factors that impact the cost
of supporting persistence in transactional systems: the persistence
domain (transient or persistent caches) and application characteristics,
such as transaction size and parallelism.

REFERENCES

[1] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge, “Storage Management
in the NVRAM Era,” PVLDB, vol. 7, no. 2, pp. 121–132, 2013. [Online].
Available: http://www.vldb.org/pvldb/vol7/p121-pelley.pdf

[2] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,” in
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 133–
146. [Online]. Available: http://doi.acm.org/10.1145/1629575.1629589

[3] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ACM SIGARCH Computer Architecture News,
vol. 39, no. 1. ACM, 2011, pp. 91–104.

[4] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in Proceedings
of the Twenty-Second International Conference on Architectural Support

ST – CC MT – Sync. MT – CSS
TC PC TC PC

seq 7 7 7 7 7
HTM+seq

7 7 3 7 7(+spinlock)
undo/redo

3 3 3 3 3(+spinlock)
HTM+undo/redo approx. 3 3 approx. 3(+spinlock)
ccHTM+undo/redo

3 N/A 3 3 N/A(+spinlock)
STM 7 3 3 7 3
ccSTM 3 N/A 3 3 N/A

TABLE I
CRASH-CONSISTENCY AND CRASH-SYNC-SAFETY IMPLEMENTATIONS

FOR SINGLE- AND MULTI-THREADED APPLICATIONS. ST:
SINGLE-THREADED, MT: MULTI-THREADED, CC: CRASH-CONSISTENT,

SYNC: SYNCHRONIZATION, CSS: CRASH-SYNC-SAFETY, TC: TRANSIENT
CACHES AND PT: PERSISTENT CACHES. TECHNIQUES EVALUATED FOR

SINGLE-THREADED APPLICATIONS NEED TO PROVIDE ONLY CRASH
CONSISTENCY. TECHNIQUES EVALUATED FOR MULTI-THREADED

APPLICATIONS PROVIDE SYNCHRONIZATION TOO, BY USING A SPINLOCK
WHERE NECESSARY. WE NOTE THAT THE HTM+UNDO/REDO

IMPLEMENTATIONS FOR TRANSIENT CACHES ARE ONLY APPROXIMATING
A CRASH-SYNC-SAFE SOLUTION.

vacation0

1

2

3

4

5

6

7

8

sl
ow

do
w

n 
(r

el
at

iv
e 

to
 s

eq
)

95
.1

89
.6

91
.4

kmeans

10
0.

0
10

0.
0

10
0.

0

~
88

.5
~

56
.0

~
32

.6

ssca2
10

0.
0

10
0.

0
10

0.
0

labyrinth

50
.0

49
.8

49
.8

intruder

99
.0

99
.1

99
.2

ctree

98
.0

98
.0

98
.0

hashmap

98
.3

98
.4

98
.4~

16
.8

~
10

.0
~

48
.1

~
41

.6

genome

98
.7

96
.5

98
.0

HTM+seq (NP)
undo (P)
HTM+undo (P*)

redo (P)
HTM+redo (P*)
ccSTM (P)

vacation0

1

2

3

4

5

6

sl
ow

do
w

n(
re

la
tiv

e 
to

 s
eq

)
95

.1
89

.0
90

.4

kmeans

10
0.

0
10

0.
0

10
0.

0

ssca2

10
0.

0
99

.9
10

0.
0

labyrinth

50
.0

50
.0

50
.1

intruder

99
.0

99
.0

99
.0

ctree

98
.0

98
.0

98
.0

hashmap

98
.3

98
.4

98
.4

~
38

.2
~

38
.2

genome
98

.7
98

.5
98

.5

HTM+seq (NP)
undo (P)
HTM+undo (P)

redo (P)
HTM+redo (P)
ccSTM (P)

Fig. 1. TSX-enabled hardware with real NVM, with transient (top graph)
and emulated persistent (bottom graph) caches. We show transaction
success for methods using HTM (values in black). We truncate large
bars in hashmap (values in red). (P) crash-consistent; (NP) not crash-
consistent.

for Programming Languages and Operating Systems. ACM, 2017, pp.
135–148.

[5] A. M. Rudoff, “Deprecating the pcommit instruction,” https://software.
intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction, 2016.

[6] “What’s in HPE’s persistent memory?” retrieved from https://www.
pcworld.com/article/3051133/whats-in-hpes-persistent-memory.html, 8
April 2016.

[7] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Dhtm: Durable
hardware transactional memory,” in 2018 ACM/IEEE 45th Annual In-
ternational Symposium on Computer Architecture (ISCA), June 2018, pp.
452–465.

[8] “Pmdk,” ”https://pmem.io/pmdk/”.
[9] “Big memory breakthrough for your biggest data challenges,”

https://www.intel.com/content/www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html, 2019.

2

http://www.vldb.org/pvldb/vol7/p121-pelley.pdf
http://doi.acm.org/10.1145/1629575.1629589
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://www.pcworld.com/article/3051133/whats-in-hpes-persistent-memory.html
https://www.pcworld.com/article/3051133/whats-in-hpes-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

	Introduction
	Key insights
	References

