Name: _____

Wisc id: _____

Problems

Proof the correctness of each statement using induction.

1. $3 + 11 + \ldots + (8n - 5) = 4n^2 - n$

2. Let $a_1 = 11, a_2 = 21, a_n = 3a_{n-1} - 2a_{n-2}$ for $n \ge 3$. Prove that $a_n = 5 \cdot 2^n + 1, \forall n \ge 1$

3. Prove that $w^4 - 1$ is divisible by 16 for all odd positive integers w.

4. The Fibonacci sequence is defined as $F_n = F_{n-1} + F_{n-2}$ with base cases $F_1 = 1$ and $F_2 = 1$. The following is a closed-form expression for the *n*-th value in the sequence. Prove its correctness.

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$