Name: \qquad Wisc id: \qquad

Problems

Proof the correctness of each statement using induction.

1. $3+11+\ldots+(8 n-5)=4 n^{2}-n$
\square
2. Let $a_{1}=11, a_{2}=21, a_{n}=3 a_{n-1}-2 a_{n-2}$ for $n \geq 3$. Prove that $a_{n}=5 \cdot 2^{n}+1, \forall n \geq 1$
3. Prove that $w^{4}-1$ is divisible by 16 for all odd positive integers w.
\square
4. The Fibonacci sequence is defined as $F_{n}=F_{n-1}+F_{n-2}$ with base cases $F_{1}=1$ and $F_{2}=1$. The following is a closed-form expression for the n-th value in the sequence. Prove its correctness.

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

