CS 577

Study Group – Graphs

Spring 2024

Name:	Wisc id:	
Truth or Lie?		
Which of the following statements are TRUE a	and which of them are FALSE?	
1. A graph is bipartite iff it contains no cycle	т — ғ	
2. A complete graph of n nodes has $n(n-1)$	edges.	т — ғ
3. Every DAG has exactly one topological or	dering.	T — F
4. In a two colorable graph of 8 nodes, the m	aximum number of edges is 15.	т — F
Uniqueness of path in a tree		
Prove the following statement. If $T = (V, E)$ is a tree, then for all pairs of	nodes $v, w \in V$, \exists unique simple path p	between them.

Money-making sequence of cryptocurrency exchanges

Let r_{vw} be the amount of cryptocurrency w that can be purchased with one unit of cryptocurrency v. A sequence v_0, v_1, \ldots, v_k (where $v_k = v_0$) of cryptocurrency exchanges is money-making iff:

$$\prod_{i=1}^{k} r_{v_{i-1}v_{i}} > 1$$

Assume that you have an efficient algorithm, called Bellman-Ford, that finds a negative cost cycle in a graph G = (V, E).

Given all cryptocurrency exchange rates r_{vw} , design an algorithm that finds a money-making sequence.

<i>V</i> 1	v	0	0 00 7	O		v	0 1	