
Intro to Category Theory: Categories

1 Intro and Motivations

Category theory is a branch of mathematics that formalizes mathematical structure. Category
theory has built up quite a reputation for having quite powerful applications across a vast part
of mathematics and programming languages. I imagine you have or will run into category theory
concepts during your career. For example, categorical semantics, monads, functors, and proof
assistants have deep connections to category theory.

Category theory is a generalization of algebra. In category theroy, we understand mathematical
objects through structure preserving transformations, called morphisms. For example, even though
it is possible to do so, we don't embed a single group into a category. Instead, we study groups
through the category of all groups Grp, where objects are groups and morphisms are group homo-
morphisms. We then learn about groups not through the elements that make them up, which is
opaque in the category, instead we understand groups relationships through morphisms.

Category theory can be used as foundation for mathematics, replacing set theory. However, we
will not be taking this perspective. Though not explicit, we will actually be building the de�nitions
of category theory on top of set theory1. Nevertheless, I want you to recognize the di�erences in the
categorical style compared to the set theoretic style. In set theory we de�ne mathematical objects
by characterizing the elements that make them up. This is an internal view of mathematics. In
category theory objects are characterized by their relationship to other objects. Often, such objects
are atomic. They have no internal structure. All relevant properties are externally de�ned.

These sets of notes are not meant to be an exhaustive or superior presentation of category
theory. They are just my presentation with my own quirks and motivations. There are plenty of
other references if you want to learn category theory more seriously. The standard textbook is
�Categories for the Working Mathematician� by Saunders Mac Lane. It's not very approachable or
easy to read, but it is thorough. Mac Lane is undoubtedly, one of the founders of category theory
along with Samuel Eilenberg, but they were originally topologists. Mac Lane doesn't give a lot
of examples and at least for me they don't provide much intuition. A much more approachable
text is the open source book �Category Theory for Programmers� by Bartosz Milewski. It's much
easier to read and he provides real programming examples to illustrate category theory concepts.
The downside is it is not quite as formal as a serious textbook. If you are serious about learning
category theory I would recommend starting with �Category Theory for Programmers� and having
a companion textbook, like �Categories for the Working Mathematician� to go to after initially
absorbing a concept.

2 Categories

A category, say C, has objects and arrows/morphisms. I will usually use lower case beginning of
the alphabet letters for objects (a, b, c, ...) and lower case middle of the alphabet letters for arrows
(f, g, h, ...). I will use upper case beginning of the alphabet letters for categories (A,B,C, ...).

Morphisms generalize functions and like functions they have a domain and codomain. Rather
than having sets as domains and codomains, morphisms have an object as a domain and an object
as a codomain. Almost always, morphisms are introduced with a function like signature to indicate
their domain and codomain. For example we may introduce a morphism with f : a→ b to indicate

1It is not necessary to build category theory on top of set theory. Category can be de�ned in its own way, and set

theory on top of that. See elementary theory of the category of categories.



that f is a morphism and has domain a and codomain b. Often when we are talking about functions
in set theory we are not so careful to write function signatures, because domains and codomains
can often be inferred from context. However, in category theory we need to be much more careful.
It is very important to give a signature when introducing morphisms for clarity.

2.1 Axioms

For C to be a category the following axioms must be satis�ed

1. Arrows compose. If f : a→ b and g : b→ c are arrows of C, then there is arrow g ◦ f : a→ c
(pronounced �g after f �) in C.

2. Composition is associative. If f : a→ b, g : b→ c, and h : c→ d are arrows of C, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f = h ◦ g ◦ f

.

3. Identity arrows. Every object b has an identity arrow idb, such that for every f : a → b and
g : b→ c

idb ◦ f = f g ◦ idb = g

.

I want to make note of something missing from the axioms. Note that I did not say that a
category C consists of a set of objects and a set of arrows. This is very much intentional. The
collection of objects and morphisms do not need to form a set. They can be proper classes. This
distinction divides categories as being either small or large.

De�nition 2.1. If the collection of objects and morphisms of a category C form a set, such a
category is called small. A category is large otherwise. That is if the collection of objects or
morphisms is a proper class rather than a set, then C is large. If a category C satis�es the property
that for every pair of objects a and b the collection of morphisms between a and b forms a set, then
we call C locally small.

The reason the collection of objects doesn't have to be a set is for the same reason proper classes
are de�ned in ZFC. It's to avoid the self referential paradoxes of naive set theory. For example, in
a moment we will introduce an example category where objects are all (small) sets. With the large
and small distinction we can give an answer to the question of where the collection of the objects is
itself an object in this category. The answer is no, because the collection of all objects is not a set.

While many of the categories we will discuss are in fact large, we will not notice the di�erence.
For our purposes we will not need to make much of a distinction between sets and classes.

2.2 Commutative Diagrams

The name arrow is indicative of edges in a directed graph. This is not by accident. Aside from the
large/small issue categories are just directed graphs with some additional axioms. While we can
almost never draw an entire category, because they are most often in�nite, we can still depict �nite
patterns within a category using directed graphs.

Often in category we will succinctly depict properties of morphisms using a special kind of
directed graph called a commutative diagram.



De�nition 2.2. A commutative diagram is a directed graph where any two paths that both start
at the same point and end at the same point, yield the same result.

Example 2.1. The following diagram succinctly denotes that for morphisms f : a→ b, g : b → c,
and h : a→ c, g ◦ f = h.

a b

c
h

f

g

To indicate a graph is a commutative diagram we might say �this diagram commutes�.
Though not necessary we can rede�ne the axioms of a category with commutative diagrams.

For all objects a, b, c and d and morphisms f , g, h, the following diagrams commute.

1. (Composition)
a b

c
g◦f

f

g

2. (Associativity)

a d

b c

f

g◦f

h◦g◦f

g

h◦g
h

3. (Unit)

a b

b c

f

f
idb

g

g

These diagrams succinctly capture the signatures of all the morphisms and properties they must
satisfy.

2.3 Examples of Categories

Now that we have the very basics out of the way let's look at some examples.

2.3.1 Toy Example

Here is a toy example without being totally trivial. This is just a toy example, it will not have further
reference outside of this section. Consider the category depicted by the following commutative
diagram.

a b

ida

f

idb

g

This category consists of two objects, and four morphisms, two of them identity arrows. While this
example doesn't say much general it does have a notable characteristic. Observe that g ◦ f = ida
and f ◦ g = idb. If this happens we call f and g invertible.



De�nition 2.3. Let f : a → b and g : b → a be morphisms. g is the inverse of f (and vice versa)
if g ◦ f = ida and f ◦ g = idb. If a morphism f has an inverse it is an isomorphism. If two objects
are connected by an isomorphisms, they are isomorphic.

In this example f and g are isomorphisms. Thus, a and b are isomorphic.
Here's a non-example of a category to make sure you're on your toes. It also illustrates a slightly

annoying feature of commutative diagrams.

a b

ida

f

idb
g

h

The annoying piece is the presence of parallel arrows in the diagram. If we are strictly following
the de�nition of a commutative diagram g and h start and end at the same point, thus they are
equal. However, in almost all such situations we don't mean to indicate that g = h. Thus, strictly
speaking what is above is not a commutative diagram, because I want to mean g 6= h. But, I want
the diagram to indicate that all other paths commute. Thus, what I really want this diagram to
mean is that all paths which start and end at the same point are equal except g and h. Practically, it
makes sense for g 6= h because if they were equal, I wouldn't have drawn two separate arrows. This
situation will pop up again. I would say that the rule is when someone says a diagram commutes
they mean the diagram commutes except for parallel arrows. Parallel arrows indicate non-equal
morphisms.

Anyway, given the discussion above, why can't the diagram denote a category? It is because
associativity is violated.

(h ◦ f) ◦ g = ida ◦ g
= g

6= h

= h ◦ idb
= h ◦ (f ◦ g)

2.3.2 More Interesting Examples

I'm going to brie�y give some more relevant examples. A good exercise would be to check that the
following examples satisfy the axioms, and why they satisfy the axioms:

• The prototypical example of a category is the large category where the class of objects is
all (small) sets, denoted Set, and morphisms are total functions. Composition is function
composition. For pretty much the whole presentation of category theory, we will be referencing
Set as a source of inspiration and understanding.

• As programmers we will make a lot of connection between category theory and functional
programming. To represent this relationship we will use the programming language haskell.
We can think of haskell types as forming a category. We denote this category as Hask.
Objects of Hask are haskell types, such as Int, Bool, etc. Morphisms are haskell functions.
A couple of points about Hask. Hask is very much like Set. For our purposes, we can think
about types as just being a label for a set. That is, the type Int denotes the set of integers.
This connection isn't quite right, but it's good enough for our purposes. One source where the



connection breaks down has to do with non-termination of functions. That is in Set there is
no concept of termination or non-termination. This would cause a problem for the de�nition
of composition of haskell functions. A function composed with a non-terminating function
should also not-terminate. Such a situation could be remedied by equipping sets with a ⊥
element. The other, perhaps more serious issue with Hask is that because haskell is a real
programming language, it has some constructs which may break the axioms of a category. I
don't know enough about this issue, but it may be the case that if we are super serious then
we shouldn't use Hask as a true example. However, for our instructional purposes, we will
be �ne to think of Hask as a category like Set.

• Many algebraic objects form categories. Such a category has all algebraic objects as categorical
objects, and the morphisms are the homomorphisms of the algebraic objects. For exampleGrp
is the category where objects are all groups, and morphisms are the group homomorphisms.
Similar categories exist for rings, Ring, abelian groups, Ab, etc.

• At this point you might be thinking that for categories, objects are just always sets, and
morphisms are functions. Obviously, this isn't the case, but you might be asking for a non-
example, so here we are. Consider a partial order (P,≤). We can consider (P,≤) a category
as follows. Objects are elements of P , and if x ≤ y then there is a morphism from x to y
in the corresponding category. This is a category due to the properties of ≤. This category
has the property that for any two objects there is at most one morphism between them. Such
a category is called thin. A category that does not satisfy this property is called thick. The
other categories mentioned in this subsection are thick.

• There are another large source of examples, which I am not quali�ed to discuss at length.
Category theory grew out of topology in the later half of the 20th century. Many of the
examples and concepts you �nd in a category theory textbook are generalizations from topol-
ogy. An example is the category Top, which consists of all topological spaces as objects and
continuous maps as morphisms.

2.4 Special Objects

At this point categories are just a big mess of spaghetti. You could say that a lot of what is to come
is to disentangle this mess. It's gonna take quite a bit of e�ort, but we are in a situation to de�ne
some special objects now.

De�nition 2.4. An initial object is an object that has a unique arrow to any other object in the
category.

A couple points about initial objects. First, initial objects may not exist. However, for many
interesting examples they do exist. I will say what initial objects are for the examples I gave
previously in a moment. Second, the restriction that there must be a unique arrow to any other
object may seem odd. Why does it have to be unique? I'm going to punt on this issue at the
moment. We'll talk about it more when we talk about universal properties. For now, just take it
as part of the de�nition. Finally, initial objects may not be unique. A category can have multiple
initial objects. However, they are unique up to isomorphism.

Theorem 2.1. Let a and b be initial objects in some category C, then a ∼= b.

Proof. By de�nition, since a is an initial object there must exist a morphism f : a → b. Similarly,
since b is initial there must exist a morphism g : b→ a. What is g ◦ f : a→ a? Since a is an initial



object there is only one arrow from a to a. For C to be a category there must be an identity arrow
from a to a. This means that g ◦ f has to be ida. Similar reasoning for b yields f ◦ g = idb. Thus,
a ∼= b.

A big feature of category theory is duality. Categories are essentially directed graphs. What
happens if you just reverse the arrows? You get another category Cop. In a similar vein, you always
get another de�nition for free in category theory by considering the de�nition with the arrows
reversed. For example consider the dual of initial objects. You guessed it you get terminal objects.

De�nition 2.5. An terminal object is an object for which every other object has a unique arrow
ending at that object.

The same facts about initial objects apply to terminal objects.
Here is a table of initial and terminal objects for the aforementioned categories:

Category Initial Terminal

Set {} Any singleton set
Hask Void () (unit)
Partial Order ⊥ >
Top Empty set Singleton space
Grp Singleton group Singleton group

A good exercise would be to try and reason

about why these are the initial and terminal objects of these categories.
As an aside, as in the situation with Grp an object which is both initial and terminal is called

a null or zero object. We will not further investigate null objects.


