
Intro to Category Theory: Functors

1 Functors

Here's my slightly cheeky intro to functors. Category theory is about studying structure preserv-

ing transformations (morphisms). Naturally, to understand categories we should understand the

structure preserving morphisms between categories. These structure preserving transformations are

indeed functors. I don't think that's a particularly good motivation. More practically, pretty much

all future de�nitions are going to require functors. Another bene�t is that functors are a concept

in functional programming.

Functors are morphisms for categories. That is, functors are going to take us from one category

to another, while preserving the axioms of the �rst category. Categories have three axioms: unit,

composition, and associativity. Associativity is handled because the target of the functor is a

category, but the other two are not guaranteed. Thus, they are part of the de�nition.

De�nition 1.1. A functor F from category C to category D (F : C → D) maps objects of C to

objects of D, denoted F c for an object c of C, and morphisms f : a→ b of C to morphisms of D,

denoted F f : F a→ F b, such that

• (Unit) F idx = idFx

• (Composition) Let f : a→ b and g : b→ c be morphisms of C, then F (g◦Cf) = (F g)◦D(F f).

A couple points about the de�nition. For composition, I have subscripted the composition

operator ◦ with the category that the composition exists in. This subscript is never written. I have

just done so to indicate that we have two di�erent compositions that is related through F . I will

not use a subscript from here on out. Another slightly annoying piece but standard notation is that

functors map objects and morphisms using the same notation that is F a is an object of D and F f
is a morphism of D; however, you can only know this if a has been introduced as an object and f
a morphism.

Here are some diagrams to illustrate the pieces of the de�nition. These diagrams are not meant

to be taken as replacements for the de�nition.

x F x

idx idFx

F

C D

1



a b

c

F a F b

F c

f

g
g ◦ f

F f

F g
F (g ◦ f)

C
D

F

One of the nice things about the de�nition of a functor is that they preserve commutative diagrams.

Theorem 1.1. Functors preserve commutative diagrams. That is, consider a functor F : C → D. If

there is a commutative diagram in C the image of that diagram through F must also be a commutative

diagram in D.

Proof. This isn't a totally rigorous proof, but the idea is that the composition requirement of

a functor ensures commutation holds. Let < f1, ..., fk > and < g1, ..., gl > be two paths of a

commutative diagram of C that have the same start and end points. Then,

(F f1) ◦ ... ◦ (F fk) = F (f1 ◦ ... ◦ fk) = F (g1 ◦ ... ◦ gl) = (F g1) ◦ ... ◦ (F gl)

I want to make a point about intuition. As a computer scientist, I tend to think of functions as

being or representing some sort of process. f(x) = x + 2 intuitively means to take x and add 2 to

it. When we learn about functions in elementary school we assign some computational element to

them. This is not really correct in the mathematical sense. Mathematical functions are simply sets

of pairs. They are really more of assignments rather than computations. They always terminate

for example. There's a huge literature in programming languages about the di�erence between

mathematical functions and computations, and I don't mean to open this can of worms. However, I

do want to make sure you have a more restrained intuition about functors. Functors are essentially

(though not exactly) functions for categories. I don't want you to think of functors as having a

computational element. It's not always wrong, but categories and functors are very abstract and

their utility comes more as being an assignment from one category into a piece of another. Thus, I

think you should think of functors as �embedding� one category into another. Some other language

that gets used a lot is thinking of a functor as a �box� or a �container�. Though this viewpoint isn't

wholly uncontroversial I think it is a good idea to think of a functor as a container or an embedding.

1.1 Toy Example

Here's a little toy example of a functor:

2



Example 1.1.

c c′ d d′

d′′

e
f

gidc idc′

idd idd′

idd′′

C

D

Let F : C → D be a functor with the following mappings:

F c = d

F c′ = d′
F e = f

F idc = idd

F idc′ = idd′

This wasn't a particularly interesting example, but it does show how F embeds C into D.

2 Functors in Programming

Functors are a de�ned construct in many functional programming languages. While there are

functors in ml languages, those are not exactly functors in the categorical sense. Haskell on the

other hand has a de�ned functor typeclass which implements the category theory functor. It turns

out that many normal, non-scary data types are actually functors. Here we will look at two examples.

First, let's get a little perspective. We are operating in the categoryHask of types and functions.

Our functors will take in a type and produce another type and take a function and produce another

function. That is, our functors will be from Hask to Hask. Functors which have the same source

and target are called endofunctors.

Here is the typeclass declaration for a functor in haskell:

class Functor f where

fmap :: (a -> b) -> f a -> f b

In this case the declaration is stating that there is a type constructor f called a Functor , which

has a function fmap that takes in a function and produces another function. We can think of f

being a container, and fmap does the job of taking a function from type a to b and producing a

function from a container of a to a container of b.

2.1 Maybe Functor

A concrete example is the Maybe type constructor. Maybe in other languages is also call option,

but the idea is to have a type represent failing computations. Heres the declaration for the Maybe

constructor and the de�nition for fmap:

3



data Maybe a = Nothing | Just a

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)

We'll return to the Maybe functor when we talk about monads.

2.2 List Functor

A more familiar example of a functor is a list type

data List a = Nil | Cons a (List a)

instance Functor List where

fmap f Nil = Nil

fmap f (Cons x xs) = Cons (f x) (fmap f xs)

There's a lot more example of functors in programming, and we will be returning to their uses

and furthering these examples later. An important note about the haskell compiler. The categorical

requirements of a functor (unit and composition) are not guaranteed to be automatically satis�ed.

It is on the programmer to ensure that their implementations satisfy the functor laws. It's a good

exercise to check to see if the above implementations satisfy the functor laws. That is check that

fmap id = id and fmap (g.f) = (fmap g). (fmap f) for all relevant f and g.

3 Some Functor Terminology

A trivial, but useful, functor in category theory is the constant functor.

De�nition 3.1. The contant functor ∆d : C → D is de�ned as follows:

• ∆d c = d for all objects c of C.

• ∆d f = idd for all morphisms f of C.

The constant functor collapses an entire category down to one object.

As stated before a functor which has the same source and target is call an endofunctor.

De�nition 3.2. A functor F : C → C is called an endofunctor.

There's a particular endofunctor for each category called the identity functor.

De�nition 3.3. The identity functor, idC or 1C : C → C is de�ned as idC c = c and idC f = f for

all objects and morphisms respectively.

With the identity functor de�ned we can de�ne a new category

De�nition 3.4. The category of all (small) categories, Cat, has objects all small categories, mor-

phisms functors, composition is functor application, and identity morphisms are identity functors.

There's some more functor terminology which we have to talk about. There are actually two

types of functors: covariant and contravariant. Covariant functors are the ones we've been talking

about. They are �normal� functors. When a covariant functor operates on a morphism the direction

of the arrow is preserved in the target category. However, the direction of a morphism �ips in the

case of a contravariant functor.

4



De�nition 3.5. A contravariant functor F : C → D maps objects of C to objects of D, and maps

a morphism f : a→ b of C to a morphism F f : F b→ F a, such that

• (Unit) F idx = idFx

• (Composition) Let f : a→ b and g : b→ c be morphisms of C, then F (g ◦f) = (F f)◦ (F g).

Here's one picture to visualize what's happening:

a b

c

F a F b

F c

f

g
g ◦ f

F f

F g
F (g ◦ f)

C
D

F

The contravariant terminology is often not used. Instead, a contravariant functor is de�ned as a

covariant functor from the opposite category.

De�nition 3.6. Let C be a category. The opposite category Cop is the category obtained by

reversing all the arrows of C. Composition is de�ned as fop ◦ gop = (g ◦ f)op.

With the opposite category de�ned, a contravariant functor F : C → D is a covariant functor

F : Cop → D.

a b

c

a b

c

F a F b

F c

f

g
g ◦ f

fop

gop
(g ◦ f)op

F fop

F gop
F (g ◦ f)op

C Cop D

F

Either terminology is �ne. We can be careful to call-out contravariant functors, or we can make all

contravariant functors have an opposite category as a source and just call them functors.

3.1 Bi-functors

Intuitively, a bi-functor is a functor that takes two arguments, either two objects or two morphisms.

A bi-functor does not necessarily have to take two objects from the same category. To formally

de�ne a bi-functor we must �rst de�ne the product category.

5



3.1.1 The Product Category

De�nition 3.7. The product category of two categories C and D is a category C ×D with:

• Objects of C ×D are pairs of objects (c, d), where c is an object of C and d is an object of D.

• Morphisms of C ×D are pairs of morphisms (f, g) : (c1, d1)→ (c2, d2) where f : c1 → c2 is a

morphism of C and g : d1 → d2 is a morphism of D.

• Composition of morphisms is de�ned pairwise. (f2, g2)◦(f1, g1) = (f2◦f1, g2◦g1) for morphisms

f1 and f2 of C and g1 and g2 of D.

• Identities are pairwise identities. id(c,d) = (idc, idd).

Then a bi-functor is simply a functor whose source is a product category. Consider a functor

S : A×B → C. Here's an illustration of the situation.

a1

a2

(a1, b1) (a1, b2)

(a2, b1) (a2, b2)

b1 b2

S a1 b1 S a1 b2

S a2 b1 S a2 b2

f

g

(f, idb1)

(ida1 , g)

(f, g)
(f, idb1)

(ida2 , g)

S f idb1

S ida1 g

S f g
S f idb2

S ida2 g

A

B

A×B C

S

Note that all of the diagrams in the above illustration commute. The diagram in A×B commutes

due to the de�nition of composition in the product category, and the diagram in C commutes

because functors preserve commuting diagrams. Compare the category A with C. We can see two

copies of A in C. One for the object b1 and another for b2. That is consider a functor from A to C
parametrized by an object of B. More speci�cally, let Lb1 : A → C be a functor that is the same

as S but with the second argument �xed to b1. Formally, Lb1a = S a b1 for all objects a of A, and
Lb1f = S f idb1 for all morphisms of A. Thus, the image of Lb1 is the left side of the rectangle in

C and the image of a functor Lb2 : A → C, parameterized by b2, is the right side of the rectangle.

We can de�ne a similar class of functors Ma : B → C, where Ma is the same as S but with the �rst

argument �xed to a. Ma1 gives the bottom of the rectangle and Ma2 gives the top. Now based on

these de�nitions we have

(Ma2g) ◦ (Lb1f) = (Lb2f) ◦ (Ma1g) = S f g

The above equation is just the commutative diagram in C. The left expression of the equation is

taking the left-top path, and the middle expression is taking the bottom-right path.

It turns out, that the above equation is true more generally. The next theorem says that if you

have a bi-functor, you can de�ne two families of functors L and M for which the above equation

6



holds for all f and g. Conversely, if you have two families of functors L and M for which the above

equation holds for all f and g, then you have a bi-functor.

Theorem 3.1. Let A, B, and C be categories. For all objects a of A and b of B, let Lb : A → C
and Ma : B → C be functors such that Ma b = Lb a for all a and b. Then there exists a bi-functor

S : A × B → C with S(−, b) = Lb and S(a,−) = Ma for all a and b if and only if for every

f : a→ a′ of A and g : b→ b′ of B

(Ma′g) ◦ (Lbf) = (Lb′f) ◦ (Mag)

The proof of this theorem is captured by the reasoning of the previous paragraphs and the above

diagram. It might be a good exercise to make the argument more formal.

Bi-functors will be used more later, and things can get quite confusing and abstract. For

example, let's say we have a bi-functor S : A × B → C. Let's say we have a good understanding

of what objects and morphisms of A and B are. Unfortunately, this intuition will be broken after

the application of S. For example, lets say I have morphisms f : a→ a′ and g : b→ b′, and I really

understand these morphisms. What is S f g? Unfortunately, I don't know. It's some morphism

of C, but my understanding of f and g has been lost. However, and this is piece I want you to

remember, theorem 3.1 tells me that I can think of S f g as separately taking f and g. That is,

while S f g is not a pair of morphisms, it still operates on a pair (f, g) and I can reason about this

pair e�ectively. As an example, consider morphisms f : a→ a′ and f ′ : a′ → a′′ of A and g : b→ b′

and g′ : b′ → b′′ of B. I may not have a good understanding of composition of C, but I do know

(S f ′ g′) ◦ (S f g) = S (f ′ ◦ f, g′ ◦ g)

which uses composition of A and B which I might be more familiar with.

4 The Hom functor

I am now going to de�ne the Hom functor. This section might seem a little esoteric, but the hom

functor is very important in category theory. I'd rather break that ice now.

Assume we have a locally small category C. As a reminder, this means that for any two objects

a and b of C the class of morphisms between a and b is a set. We use the notation C(a, b) (or

Hom(a, b)) to denote the set of morphisms between a and b. First, �x some object a of C. For any

object b of C, C(a, b) denotes an object of the category Set. Thus, for a �xed object a, C(a,−)
maps objects of C to objects of Set.

a

b

c

g1
g2

g3

h1

h2

f

g1 g2 g3

C(a, b)

h1 h2

C(a, c)

C
Set

C(a,−)

7



The goal is to make C(a,−) a functor. Thus, it needs to map the morphism f : b→ c to a function

from C(a, b) to C(a, c). Using the above example, this resulting function needs to map an element

g1 to either h1 or h2. To make this choice the hom functor uses the composition of C. Consider,

f ◦ g1. Because C is a category, this resulting morphism must be a morphism from a to c. Using

the above example, let's say composition behaves as follows:

f ◦ g1 = h1

f ◦ g2 = h1

f ◦ g3 = h2

The hom functor uses this mapping to create the function from C(a, b) to C(a, c). That is, let

C(a, f) denote the mapping of f through the hom functor C(a,−).

C(a, f)(g1) = f ◦ g1 = h1

C(a, f)(g2) = f ◦ g2 = h1

C(a, f)(g3) = f ◦ g3 = h2

a

b

c

g1
g2

g3

h1

h2

f

g1 g2 g3

C(a, b)

h1 h2

C(a, c)

C
Set

C(a,−)

C(a, f)

In the above �gure, the dashed lines in Set are used to represent the single function C(a, f). Note
that for a di�erent morphism f ′ : b→ c, we would have a di�erent mapping from composition and

thus a di�erent function through the hom functor. This de�nes the functor C(a,−) for any a (this

will be de�ned more formally in a moment).

Now consider �xing the second argument, C(−, c). C(−, c) maps objects of C to sets in the

same way as C(a,−). What about mapping morphisms? Consider C(g1, c) from above. g1 is a

morphism from a to b. If we were to follow the same direction of arrows we would create a function

from C(a, c) to C(b, c). Given an h we would need to produce an f . There is no good way, because

an f and g de�ne an h, but not the other way around. However, we can de�ne a function from

C(b, c) to C(a, c) using the composition of C, by C(g1, c)(f) = f ◦ g1 = h1.

8



a

b

c

g1
g2

g3

h1

h2

f

f

C(b, c)

h1 h2

C(a, c)

C
Set

C(−, c)

C(g1, c)

De�nition 4.1. Let C be a locally-small category. The hom functor consists of two families of

functors C(a,−) and C(−, c).

1. For every object a of C let C(a,−) : C → Set be the following covariant functor.

• For every object b of C, C(a, b) consists of the set of morphisms g : a→ b.

• For every morphism f : b → c, C(a, f) : C(a, b) → C(a, c) is the function that assigns

g � f ◦ g for each g in C(a, b).

2. For every object c of C let C(−, c) : C → Set be the following contravariant functor.

• For every object b of C, C(b, c) consists of the set of morphisms f : b→ c.

• For every morphism g : a → b, C(g, c) : C(b, c) → C(a, c) is the function that assigns

f � f ◦ g for each f in C(b, c).

Based on the above de�nition we have the following diagram commutes for all f : a′ → a, g : a→ b,
and h : b→ b′

C(a, b) C(a′, b)

g g ◦ f

h ◦ g h ◦ g ◦ f

C(a, b′) C(a′, b′)

C(f,b)

C(a,h) C(a′,h)

C(f,b′)

The inner rectangle is meant to indicate the result of the functions of the outer rectangle on an

element g ∈ C(a, b). That is, the inner arrows don't represent morphisms. They represent functional

assignments.

Because the above diagram commutes, by theorem 3.1 the hom functor is a bi-functor. Thus

we might write the hom functor for category C as a bi-functor C(−,−) : C × C → Set which is

contravariant in the �rst argument and covariant in the �rst. Alternatively, we can write the hom

functor for category C as the bi-functor C(−,−) : Cop × C → Set.

9


