
Intro to Category Theory: Natural Transformations

1 Natural Transformations

With category theory we �rst de�ne categories, which are a way to formalize structure preserving

transformations called morphisms. Then we de�ne functors which are structure preserving trans-

formations of categories. Now we are going to de�ne natural transformations, which are going to

be transformations of functors. It may seem that we are never going to stop. It's all about trans-

formations on transformations forever. This is partly true. There is a branch of category theory

called higher category theory that does take this perspective. However, we are not going to explore

this �eld. Fortunately, in regular category theory the transformations stop here. That is, we are

going to stop at natural transformations.

It is often remarked that categories are only de�ned to de�ne functors and functors are only

de�ned to de�ne natural transformations. Saunders Mac Lane supposedly said �I didn't invent

categories to study functors; I invented them to study natural transformations.�

We shall build up the de�nition of a natural transformation step by step. A functor can be

thought of an embedding of one category into another. Suppose we had two such embeddings

F : C → D and G : C → D. We would like to compare the result of these embeddings, by de�ning

a transformation between F and G. We usually use lower case Greek letters to denote natural

transformations (α, β, γ, ...). F and G map objects to objects and morphisms to morphisms. To

de�ne a transformation between F and G we want to have the objects and morphisms mapped by

F to be related to the objects and morphisms mapped by G.
Let's start with objects. Consider an object a of C. F a and G a are objects of D. We can

impose a traditional mapping (a function) between F a and G a for each a, but we didn't come

all this way to revert back to set theory. We might already have a relationship between F a and

G a as a morphism in D. Let α : F → G be a natural transformation. This natural transformation

picks out these morphisms in D between F a and G a for each a. This morphism is denoted as

αa : F a→ G a and is called the component of α at a.

a

F a

G a

αa

C

D

F

G

This is what α does for objects any object, but what about morphisms? Suppose we have

a morphism f : a → b of C. Because F and G are functors there necessarily are morphisms

F f : F a → F b and G f : G a → G b in D. Also, if the components of a natural transformation

have been de�ned we have morphisms αa : F a → G a and αb : F b → G b of D. Because D
is a category we have two ways to get a morphism from F a to G b. We can use αa then G f ,

1



or we can take F f and then αb. So far, these resulting morphisms don't have to be related.

(G f)◦αa : F a→ G b can be totally di�erent from αb ◦ (F f) : F a→ G b. However, we can relate

F f to G f with α if we require (G f) ◦αa = αb ◦ (F f). This condition is known as the naturality

condition.

De�nition 1.1. Consider functors F : C → D and G : C → D. A natural transformation

α : F → G (usually depicted as C D

F

G

α ) is a family of morphisms such that

• For each object a in C, α picks a morphism αa : F a→ G a in D. αa is called the component

of α at a.

• For each morphism f : a→ b of C the following diagram commutes

F a F b

G a G b

F f

αa αb

G f

As an equation (G f) ◦ αa = αb ◦ (F f).

a

b

f

F a

G a

αa

F b

G b

αb

F f

G f

C

D

F

G

F

G

De�nition 1.2. A natural transformation for which each component is an isomorphism is called a

natural isomorphism. Two functors are isomorphic if there is a natural isomorphism between them.

2 Examples

Here's a slightly non-intuitive example that will go through the pieces of the de�nition.

Example 2.1. Consider the statement �Every group is naturally isomorphic to its opposite group�.

Let's dissect and then prove this statement. First we need to know what the opposite group is. Let

(G, ∗) be a group. The opposite group (Gop, ∗op) is de�ned to have Gop = G and a ∗op b = b ∗ a. As
an exercise check is that (Gop, ∗op) is indeed a group.

Consider the category Grp, where objects are all groups and morphisms are group homomor-

phisms. A natural transformation goes between functors. For this example consider the identity

2



functor on Grp, idGrp : Grp → Grp and the opposite functor Op : Grp → Grp. De�ne the

opposite functor as follows: For an object (G, ∗), Op (G, ∗) = (Gop, ∗op). For a morphism f ,
Op f = fop = f . Note that for Op to be a functor we must have that fop is a homomorphism from

(Gop, ∗opG ) to (Hop, ∗opH ) for each homomorphism f : (G, ∗G)→ (H, ∗H). Let a and b be elements of

Gop

fop(a ∗opG b) = f(a ∗opG b) = f(b ∗G a) = f(b) ∗H f(b) = fop(a) ∗opH fop(b)

This essentially shows that fop is a homomorphism and thus Op is a functor.

To prove the initial statement we need to de�ne a natural isomorphism between idGrp and Op.
That is we need an isomorphism ηG for every group G such that the following diagram commutes:

(G, ∗G) = idGrp (G, ∗G) (H, ∗H) = idGrp (H, ∗H)

(Gop, ∗opG ) (Hop, ∗opH )

ηG

f=idGrp f

ηH

fop=f

Let ηG(a) = a−1, where a is an element of (G, ∗G) and the rhs is an element of (Gop, ∗opG ).
ηG is obviously an isomorphism. It is its own inverse. We need to check two more things. For

ηG to be a natural transformation we need to make sure that ηG is a morphism of Grp and also

check the naturality square.

Is ηG a morphism of Grp, in other words, is ηG a group homomorphism?

ηG(a ∗G b) = (a ∗G b)−1 = b−1 ∗G a−1 = a−1 ∗opG b−1 = ηG(a) ∗opG ηG(b)

Thus ηG is a group homomorphism.

Let's check naturality. Consider a group homomorphism f : (G, ∗G) → (H, ∗H). For all a ∈ G
we have

(ηH ◦ f)(a) = (f(a))−1 = f(a−1) = fop(a−1) = (fop ◦ ηG)(a)

Thus naturality holds.

All told, we have shown that idGrp is naturally isomorphic to Op. This is saying two things.

One, each group is isomorphic to its opposite group. This is due to the existence of an isomorphism

between a group and its opposite group. Also, this isomorphism also respects all structure preserving

maps. That's what naturality means.

2.1 Natural Transformations in Programming

What would a natural transformation in Hask be? In this category functors are endofunctors

from types to types. Consider functors F : Hask → Hask and G : Hask → Hask. A natural

transformation alpha must have a component, in this case a haskell function, at every type a,
alphaa : F a→ G a. In programming we often drop the subscript and allow a to vary freely.

Such a function alpha : F a→ G a is called polymorphic. In functional programming there are

usually two types of polymorphism: ad-hoc polymorphism and parametric polymorphism. Without

getting too much into it, a parametrically polymorphic function has a single implementation for all

types. In contrast, an ad-hoc polymorphic function can have di�erent implementations depending

on the incoming type. Operator overloading is an example of ad-hoc polymorphism. Integers could

3



be handled di�erently than �oats for example. For these notes, we are going to only be using

parametrically polymorphic functions.

For a polymorphic function alpha : F a→ G a to be a natural transformation, naturality must

be satis�ed. I'll write the condition in haskell syntax.

(fmap f) . alpha = alpha . (fmap f)

In the above code f would have type a->b. The rhs fmap has type F a -> F b and the lhs

fmap has type G a -> G b.

Example 2.2. The safeHead function is used to get the head of a possibly empty list. If the list

is empty safeHead returns Nothing .

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead (x : xs) = Just x

Let's verify naturality. We have two cases depending on whether the incoming list is empty or not

(fmap f . safeHead) [] = fmap f Nothing = Nothing

(safeHead. fmap f) [] = safeHead [] = Nothing

And if the list is not empty

(fmap f . safeHead) (x:xs) = fmap f (Just x) = Just (f x)

(safeHead. fmap f) (x:xs) = safeHead (f x : fmap f xs) = Just (f x)

This shows safeHead is a natural transformation.

If we think of functors as containers, then a natural transformation modi�es the container but

not the contents. You can open up the container and rearrange the contents, but you can't modify

the contents.

Here's a neat fact about haskell. In the previous example we veri�ed naturality for safeHead ;

however, it turns out if F and G are really functors, i.e. unit and composition is satis�ed, then

any parametrically polymorphic function with type F a -> G a will necessarily be a natural

transformation. In actuality, we didn't have to verify naturality for safeHead . Because it's a

parametrically polymorphic function, the type-checker guarantees naturality.

3 Operations on Natural Transformations

3.1 Vertical Composition

Consider categories C and D and three functors F : C → D, G : C → D, and H : C → D. Let

α : F → G and β : G→ H be natural transformations.

C D

F

G

H

α

β

Is there a natural transformation between F and H. Let's consider the components of α and β at

a. αa : F a → G a and βa : G a → H a. Because these are morphisms in D and D is a category

4



we can compose these arrows for any a of C. We call this composition vertical composition, and

denote with a ..
(β.α)a = βa ◦ αa : F a→ H a

The ◦ in the above equation is composition in D. Now we need to check naturality to see if β.α is

a natural transformation.

a

b

f

F a

G a

H a

αa

βa

F b

G b

H b

αb

βb

F f

G f

H f

C

D

F

G

H

The top square commutes in D because α is a natural transformation. Similarly, the bottom square

commutes because β is a natural transformation. If all inner diagrams commute, then the whole

diagram commutes. Thus,

(H f) ◦ (β.α)a = (β.α)b ◦ (F f)

for every f . This shows β.α is a natural transformation.

Observe, we have functors, transformations between functors, and a notion of composition of

those transformations. Do we have a category where objects are functors between C and D, and

morphisms are natural transformations?

• We have de�ned composition

• Composition is associative because composition in D is associative.

• We just need identity transformations.

Let 1F : F → F be a natural transformation de�ned by (1F )a = idFa for each a of C.

De�nition 3.1. Let C and D be categories. The functor category, denoted [C,D], Fun(C,D) or
DC , is the category where

• Objects are functors F : C → D.

• Morphisms are natural transformations.

• Composition is vertical composition.

• Identity morphisms are identity natural transformations, 1F .

The category [C,C] is also called the category of endofunctors.

5



3.2 Horizontal Composition

We wouldn't have called it vertical composition if there was no other kind of composition. Consider

the following situation

C D E

F

G

F ′

G′

α β

We can compose functors. Is there a relationship between F ′ ◦ F : C → E and G′ ◦ G : C → E?
Yes, β ◦ α, called horizontal composition is a natural transformation between G ◦ F and G′ ◦ F ′.

Let's construct components of β ◦ α and then check naturality. First, note the signature of the

relevant component, (β ◦ α)a : (F ′ ◦ F )(a)→ (G′ ◦G)(a). Now consider the following illustration

a

F a

G a

αa

F ′(F a)

G′(F a)

F ′(G a)

G′(G a)

C

D

E

βFa βGa

F ′ αa

G′ αa

F

G

F ′

G′

The square in E commutes because β is a natural transformation. The commuting square in E thus

gives us two ways to de�ne a component of β ◦ α.

(β ◦ α)a = βGa ◦ (F ′ αa) = (G′ αa) ◦ βFa

Now to check naturality.

6



a

b

f

C

F a

G a

αa

F b

G b

αb

F f

G f

D

F ′(F a) F ′(G a)
F ′ αa

F ′(F b) F ′(G b)
F ′ αb

F ′(F f) F ′(G f)

G′(G a)

G′(G b)

βGa

βGb

G′(G f)

E

F

G

F ′

All the diagrams in the above illustration commute. The square in D commutes because α is a

natural transformation. The left square of E commutes because F ′ is a functor and functors preserve

commuting diagrams. The right square of E commutes because β is a natural transformation.

Reading along the edges of the diagram in E we have

(G′ ◦G) f ◦ (β ◦ α)a = (G′ ◦G) f ◦ βGa ◦ F ′ αa = βGb ◦ F ′ αb ◦ (F ′ ◦ F ) f = (β ◦ α)a ◦ (F ′ ◦ F ) f

This is the naturality condition. This shows β ◦ α is a natural transformation.

4 Interchange Law

Now consider this �nal situation

C D E

F

G

H

F ′

G′

H′

α

β

α′

β′

7



β.α : F → H

β′.α′ : F ′ → H ′
α′ ◦ α : F ′ F → G′ G

β′ ◦ β : G′ G→ H ′ H

We now have two di�erent ways to construct a natural transformation from F ′ F to H ′ H: (β′.α′)◦
(β.α) and (β′ ◦ β).(α′ ◦ α)

Theorem 4.1. (Interchange law). Take the situation as depicted in the previous illustration

(β′.α′) ◦ (β.α) = (β′ ◦ β).(α′ ◦ α)

Proof. The following diagram commutes because α′ is a natural transformation.

F ′ F c F ′ G c F ′ H c

G′ G c G′ H c

F ′ H c

F ′ αc F ′ βc

α′
Gc α′

Hc

G′ βc

β′
Hc

β′Hc ◦ α′Hc ◦ F ′ βc ◦ F ′ αc = β′Hc ◦G′ βc ◦ α′Gc ◦ F ′ αc
(β′.α′)Hc ◦ F ′ ((β.α)c) = (β′ ◦ β)c ◦ (α′ ◦ α)c

((β′.α′) ◦ (β.α))c = ((β′ ◦ β).(α′ ◦ α))c

8


