
Intro to Category Theory: Limits and Universal Properties

1 Category theory as a useful generalization of mathematics

Category theory can be used as a common language for all of mathematics. However, just because
something can generalize everything doesn't necessarily make it very useful. Natural language

can capture all mathematics, but that doesn't make it a very useful mathematical framework.
At a meta-level, what makes a good foundation of mathematics? You need to strike a balance
between having a system of axioms that are not restrictive enough as to exclude interesting areas
of mathematical study, and having axioms for which you can derive some interesting theorems.
These theorems shed light on properties shared by all areas of mathematics. Natural language is
too weak, and abelian groups are too restrictive.

Why is category theory a useful generalization? On the outset it doesn't seems how it can
be. They're very close to directed graphs with three simple axioms: arrows compose, composition
is associative, and objects have identity arrows. It doesn't seem there's enough structure here to
derive some interesting theorems. We can formulate classes of objects as categories, such as Set
and Grp, but when we do all it seems we are left with is a spaghetti of indecipherable arrows.

Arguably universal properties is the answer to what category theory is useful for. They are the
common way to start and disentangle the arrows of a category. A universal property will de�ne
an object in a category that is the �most e�cient solution� to a certain problem. At a high-level
a universal object is an object that satis�es a property such that are other objects that satisfy
the property can be �factorized� through the universal object. In other words, if you want to
�understand� how an object satis�es a property you can construct this understanding by going
through the universal object.

2 The Equaliser

Before we go on with the category theory, let's begin with an example in set theory.

De�nition 2.1. Consider sets X and Y , and two functions f : X → Y and g : X → Y . The
equaliser of f and g is the set of elements x of X such that f(x) = g(x).

Eq(f, g) := {x ∈ X|f(x) = g(x)}

The idea is that there is some subset of elements of X for which f and g match, and the
equaliser is the largest such subset.

Example 2.1. Let X = {a, b, c, d} and Y = {1, 2, 3, 4, 5}, with

f(a) = 2

f(b) = 2

f(c) = 4

f(d) = 5

g(a) = 1

g(b) = 2

g(c) = 5

g(d) = 5

In this case f and g match on b and d, thus Eq(f, g) = {b, d}.

2.1 An alternative de�nition

To start moving in the categorical direction, let's observe that we can characterize the equaliser as
satisfying two characteristics. First, the equalizer satis�es the property that it is a subset of X and
for all x ∈ Eq(f, g), f(x) = g(x). However, note that the equaliser is not the only set that satis�es
this property. Going to the previous example, {b} also has that for all elements f(x) = g(x),
same thing for {}. What's special about the equaliser is that it is the largest subset of X which
satis�es this property. Stated another way for all other sets S, such that ∀s ∈ S f(s) = g(s), then
S ⊆ Eq(f, g).

We're not quite at the categorical de�nition yet, but this is one way to start to think of universal
objects (or properties). A universal object is the solution to an optimization problem. A universal

1



object satis�es a property, and for all other objects which satisfy that same property the universal
object is �best�. We will describe what �best� means in a moment.

To get a little more categorical, we will de�ne the equaliser using functions rather than sets.
A heads up, we will not de�ne a set Eq(f, g), instead we are going to de�ne a function eq that
essentially performs the same job. The �rst thing we need is to consider how to de�ne a particular
subset using functions. Consider any function h : A→ X. At this moment, A can be any set and
h can be any function. Denote the range of h as range(h) = {h(a)|a ∈ A}. Then range(h) ⊆ X.
This is true for any h and any A.

To de�ne the right subset for the equaliser we just need to pick the right h and A. Let consider
such functions and sets that satisfy the �rst property of the equaliser. That is such functions
h : A→ X with f(x) = g(x) for all x ∈ range(h). Such functions pick out the elements for which
f and g match. These are all the functions for which range(h) ⊆ Eq(f, g). We can also write
this fact using function composition. If range(h) ⊆ Eq(f, g), then f ◦ h = g ◦ h. Conversely, if
f ◦ h = g ◦ h then range(h) ⊆ Eq(f, g).

Going back to the example, all functions h : A→ X with f(x) = g(x) for all x ∈ range(h), have
range(h) ⊆ {b, d}. Conversely, any function h : A→ X with range(h) ⊆ {b, d} has f(x) = g(x) for
all x ∈ range(h). We are still a ways from the de�nition of the equaliser. Here are some potential
functions which satisfy the property.

evenb : Z→ X
evenb(n)

{
b if n is even

d otherwise

empty : ∅ → X empty = ∅

eqf,g : E = { , } → X eqf,g( ) = b

eqf,g( ) = d

selectb : {•} → X selectb(•) = b

For each of the above functions we have that their range's are a subset of Eq(f, g). Thus we
have

f ◦ evenb = g ◦ evenb
f ◦ empty = g ◦ empty
f ◦ eqf,g = g ◦ eqf,g

f ◦ selectb = g ◦ selectb

Because each of these functions have f ◦ h = g ◦ h each of them satisfy the �rst property of an
equaliser. However, these functions are not equally good as far as the equaliser is concerned. For
starters, we have that eqf,g and evenb are better than the other two because we have range(eqf,g) =
range(evenb) = Eq(f, g), but range(empty) ( Eq(f, g) and range(selectb) ( Eq(f, g). Perhaps
naturally, evenb doesn't seem as good as eqf,g because it is �too big�. That is, evenb represents
more information than is necessary. In set theory, one way we can make the distinction is by saying
that eqf,g is an injection whereas evenb is not. Stated another way E = { , } is isomorphic to
Eq(f, g), whereas Z is not.

The categorical de�nition of an equaliser will show what make eqf,g special. The idea is that
E and eqf,g completely embodies what it means to equalize f and g. That is while there are other
functions that equalize f and g, the can all be understood through the lens of E and eqf,g. E and
eqf,g uniquely factorizes all other pseudo-equalisers. This factorization property is what makes
eqf,g �best� and represents the solution to the optimization property of a universal property. For
example, while it is the case that {•} and selectb have some equalization property this can be
understood through E and eqf,g. Stated with functions, there exists a function uselect : {•} → E,
such that selectb = eqf,g ◦uselectb . That is there's some piece of eqf,g �inside� selectb. In this case,
uselectb(•) = . There is a u for each of the functions evenb, empty, and selectb.
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uevenb
: Z→ E

uevenb
(n)

{
if n is even

otherwise

uempty : ∅ → E uempty = ∅

uselectb : {•} → E uselectb(•) =

Go ahead and verify that evenb = eqf,g ◦ uevenb
, empty = eqf,g ◦ uempty, and selectb = eqf,g ◦

uselectb . In fact, because E and eqf,g are universal, it means for any function m : O → X with
f ◦ m = g ◦ m, then there exists a function um : O → E, with m = eqf,g ◦ um. However, the
existence of a factorizing function u is not totally what de�nes a universal object. Using the
previous example, Z and evenb also satis�es this property.

uempty : ∅ → Z uempty = ∅

ueqf,g : E → Z ueqf,g ( ) = 0

ueqf,g ( ) = 1

uselectb : {•} → Z uselectb(•) = 0

What excludes Z and evenb from being the equaliser is that the choice of u in this situation is
not unique. Take the factorization for eqf,g for example. There are an in�nite amount of choices
for the factorizer ueqf,g . That is solution is is mapped to and even number and is mapped
to an odd number, then we will have eqf,g = evenb ◦ ueqf,g . By requiring that u is unique (at least
in Set), ensures that E and eq is no larger than required. It is exactly the right size.

Here is the formal alternative de�nition we've been building up to.

De�nition 2.2. Consider sets X and Y , and two functions f : X → Y and g : X → Y . The
equaliser of f and g is a set E and a function eq : E → X with f ◦ eq = g ◦ eq, such that for
any other set O and function m : O → X with f ◦m = g ◦m, then there exists a unique function
u : O → E with m = eq ◦ u.

This de�nition has the following associated diagram, which we will describe more later:

E X Y

O

eq f

g

u m

This pattern of de�nition will be the pattern for any universal property, so it is important to
really sit and dissect the logic of the de�nition. First there is a set E and a function eq with respect
to a particular f and g. You give me an f and g and I give you an E and eq with f ◦ eq = g ◦ eq.
Furthermore, if you give me any other set O and function m with the property that f ◦m = g ◦m
then I can produce a unique u : O → E such that m = eq ◦ u. The de�nition is not saying that eq
factorizes any m : O → X. Only such m's with f ◦m = g ◦m.

Another way to think about it is that you have a set A and a function h that satis�es some
property. (In this case the equaliser property f ◦ h = g ◦ h). A and h are universal if for any other
set O and function m that satis�es the same property, then A and h uniquely factorizes m.

To relate the alternative de�nition back to the �rst one, suppose we have the equaliser E and eq
for an f and g. Then range(eq) = Eq(f, g), where Eq(f, g) is the set de�ned in the �rst de�nition.
Note that, de�nition 2.2 does not de�ne a unique set. There are multiple sets and functions that
can be equalisers for the same functions, but all such examples are isomorphic.
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2.2 A discussion on uniqueness (at least for the equaliser in Set)

I think at this point there still some dissatisfaction with the requirement of a unique factorization.
All I've said is that uniqueness ensures E and eq aren't �too big�, but it's not clear why uniqueness
ensures E is just the right size. In this section, I'm going to try and clear this up at least for the
equaliser in set. Some of these arguments will generalize to other categories and some will apply
to all morphisms in set. I will try and be clear how general each statement is.

First, let's be clear what I mean when I say E and eq aren't too big. In the case of the equaliser,
it's saying that E has the same cardinality as Eq(f, g). Equivalently eq : E → X is an injection.
Here's another way to think about the equaliser.

Theorem 1. Suppose we have sets X and Y and two functions f : X → Y and g : X → Y .
Consider then a set E and a function eq : E → X.

range(eq) = Eq(f, g)∧eq is an injection ⇐⇒ E and eq is an equaliser of f and g according to 2.2.

This is one way to see why Z and evenb is not an equaliser. range(evenb) = Eq(f, g), but
evenb is not an injection. Equivalently, |Z| 6= |Eq(f, g)|.

I'm now going to prove the (⇐= ) direction. A good exercise is to show the ( =⇒ ) direction.
(Hint: f ◦ eq = g ◦ eq comes from range(eq) = Eq(f, g). Then you must be able to construct a
factorizer u for each m. Think about eq−1 for the construction of u.)

To show (⇐= ) we need the de�nition of a monomorphism. This is a general category theoretic
de�nition.

De�nition 2.3. A monomorphism f is a morphism f : X → Y such that for all objects Z and all
morphisms g1, g2 : Z → X,

f ◦ g1 = f ◦ g2 =⇒ g1 = g2

Lemma 2. In the category Set, monomorphisms are injections.

Proof. Suppose a function f : X → Y is a monomorphism, but not an injection. This means there
exists x1, x2 ∈ X with f(x1) = f(x2) = y but x1 6= x2. Let Z be some non empty set, and let
g1(z) = x1 for all z ∈ Z and g2(z) = x2 for all z ∈ Z. Then (f ◦g1)(z) = y = (f ◦g2)(z) for all z ∈ Z.
This means f ◦ g1 = f ◦ g2. Because f is a monomorphsim, g1 = g2. But g1(z) = x1 6= x2 = g2(z)
for each z. This is a contradiction. Thus f is an injection.

Now we must show that if E and eq is an equaliser, then eq is a monomorphism. (This holds
for any category. Not just Set).

Lemma 3. Let E and eq : E → X be an equaliser of f : X → Y and g : X → Y . Then eq is a
monomorphism.

Proof. Suppose there are morphisms h1, h2 : A → E with eq ◦ h1 = eq ◦ h2. We need to show
h1 = h2. Consider f ◦ (eq ◦ h1). Since composition is associative and eq is an equaliser we have

f ◦ (eq ◦ h1) = (f ◦ eq) ◦ h1 = (g ◦ eq) ◦ h1 = g ◦ (eq ◦ h1)

That is eq ◦ h1 can take on the role of m in the de�nition of an equaliser. This means there is a
unique u such that eq ◦ h1 = eq ◦ u, but eq ◦ h1 = eq ◦ h2. That is, both h1 and h2 can take on the
role of u. Because u is unique it must be the case that u = h1 = h2.

To �nish o� the ( ⇐= ) direction we just observe that range(eq) = Eq(f, g) is equivalent to
f ◦ eq = g ◦ eq.

The point of theorem 1 is to say that uniqueness of u in the de�nition of the equaliser is what
ensures that the set E has the same cardinality as Eq(f, g). That is E is exactly the right size.

2.3 Getting out of Set

So we have beaten equalisers in Set to death now. It's time to go purely categorical. Fortunately,
we don't have to go far. De�nition 2.2 directly generalizes to any category. Just replace a mention
of set with object and function with morphism.
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De�nition 2.4. Consider objects X and Y , and two morphisms f : X → Y and g : X → Y . The
equaliser of f and g is an object E and a morphism eq : E → X with f ◦ eq = g ◦ eq, such that
for any other object O and morphism m : O → X with f ◦m = g ◦m, then there exists a unique
morphism u : O → E with m = eq ◦ u.

We also have the same commutative diagram:

E X Y

O

eq f

g

u m

Note that this diagram doesn't completely follow the rule of commutative diagrams stated before.
Namely, this diagram is not meant to indicate that f = g. However, for all other paths which start
and end at the same vertex the diagram denotes equal morphisms.

These types of diagrams are very common when de�ning universal properties. The dashed
arrow for u denotes uniqueness. Sometimes you see the addition of a ∀ next to m and ∃ next to u,
to help explain that for any m there is a corresponding u.

The general idea to get from this diagram is the triangle part, which encodes the unique

factorization idea. This piece is common to all universal properties.1 A X Yh
f

g
does

the job of specifying the particular property, and the triangle de�nes universality. That is, imagine

we have a lot of diagrams Oi X Y
mi

f

g
�oating around. Such a diagram indicates

that Oi and mi satisfy some pattern. In this case, every Oi and mi are faux-equalisers. The
real equaliser E and eq satis�es the pattern and uniquely factorizes all the Oi's and mi's. It is
totally possible to understand how some Oi and mi is a faux-equaliser by going through E and

eq. That is, every diagram Oi X Y
mi

f

g
can be constructed by the factorizer ui and

E X Y
eq f

g
.

Make note of another fact that will come up when learning about adjunctions, the set of mi's
and ui's are in a one-to-one correspondence. For every mi there is a unique ui, and if you give me
a ui I can give you an mi by eq ◦ ui.

3 More than the equaliser

Like I said, the general idea to get from the equaliser is the triangle. The diagram E X Y
eq f

g

was only relevant for the case of the equaliser. We can use de�nition 2.4 as a schema for other
mathematical objects, and just use di�erent diagrams.

I'm now going to give some more categorical examples before I give a general de�nition. I
want to make note of something before we get started. It is the case that for any two functions
f : X → Y and g : X → Y there is an equaliser in the category Set. Such a category is said to
�have equalisers�. However, this does not need to hold in general. We talk about the equaliser for
particular morphisms f : X → Y and g : X → Y , but that doesn't mean that an equaliser exists
say for any morphisms f ′ : X ′ → Y ′ and g′ : X ′ → Y ′. A universal property is with respect to a
particular diagram (particular objects and morphisms), not with respect to every pattern that �ts
a diagram. If we are in a situation for which every diagram of a certain pattern has a satisfying
universal property, then we have an adjunction, but we won't talk about that for a little while.

3.1 Product

Like I said, we can use the equaliser de�nition as a schema to de�ne other universal constructions.
Consider the following diagram:

1They might look a little di�erent for other examples, but it's there.
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c

a b

p q

The associated de�nition for this diagram is the categorical product.

De�nition 3.1. Consider objects a and b. The product of a and b is an object a × b and two
morphisms π1 : a × b → a and π2 : a × b → b, such that for any other object c and morphisms
p : c → a and q : c → b, then there exists a unique morphism u : c → a × b with p = π1 ◦ u and
q = π2 ◦ u.

The following diagram usually accompanies the above de�nition.

c

a a× b b

p q
u

π1 π2

There are a few di�erences between this de�nition and the one for the equaliser, but the idea is
the same. The product a × b is the product because it has projections π1 and π2 and because it
uniquely factorizes all other faux-products.

Let me highlight some of the di�erences between the de�nition of the equaliser and the product.
For an equaliser, we have one object E and one morphism eq : E → X, whereas a product consists
of an object a × b and two morphisms π1 and π2. As a slight aside, it is imperative that you
remember what a particular universal property is being satis�ed by. Even though we colloquially
talk about the equaliser as being a morphism eq and a product as an object. Formally, an equaliser
is a morphism eq and an object E, and a product is an object a × b and two morphisms π1 and
π2. Because there is no internal structure in category theory, saying an object a× b is the product
of a and b without having projections is a meaningless statement. On the other hand, the pieces
not explicitly given when stating something satis�es a universal property are usually implied from
context.

Another di�erence between the equaliser and the product is that morphism of the equaliser eq

is required to satisfy an additional property. That is the diagram O X Ym
f

g
indicates

f ◦ m = g ◦ m, where as the diagram

c

a b

p q doesn't denote any equalities. Thus,

the morphisms of the product don't have any additional properties that they need to satisfy other
than existing.

These di�erences are handled in a general framework with the general de�nition of a limit, but
the use of functors and multiple categories is required. We will not consider this general situation
quite yet.

3.1.1 Examples

In the category Set, the product of two sets X and Y is the cartesian product of X and Y , with
π1((x, y)) = x and π2((x, y)) = y for (x, y) ∈ X × Y . Consider a set Z and functions p : Z → X
and q : Z → Y . The unique factorizer u : Z → X × Y is then

u(z) = (p(z), q(z))

In the category Grp, the product of two groups (G, ∗) and (H,∆), is (G×H,< ∗,∆ >), where
G×H is the cartesian product of G and H, and the group operation < ∗,∆ > is

(g1, h1) < ∗,∆ > (g2, h2) = (g1 ∗ g2, h1∆h2)

The projections π1 and π2 operate on elements the same as in Set. It remains to check that
(G×H,< ∗,∆ >) is a group, and π1 : (G×H,< ∗,∆ >)→ (G, ∗) and π2 : (G×H,< ∗,∆ >)→
(H,∆) are group homomorphisms.
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For another example, recall how a partial order (P,≤) can be viewed as a category. Objects
of the category are the elements of P , and there is a morphism between objects x and y if x ≤ y.
In such a category there is at most one morphism between objects. In this setting the product
between two objects a and b is simply the meet a u b. To see why just trace the de�nition of
product. Since au b is a product there are morphisms from au b to a and b. For this category that
means a u b ≤ a and a u b ≤ b. Furthermore, for any other c with morphisms to a and b, we have
a morphism from c to a u b. This just means that for any c with c ≤ a and c ≤ b then c ≤ a u b.
Thus, the statement that a u b is the product of a and b is exactly the statement that a u b is the
greatest lower bound of a and b.

This uni�cation of di�erent concepts starts to show the utility of category theory. The cartesian
product of sets and the meet don't seem that related when you take the internal perspective of set
theory, but from the external view of category theory they are actually the same exact thing in
di�erent categories.

3.2 Pullback

c

a b

d

p q

f g

De�nition 3.2. Consider morphisms f : a → d and g : b → d. The pullback of f and g is an
object a×d b and two morphisms π1 : a× b→ a and π2 : a× b→ b with f ◦ π1 = g ◦ π2, such that
for any other object c and morphisms p : c→ a and q : c→ b with f ◦ p = g ◦ q, then there exists
a unique morphism u : c→ a×d b with p = π1 ◦ u and q = π2 ◦ u.

Usually we have the following diagram:

c

a×d b b

a d

q

p

u

π2

π1
g

f

In Set the pullback of functions f : X → Z and g : Y → Z is the set X ×Z Y = {(x, y)|f(x) =
g(y)}. The projections π1 and π2 are the same as the cartesian product.

As can be seen the pullback is very related to the product and the equaliser. In fact, if a category
has products and equalisers it necessarily has pullbacks. That is pullbacks can be constructed from
products and equalisers. Actually, a much more general thing is true. It turns out if a category
has products and equalisers then a wide variety of universal constructions necessarily exist. We
will not investigate this presently.

4 Limits

I think we're ready to approach a general de�nition. All the examples we've been talking about
so far are examples of universal properties, but they are also examples of a more speci�c type of
universal property. This more speci�c universal property is a limit.

Recall what I said about how the equaliser is the most universal among diagrams of the form

Oi X Y
mi

f

g
. Observe that because morphisms compose in a category, for each Oi and

mi there necessarily is a morphism form Oi to Y . In fact, you can write it as f ◦mi or g◦mi. Based

7



on the nature of the diagram these two morphisms are necessarily equal. That means instead of

talking about Oi X Y
mi

f

g
, we could have been talking about

Oi

X Y

mi f◦mi

f

g

That extra leg of the triangle doesn't add any information, so in the formal de�nition we don't
include it. But for now I want you to visualize it being there.

Now it helps to try and visualize this next part. In the case of the equaliser each Oi and mi

has its own associated triangle, and all these triangles share the same base X Y
f

g
. You can

try and picture this as a fan around a spoke of X Y
f

g
. Here's my attempt at drawing this

X

Y

O1

O2 O3

m1

m2
m3

f ◦m3

The above diagram is just a rearrangement of Oi X Y
mi

f

g
for i = 1, 2, 3. The equaliser

E and eq is also part of this picture. But we can also include the unique factorizers ui.

X

Y

O1

O2

O3E

eq

u1

u3

u2

The above diagram commutes. What de�ne's the equaliser is that for any other spoke of this fan

O

X Y

m f◦m

f

g

, there is a unique u : O → E, such that the following diagram commutes.

X
Y

O

E m m′ = f ◦m
eq

f

g

u

This is the same diagram from de�nition 2.4, just rearranged slightly. I've also called the right leg of
the O triangle m′. It just so happens that because of the commuting condition m′ = f ◦m = g ◦m.

The above diagram essentially de�nes the equaliser. Notice that this diagram is the same

diagram from the product except that the base X Y
f

g
no longer has an f or g.
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a
b

c

a× b p q

π1 π2

u

This commuting diagram essentially de�nes the product.

We can also de�ne the pullback using a d b
f g

as a base.

a

bd

c
a×d b

p q
π1 π2

f

g

u
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