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Abstract

Statistical relational learning (SRL) algorithms
learn statistical models from relational data, such as
that stored in a relational database. We previously
introduced view learning for SRL, in which the
view of a relational database can be automatically
modified, yielding more accurate statistical mod-
els. The present paper presents SAYU-VISTA, an
algorithm which advances beyond the initial view
learning approach in three ways. First, it learns
views that introduce new relational tables, rather
than merely new fields for an existing table of the
database. Second, new tables or new fields are not
limited to being approximations to some target con-
cept; instead, the new approach performs a type
of predicate invention. The new approach avoids
the classical problem with predicate invention, of
learning many useless predicates, by keeping only
new fields or tables (i.e., new predicates) that im-
mediately improve the performance of the statisti-
cal model. Third, retained fields or tables can then
be used in the definitions of further new fields or ta-
bles. We evaluate the new view learning approach
on three relational classification tasks.

1 Introduction
Most statistical relational learning (SRL) algorithms are con-
strained to operate with the specific representation they are
given—a PRM [Friedman et al., 1999] must use the schema
of the input database, a logic-based system must use the pred-
icates provided. Yet, in many cases the original relational rep-
resentation was not designed to empower the learning algo-
rithm. For example, the schema for a medical database may
have been chosen to simplify billing; biological databases of-
ten have a hierarchical schema, forcing an SRL system to use
long slot-chains or long clause bodies to find related data.

In some cases an SRL user may have the freedom to mod-
ify the representation for the sake of learning. Even so, con-
sidering all relevant features or relations to include for a task
is a difficult job by itself. Ideally, we would like the learn-
ing algorithm to be able to discover and incorporate relevant,
intermediate concepts into the representation. For instance,

consider the well-known task of predicting whether two ci-
tations refer to the same underlying paper. The CoAuthor
relation is potentially useful for disambiguating citations; for
example, if S. Russell and S.J. Russell both have similar lists
of coauthors, then perhaps they are interchangeable in cita-
tions. But the CoAuthor relation may not have been provided
to the learning system. Furthermore, CoAuthor can be used
as a building block to construct further explicit features for
the system, such as a new predicate SamePerson.

A start already has been made in change of representa-
tion for SRL systems, under the name of View Learning.
Initial approaches to View Learning [Davis et al., 2005b;
2005a] showed that even an application with a single table
can benefit from new views: views can represent connections
between related examples. Moreover, a greedy approach to
view learning can be useful. The present paper introduces
important extensions for change of representations in SRL.
First, it provides a mechanism for learning a new view as
a full new relational table, such as CoAuthor. Second, it
permits a newly-invented relation, or predicate, to be used
in the invention of other new relations, such as SamePerson.
Such re-use goes beyond simply introducing “short-cuts” in
the search space for new relations; because the new approach
also permits a relation to be from aggregates over existing re-
lations, re-use actually extends the space of possible relations
that can be learned by the approach. Because this new work
extends SAYU by providing a mechanism for View Inven-
tion by Scoring TAbles, we call the resulting system SAYU-
VISTA.

2 ILP and SAYU
Inductive logic programming (ILP) is a popular approach for
learning in a relational environment. Given a set of posi-
tive and negative examples and background knowledge, an
ILP system finds a logical description of the underlying data
model that differentiates between the positive and negative
examples. This description is a set of first-order logical rules
or clauses, which form a logic program.

SAYU is an SRL system that combines ILP with Bayesian
network learning, by default with tree-augmented naive
Bayes learning [Friedman et al., 1997]. SAYU is an acronym
for “Score As You Use.” Unlike other approaches to using
ILP for defining new features, SAYU scores each clause not
by a standard ILP measure, but by how much it helps the



model in which the clause is used. Another system, known as
nFOIL, was developed in parallel with SAYU and has this
same property [Landwehr et al., 2005]. In the SAYU ap-
proach, we start from an empty model (or a prior model).
Next, an ILP system generates rules. Each generated rule rep-
resents a new feature which is added to the current model. We
then evaluate the generalization ability of the model extended
with the new feature, where generalization ability is measured
as the area under the precision recall curve on a held-aside
subset of the data. We retain the new model if the inclusion
of the new feature significantly improves the model’s general-
ization ability; otherwise we remain with the original model.
This results in a tight coupling between feature construction
and model building.

SAYU needs an ILP system to propose rules. In our work,
we use Aleph, which implements the Progol algorithm [Mug-
gleton, 1995] to learn rules. This algorithm induces rules in
two steps. Initially, it selects a positive instance to serve as
the “seed” example. It searches the background knowledge
for the facts known to be true about the seed example. The
combination of these facts forms the example’s most specific
or saturated clause. The key insight of the Progol algorithm
is that some of these facts explain this example’s classifica-
tion. Thus, generalizations of those facts could apply to other
examples. Aleph defines the search space to be clauses that
generalize a seed example’s saturated clause, and performs a
general to specific search over this space.

SAYU greedily searches for new fields or variables, de-
fined by first-order logic clauses, that improve the prediction
of the class field. SAYU modifies the standard Aleph search
as follows. Instead of using coverage, Aleph passes each
clause it constructs to SAYU, which converts it to a binary
feature. The feature is added to the current training set and
SAYU learns a new Bayes net, a TAN network in our case,
incorporating this new feature. We measure performance by
looking at the area under the precision recall curve on a held
side tune set. If the feature degrades the performance of the
network, SAYU discards the feature and reverts back to the
old classifier. Then SAYU returns control to Aleph to con-
struct the next clause. If the new feature improves the score
of the network, then SAYU retains the feature in the network.
In contrast to Aleph, after accepting a rule, SAYU randomly
selects a new seed example and reinitializes the search. Thus,
for a given seed, SAYU does not search for the best rule,
but only the first rule that helps. However, nothing prevents
the same seed from being selected multiple times during the
search.

3 Learning New Predicates

The initial approach to View Learning [Davis et al., 2005b],
suffers from two important drawbacks. First, it only creates
new fields, not new tables. The new field definition has the
same arity as the target predicate. Second, the new fields are
just learned approximations to the target concept. SAYU-
VISTA addresses both shortcomings. It creates new predi-
cates with arity greater than one, some capturing many-to-
many relations, which require a new table to represent. Fur-
thermore these new predicates are no longer approximations

to the target concept, but may be any concept that improves
the statistical model.

The original motivation for view learning centered on
learning a statistical expert system to provide decision sup-
port to radiologists [Davis et al., 2005b]. There we used SRL
because the learned statistical model sits on top of the Na-
tional Mammography Database (NMD) schema, a standard
established by the American College of Radiology [ACR,
2004]. The goal of the data set is to predict which abnormali-
ties on a mammogram are malignant. We will use mammog-
raphy as a running example to help illustrate the key compo-
nents of the algorithm.

SAYU-VISTA, nFOIL and SAYU all learn definite clauses
and evaluate clauses by how much they improve the statisti-
cal classifier. The key difference in the algorithms rests in the
form that the head of the learned clauses takes. In nFOIL and
SAYU, the head of a clause has the same arity and type as
the example, allowing us to precisely define whether a clause
succeeds for a given example and hence whether the corre-
sponding variable is true. In the Mammography domain, a
positive example has the form malignant(ab1), where
ab1 is a primary key for some abnormality. Every learned
rule has the head malignant(A) such as in the following
rule:
malignant(Ab1) if:

ArchDistortion(Ab1,present),
same_study(Ab1,Ab2),
Calc_FineLinear(Ab2,present).

The Bayesian network variable corresponding to this rule will
take value true for the example malignant(ab1) if the
clause body succeeds when the logical variable A is bound to
ab1.

SAYU-VISTA removes the restriction that all the learned
clauses have the same head. First, SAYU-VISTA learns pred-
icates that have a higher-arity than the target predicate. For
example, in the Mammography domain, predicates such as
p11(Abnormality1, Abnormality2), which relate
pairs of abnormalities, are learned. Subsection 3.1 discusses
scoring predicates that have higher arities than the target rela-
tion. Second, SAYU-VISTA learns predicates that have types
other than the example key in the predicate head. For ex-
ample, a predicate p12(Visit), which refers to attributes
recorded once per a patient visit, could be learned. In order
to score predicates of this form, we introduce the concept of
Linkages, which are discussed in subsection 3.2. After dis-
cussing how to evaluate these types of predicates, we will
present the full SAYU-VISTA algorithm.

3.1 Scoring Higher Arity Predicates
SAYU-VISTA can learn a clause such as:
p11(Ab1,Ab2) if:

density(Ab1,D1),
prior-abnormality-same-loc(Ab1,Ab2),
density(Ab2,D2),
D1 > D2.

This rule says that p11 is true of a pair of abnormalities
Ab1 and Ab2 if they are at the same location, Ab1 was ob-
served first, and Ab2 has higher density than Ab1. Thus



p11 may be thought of as “density increase.” Unfortunately,
it is not entirely clear how to match an example, such as
malignant(ab1), to the head of this clause for p11.
SAYU-VISTA maps, or links, one argument to the example
key and aggregates away any remaining arguments using ex-
istence or count aggregation. The next section describes the
approach used for linkage; the remainder of this paragraph
discusses aggregation. In existence aggregation, the clause
succeeds for the given example (key) if there exist any bind-
ings of the remaining variables for which the clause succeeds.
Count aggregation computes the number of bindings for these
remaining variables for which the clause succeeds. Currently,
SAYU-VISTA discretizes aggregated features using a binning
strategy that creates three equal-cardinality bins, where three
was chosen arbitrarily before the running of any experiments.

3.2 Linkages
So far we have simplified matters by assuming that the first
argument to the learned predicate has the same type as the
example key. In our examples so far, this type has been ab-
normality id. There is no need to enforce this limitation. For
example, in predicting whether an abnormality is malignant,
it might be useful to use the following clause, where Visit
is a key that refers to all abnormalities found on a given mam-
mogram:
p(Visit) :-

visit(Visit,Ab),
MassesShape(Ab,oval).

Predicate p is true of a visit, or mammogram, that contains at
least one abnormality with an oval shape.

Linkage declarations are background knowledge that can
establish the connection between objects in the examples and
objects in the newly invented predicates. When these ob-
jects are of the same type, the linkage is trivial; otherwise,
it must be defined. For mammography, we use linkage def-
initions that link an abnormality to its patient or to its visit
(mammogram). The linkages for the other datasets we use are
equally straightforward and are presented when we describe
those datasets.

3.3 Predicate Learning Algorithm
At a high level SAYU-VISTA learns new predicates by per-
forming a search over the bodies of definite clauses and se-
lecting those bodies that improve the performance of the sta-
tistical model on a classification task. We use tree-augmented
naive Bayes (TAN) [Friedman et al., 1997] as our statistical
model.

The predicate invention algorithm takes several inputs from
a user. First, it needs a training set, which is used to learn
the statistical model, and a tuning set, which is used to eval-
uate the statistical model. The user provides a pre-defined
set of distinguished types, which can appear in the head of
a clause. The user provides background knowledge, which
must include linkage definitions for each distinguished type.
The algorithm using an improvement threshold, p, to decide
which predicates to retain in the model. A new predicate must
improve the model’s performance by at least p% in order to
be kept. We used p = 0.02 in all experiments. Optionally, the

user may input an initial feature set to the algorithm. Algo-
rithm 1 shows psuedocode for the SAYU-VISTA algorithm.

The clause search proceeds as follows. We randomly se-
lect an arity for the predicate. To limit the search space, we
restrict the arity to be either the arity of the target relation, or
the arity of the target relation plus one. Next, we randomly
select the types for the variables that appear in the head of
the clause. The clause search uses a top-down, breadth-first
refinement search. We define the space of candidate liter-
als to add using modes, as in Progol [Muggleton, 1995] or
Aleph [Srinivasan, 2001]. We score each proposed clause by
adding it as variable in the statistical model. To construct the
feature, we first link the predicate back to the example key
as described in subsection 3.2. Then we perform the nec-
essary aggregation, discussed in subsection 3.1, to convert
the clause into a feature. By default, the algorithm first tries
existence aggregation and then tries count aggregation. The
clause search terminates in three cases: (i) it finds a clause
that meets the improvement threshold; (ii) it fully explores the
search space; (iii) it exceeds the clause limit. After satisfying
one of these conditions, the algorithm re-initializes the search
process. Every clause that meets the improvement threshold
is added into the background knolwedge. Therefore, future
predicate definitions can re-use previously learned predicates.
As in prior work [Davis et al., 2005a], the algorithm termi-
nates when it exceeds the global time limit.

4 Data and Methodology
Cora. The objective of this dataset is to predict whether two
citations refer to the same paper. The dataset was originally
constructed by McCallum et al. [McCallum et al., 2000]. We
used the same version of the data as Kok and Domingos [Kok
and Domingos, 2005]. Cora includes 1295 citations to 112
Computer Science papers, resulting in 25072 positive exam-
ples and 597310 negative examples. The background knowl-
edge includes data on title, venue, author(s), and year for each
citation. We defined paper, title, venue, author and year as
keys that can appear in heads of clauses. We link a paper to
its title, venue, author(s) and year fields. We aggregate over
papers and authors.

UW-CSE. This common SRL dataset was constructed
by Richardson and Domingos [Richardson and Domingos,
2006] and is publicly available. The goal is to predict the ad-
visor of a graduate student. The information comes from the
University of Washington CS Department and contains 113
positive examples versus 2,711 negative examples. We de-
fined students, professors, courses and publications as keys
that could appear in the head of a clause. We link a course to
a graduate student by the TA relationship, and we link papers
to a graduate student by the author relationship. We link a
course to a professor by the teaches relationship and we link
papers to a professor by the author relationship. We aggregate
over students, professors, papers and courses.

Mammography. The objective of this dataset is to pre-
dict whether an abnormality on a mammogram is benign or
malignant [Davis et al., 2005b]. This dataset consists of a
radiologist’s interpretation of a mammogram and not the raw
image data. The dataset contains 435 positive examples and



Input: Train Set Labels T , Tune Set Labels S, Distinguished Types D, Background Knowledge B,
Improvement Threshold p, Initial Feature Set Finit

Output: Feature Set F , Statistical Model M
F = Finit;
BestScore = 0;
while time remains do

Randomly select the arity of predicate to invent;
Randomly select types from D for each variable in the head of the predicate;
SelectedFeature = false;
while not(SelectedFeature) do

Predicate = Generate next clause according to breadth first search;
/*Link the predicate back to the target relation */ ;
LinkedClause = Link(Predicate, B);
/* Convert the LinkedClause into a feature that the statistical model can use */;
NewFeature = aggregate(LinkedClause, T , S);
Fnew = F ∪ NewFeature;
Mnew = BuildTANNetwork(T , Fnew);
NewScore =AreaUnderPRCurve(M , S, Fnew);
/*Retain this feature*/ ;
if NewScore > p ∗ BestScore then

F = Fnew ;
BestScore = NewScore;
M = Mnew;
Add predicate into background knowledge;
SelectedFeature = true;

end
end

end
Algorithm 1: SAYU-VISTA

65365 negative examples. We used the same version of the
data as Davis et al. [2005b]. We define abnormality, visit and
patient as keys that can appear in the head of the clause. We
aggregate over abnormalities.

5 Experiments and Results

We compare SAYU-VISTA to two SRL systems in our ex-
periment. First, we compare SAYU-VISTA to SAYU [Davis
et al., 2005a] as it is the state-of-the-art view learning im-
plementation, a follow-up to the original view learning pa-
per [Davis et al., 2005b]. However, SAYU only learns ad-
ditional fields for existing tables; these fields are defined by
learned rules that are approximations to the target concept.
We also compare SAYU-VISTA against another leading SRL
system—one that already has been applied with success (as
measured by cross-validated precision-recall curves) to two
of our application tasks and that has been receiving consid-
erable attention: Markov Logic Networks [Richardson and
Domingos, 2006], publicly available as the Alchemy system.
Finally, we compared these three SRL systems against Aleph
on all three data sets, and the SRL systems significantly out-
performed Aleph on all three data sets. Therefore, to simplify
the presentation we limit the remaining discussion to the three
SRL systems.

All three SRL systems are evaluated by precision-recall
curves estimated by cross-validation with significance of dif-

ferences tested by a paired two-tailed t-test on areas under the
precision-recall curves (AUCPR) across the different folds.
We are careful to repeat any tuning of parameters on each
fold of cross-validation, without looking at the test set for
that fold, by dividing the data into a training set and tuning
set. In this we follow the methodology of the developers of
both MLNs and SAYU. For SAYU-VISTA, as for SAYU, we
use the training set to learn the network parameters, while we
use the tuning set to score potential clauses. For all datasets
we use AUCPR as our score metric. However, we only look
at AUCPR for recalls ≥ 0.5. We do this for two reasons.
First, precision can have high variance at low levels of re-
call. Second, in domains such as Mammography, we are only
interested in high levels of recall. A practicing radiologist
would need to achieve at least this level of recall. A clause
must improve the AUCPR (for recall ≥ 0.5) by at least 2%
in order to be retained in the network. This is an arbitrary
parameter setting; in fact we did not try any other thresholds.
We had a time-based stop criteria for both SAYU and SAYU-
VISTA. For UW-CSE each fold was given two hours to run,
whereas for Mammography and Cora each fold received three
hours runtime. We gave UW-CSE less time because it was a
smaller data set. In practice, the time is not a limiting factor
because few changes occur after the first 30 minutes for any
of the tasks. MLN runs were not time-bounded. To offset po-
tential differences in computer speeds, all experiments were
run on identically configured machines.
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Figure 1: Precision-Recall Curves comparing SAYU-VISTA
and SAYU on Cora

We employed the default structure learning algorithm for
MLNs and performed limited manual tuning of the parame-
ters of the system to maximize AUCPR, while maintaining
acceptable execution times. We report the best AUCPR val-
ues we obtained, over all attempted parameter settings. Note
that we did not do any parameter tuning for SAYU-VISTA.
The average, per-fold run-times for MLNs were all signifi-
cantly longer than for either SAYU or SAYU-VISTA. The av-
erage, per fold run time for learning structure were five hours
for Cora, seven hours for UW-CSE and three hours for Mam-
mography.

5.1 Discussion of Results
Cora. Following Kok and Domingos [Kok and Domingos,
2005] we perform two-fold cross validation on this dataset
for five different random train-test splits. We divide the train-
ing set in half, to form a new training set and a tuning set.
Each fold received three hours of CPU time to run. SAYU
and SAYU-VISTA can evaluate up to 300 clauses, before a
selecting a new seed or clause head.

Table 1 reports the average AUCPR (recall ≥ 0.5) for Cora
and the p-value for a two-tailed paired t-test between SAYU-
VISTA and the other two algorithms. SAYU-VISTA per-
forms significantly better than SAYU on this domain. Fig-
ure 1 shows precision-recall curves for all algorithms on
this dataset. We pooled results across all folds to gener-
ate the curves. SAYU-VISTA dominates SAYU through-
out precision-recall space. However, MLNs have a slightly
higher average AUCPR than SAYU-VISTA does, although
the difference is not significant. MLNs received an advantage
over SAYU and SAYU-VISTA in this task, as MLNs started
with an expert knowledge base.

UW-CSE. Following Richardson and Domingos [Richard-
son and Domingos, 2006], we perform five-fold cross vali-
dation on the UW-CSE dataset. We used two folds for the
training set and two folds for a tuning set. Each approach
could evaluate up to 10000 clauses, before either selecting a
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Figure 2: Precision-Recall Curves comparing SAYU-VISTA,
MLNs, and SAYU on UW-CSE

new seed (SAYU) or a new predicate head.
Table 1 reports the average AUCPR for UW-CSE and the p-

value for a two-tailed paired t-test comparing SAYU-VISTA
to the other approaches. SAYU-VISTA comes close to per-
forming significantly (0.05 < p < 0.06) better than SAYU on
this domain. Although performance varies widely between
the 5 folds, SAYU-VISTA had a higher AUCPR than SAYU
on each fold. SAYU-VISTA also comes close to outperform-
ing MLNs on this data set, winning on four out of five folds.

Figure 2 shows precision-recall curves for SAYU, SAYU-
VISTA and MLNs on this dataset. We pooled results across
all five folds to generate the curves. Even though we mea-
sured AUCPR for recall ≥ 0.5, SAYU-VISTA dominates
SAYU for most levels of recall. However, MLNs domi-
nate SAYU-VISTA for low levels of recall, whereas SAYU-
VISTA tends to dominate for the high levels of recall. We
also compared the performance of SAYU-VISTA (average
AUCPR of 0.468) and MLNs (average AUCPR of 0.355) for
AUCPR for all levels of recall. Again, there is no signifi-
cant difference. SAYU-VISTA has a higher variation in per
fold AUCPR score than MLNs do. One reason for SAYU-
VISTA’s increased performance for high recall is that we are
expressly optimizing for this metric. MLNs also receive one
advantage over SAYU and SAYU-VISTA in this domain, in
that they start with an expert defined knowledge base.

Mammography. Following Davis et al. [Davis et al.,
2005b] we perform ten-fold cross validation on this dataset.
We used four folds for a training set and five folds as a tuning
set. Each algorithm can evaluate at most 300 clauses for a
given seed (SAYU) or clause head (SAYU-VISTA).

For the previous two datasets, we initially started with a
Bayesian network that only contained a feature for the target
predicate. However, in the Mammography domain we have
access to a set of expert defined features (from the NMD).
Furthermore, we could define a set of aggregate features as
Davis et al. [Davis et al., 2005b] did. Opposed to starting



MLN SAYU SAYU-VISTA p-value (vs SAYU) p-value (vs. MLN)
Cora 0.4681 .3709 .4608 0.0109 0.3093

UW-CSE 0.06219 0.09747 0.1672 0.05807 0.1651
Mammography 0.0172 0.10337 0.1038 0.9693 5.89∗10

6

Table 1: Average AUCPR for recall ≥ 0.5 for each task using TAN as the statistical
model.
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Figure 3: Precision-Recall Curves comparing SAYU-VISTA,
MLNs and SAYU on Mammography

with an empty network structure, we begin with a network
that contained both NMD features and the aggregate features.

Table 1 reports the average AUCPR over all folds. We use
a two-tailed paired t-test to compute significant results, and
the p-value for the test can also be found in Table 1. We find
no significant difference between SAYU-VISTA and SAYU
on this task, yet SAYU-VISTA does not perform any worse
than SAYU. However, both SAYU and SAYU-VISTA signif-
icantly outperform MLNs on this domain.

Figure 3 shows precision-recall curves for both algorithms
on this dataset. We pooled results across all folds to gen-
erate the curves. On this dataset, SAYU-VISTA and SAYU
have comparable performance for all levels of recalls. SAYU-
VISTA and SAYU both dominate MLNs for all levels of re-
call. Note that, as in the UW-CSE domain, MLNs tend to
have better performance for low levels of recall. We feel there
are several potential reasons that SAYU-VISTA did not per-
form significantly better than SAYU on this domain. First, for
this application, MLNs and SAYU receive a large number of
features—the precomputed aggregates—that SAYU-VISTA
could potentially learn, but MLNs and SAYU cannot easily
capture. Second, this domain contains many more constants
than other domains, thus by leveraging Aleph, SAYU has a
smaller and more directed search. Finally, the mammogra-
phy domain contains on three relations, while while the other
domains each have approximately twenty relations. Thus, on
those domains there is more room to exploit the ability to
learn predicates that (1) have different types in the head and

(2) represent new tables.
In order to allow MLNs to run on this domain, we had

to do drastic sub-sampling of the negative examples. MLNs
struggled with having to ground out a network with the large
number of examples that this data set contains. Another pos-
sible explanation for SAYU and SAYU-VISTA’s better per-
formance is that we seed the algorithm with an initial fea-
ture set. However, we ran the experiments where we started
SAYU and SAYU-VISTA with an empty network structure
and it still significantly outperformed MLNs.

5.2 Further Investigation of SAYU-VISTA
SAYU-VISTA adds several components to SAYU. First, it
adds count aggregation: the ability to handle many-to-many
and one-to-many relationships by adding a feature to the sta-
tistical model that counts the number of satisfying assign-
ments for a predicate. Second, linkages allow us to learn en-
tirely new tables. Third, we allow for previously invented
predicates to appear in the definitions of new predicates.
Without linkages, SAYU-VISTA reduces to SAYU. To dis-
cover the extent to which the other two features contribute to
SAYU-VISTA’s performance, we consider removing the first
and third components from SAYU-VISTA and look at the re-
sulting performance.

The first component, counting the number of satisfying as-
signments, does not help in either Cora or the Mammography
domain. It is never used in Cora and it is only used twice in
Mammography. Consequently, we do not need to consider
removing it on these domains. However, it appears 11 times,
or about twice per fold in the UW-CSE domain. Removing it
reduces the AUCPR for this domain from 0.1520 to 0.1418.
This degrades performance on four out of five folds, yet, the
change is not significant, having a p-value of 0.16. However,
it seems that even though counting does not help on two out
of three domains, it can potentially be useful for an SRL sys-
tem.

The other component of SAYU-VISTA we remove is the
third, that of adding the learned predicates into background
knowledge. Disabling this feature slightly improves perfor-
mance in Mammography, increasing AUCPR from 0.1038
to 0.1046. However in Cora it decreasing AUCPR from
0.4608 to 0.448 and in UW-CSE the performance declines
from 0.152 to 0.1475. Across all these experiments none of
the changes are significant.

On Cora, the benefit comes only from the introduction of
linkages. On UW-CSE, the benefit comes from both linkages
and the count aggregation. In a sense linkages are the key
innovation of SAYU-VISTA. Linkages allow us to both learn
new tables and to learn concepts that are not simply approx-
imations to the target concept. Reusing learned predicates



does not seem to provide a win. Asserting each learned pred-
icate might unnecessarily widen the search space.

6 Related Work and Conclusions

We already have discussed how the present paper advances
the state-of-the-art in view learning. The paper also is related
to propositionalization within ILP [Lavrac et al., 1991], par-
ticularly to propositionalization approaches that incorporate
aggregation [Krogel and Wrobel, 2001; Knobbe et al., 2001;
Popescul et al., 2003; Popescul and Ungar, 2004]. In these
approaches, clause bodies are constructed that define new fea-
tures or propositions. The value of such a feature for a data
point, or example, is obtained by binding one of the variables
in the clause body to the example’s key, and then aggregat-
ing over the remaining features. In this fashion, the definition
of a feature is equivalent to a definite clause whose head is
“p(X)”, where p is an arbitrary predicate name and X is the
body variable that is bound in turn to each example’s key.
Both existential and count aggregation have been employed
before [Krogel and Wrobel, 2001]. In fact, all the approaches
cited above have used more complex aggregations than does
SAYU-VISTA, and these could be incorporated easily into
SAYU-VISTA. The novel properties of SAYU-VISTA rel-
ative to propositionalization by aggregation are the follow-
ing. First, subsets of the variables in the clause body may
be mapped back to an example’s key, via the domain-specific
linkage relations, thus enabling new tables or non-unary pred-
icates to be learned, having different arities and types than
the examples. Second, each time a potential new table or
predicate is scored, an entire statistical model is constructed,
and the new predicate is retained only if yields an improved
model. Third, once a predicate is learned, it is available for
use in the definitions of further new predicates. Although one
piece of work cited above [Popescul and Ungar, 2004] does in
fact allow some further use of some learned predicates, these
new predicates are based on clustering and are constructed
in an initial pre-processing step, before the learning of predi-
cates to define new features for the statistical model; the latter
features are never re-used.

Other general areas of related work are of course con-
structive induction [Rendell, 1985] and predicate invention
[Muggleton and Buntine, 1988; Zelle et al., 1994], as well
as learning latent or hidden variables in Bayesian networks
[Connolly, 1993]. Predicate invention is a specific type of
constructive induction, where a new predicate is defined not
based directly on examples of that predicate, but on the abil-
ity of that predicate to help in learning the definitions of other
predicates for which examples are available. The classic dif-
ficulties with predicate invention are that, unless predicate in-
vention is strongly constrained: (1) the search space of pos-
sible predicates is too large, (2) too many new predicates are
retained, thus reducing efficiency of learning, and (3) the abil-
ity to invent arbitrary new predicates leads to overfitting of
training data.

The present work can be seen as a type of predicate inven-
tion, because arbitrary clauses are constructed whose heads
do not have to unify with the examples—they may have ari-
ties and types different from the examples. SAYU-VISTA is

analogous to CHILLIN [Zelle et al., 1994] and Closed World
Specialisation [Srinivasan et al., 1992]. Both of those sys-
tems search for an intensional definition of a clause based on
existing predicates, just like SAYU-VISTA. One key differ-
ence is that those systems don’t directly search for new pred-
icates. CHILLIN is demand driven, and Closed World Spe-
cialisation invents predicates to handle exceptions to the the-
ory, whereas SAYU-VISTA directly searches for new predi-
cates. The other important difference is how the systems eval-
uate new predicates. The other systems use traditional ILP
metrics, such as compaction. The approach in the present pa-
per is to constrain predicate invention by requiring invented
predicates to be of immediate value to the statistical learner
in order to be retained for further use. The empirical suc-
cess of SAYU-VISTA—that it does not hurt performance and
it sometimes helps—indicates that this efficacy test is a suc-
cessful constraint on predicate invention.

The topic of learning Bayesian network structures with the
introduction of new (latent) variables faces similar obstacles
to predicate invention. Because the new variables are uncon-
strained by the data, their introduction into Bayesian network
structure learning permits overfitting of the training data, in
addition to increasing search complexity. SAYU-VISTA may
be seen as introducing new variables into the structure learn-
ing task; nevertheless, by requiring these new variables to be
defined using existing (pre-defined or recently learned) rela-
tions, these variables are partially constrained. The empir-
ical success of SAYU-VISTA provides some evidence that
this constraint on the new variables helps to avoid overfit-
ting. SAYU-VISTA’s use of TAN Bayes nets also helps to
reduce the search space. Both predicate invention and Bayes
net learning with the introduction of new variables are widely
noted to be extremely difficult tasks. This paper provides
some evidence that attempting to address both tasks at the
same time, within an SRL framework, can actually make both
tasks somewhat easier.
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