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Abstract. One of the most popular techniques for multi-relational data
mining is Inductive Logic Programming (ILP). Given a set of positive and
negative examples, an ILP system ideally finds a logical description of the
underlying data model that discriminates the positive examples from the
negative examples. However, in multi-relational data mining, one often
has to deal with erroneous and missing information. ILP systems can
still be useful by generating rules that captures the main relationships in
the system. An important question is how to combine these rules to form
an accurate classifier. An interesting approach to this problem is to use
Bayes Net based classifiers. We compare Naive Bayes, Tree Augmented
Naive Bayes (TAN) and the Sparse Candidate algorithm to a voting
classifier. We also show that a full classifier can be implemented as a
CLP(BN) program [14], giving some insight on how to pursue further
improvements.

1 Introduction

The last few years have seen a surge of interest in multi-relational data mining,
with applications in areas as diverse as bioinformatics and link discovery. One
of the most popular techniques for multi-relational data mining is Inductive
Logic Programming (ILP). Given a set of positive and negative examples, an
ILP system ideally finds a logical description of the underlying data model that
differentiates between the positive and negative examples. ILP systems confer
the advantages of a solid mathematical foundation and the ability to generate
understandable explanations.

As ILP systems are being applied to tasks of increasing difficulty, issues such
as large search spaces and erroneous or missing data have become more relevant.
Ultimately, ILP systems can only expect to search a relatively modest number of
clauses, usually on the order of millions. Evaluating increasingly complex clauses
may not be the solution. As clauses grow larger, they become more vulnerable
to the following errors: a query will fail because of missing data, a query will
encounter an erroneous database item, and a clause will give correct answers
simply by chance.

Our work relates to a sizeable application in the field of link discovery. More
precisely, our concern involves finding aliases in a relational domain [15] where



the data is subject to high levels of corruption. As a result, we cannot hope that
the learned rules will generally model the entire dataset. In these cases, ILP
can at best generate rules that describe fragments of the underlying model. Our
hope is that such rules will allow us to observe the central relationships within
the data.

An important question is how to combine the partial rules to obtain a useful
classifier. We have two major constraints in our domain. First, we expect the
number of positives to grow linearly with the number of individuals in the do-
main. In contrast, the number of negatives increases with the number of pairs,
and therefore grows quadratically. Consequently, any approach should be robust
to false positives. Furthermore, flexibility is also an important consideration as
we ultimately want to be able to weigh precision versus recall through some mea-
sure of confidence, ideally in the form of a probability. Secondly, we expect to use
the system for different datasets: our method should not be prone to overfitting
and it should be easy to parameterize for datasets with different observabilities
and error rates.

The previous discussion suggests probabilistic-based classifiers as a good ap-
proach to our problem. We explore three different Bayes net based approaches
to this problem. Each ILP learned rule is represented as a random variable in
the network. The simplicity and robustness of the Naive Bayes classifier make
it a good candidate for combining the learned rules [12]. Unfortunately, Naive
Bayes assumes independence between features and our rules may be quite inter-
dependent and perhaps even share literals. A natural extension is to use TAN [6]
classifiers as they offer an efficient way to capture dependencies between rules.
Additionally, we explore using the Sparse Candidate algorithm [7] for learning
the structure of a full Bayes net. An alternative approach we consider is to group
our rules as an ensemble [3] and use voting, which has had excellent results in
practice. We will evaluate the relative merits of these approaches.

The paper is organized as follows. We first discuss the problem in more detail.
Then, we explain the voting and Bayesian based approaches to rule combination.
Next, we present the main applications and discuss our results. We follow this
by demonstrating how we can represent Bayesian classifiers as a logic program
with probabilities, using CLP(BN). Finally, we end with related work and our
conclusions.

2 Using ILP

From a logic perspective, the ILP problem can be defined as follows. Let E+ be
the set of positive examples, E~ be the set of negative examples, E = ET A E—,
and B be the background knowledge. In general, B and E can be arbitrary logic
programs. The aim of an ILP system is to find a set of hypotheses (also referred
to as a theory) H, in the form of a logic program, such that all positive examples
and none of the negative examples are covered by the program.

In practice, learning processes generate relatively simple clauses which only
cover a limited subset of E*. Moreover, such clauses often cover some examples



in 7. One possible reason for the presence of these errors is that these examples
may have been misclassified. A second reason is that approximated theories can
never be as strict as the ground truth: if our clause is only a subclause of the
actual explanation, it is possible that the clause will cover a few other incorrect
examples. We also have to address implementational difficulties: for most cases
we can only search effectively for relatively simple explanations (clauses). There-
fore, we assume that clauses represent fragments of the ground-truth and that
the learning process can capture different “features” of the ground truth. Clauses
have some distribution, which is likely to be non-uniform, over the interesting
aspects of the ground-truth theory. Even if we do not capture all features of the
ground truth, we can still learn interesting and relevant clauses.

Given a set H of clauses learned in an incomplete world we can combine them
to obtain a better classifier. One possible approach to combine clauses would be
to assume that each clause is an explanation, and form a disjunction over the
clauses. Although this approach has the merit of simplicity, and should work
well for cases where we are close to the ground truth, it does have two serious
issues we need to consider:

— We are interested in applications where the number of false instances dom-
inates. Unfortunately, the disjunction of clauses maximizes the number of
false positives.

— We expect the classifier to make mistakes, so ideally we would like to know
the degree of confidence we have in a classification.

Our problem is not novel, and several approaches come to mind. We shall
focus on two such approaches here. The idea of exploiting different aspects of
an underlying classifier suggests ensemble-based techniques. Previous work on
applying ensemble methods to ILP [4] suggests that exploring the variability in
the seed is sufficient for generating diverse classifiers. We thus decided to use a
simple approach where we use the ILP engine to generate clauses and then use
voting to group them together. A second alternative is to consider each clause as
a feature of an underlying classifier. We want to know which features are most
important. Several possibilities exist and we focus on Bayesian networks, as they
provide us with an estimated probability for each different outcome.

3 Combining Rules

3.1 Voting

It is well known that ILP systems that learn clauses using seeds are exploiting
different areas of the search space, in a manner analogous to ensemble meth-
ods. In this vein, recent ILP work has exploited several techniques for ensemble
generation, such as bagging or bootstrapping [4] and different forms of boost-
ing [5,13,9,10]. Bagging is a popular ensemble method that consists of generating
different training sets where each set contains a sample, with replacement, of
the original dataset. Hypotheses are learned from each dataset, and combined



through a voting method. Alternatively, in boosting each classifier is built de-
pending on the errors made by previous classifiers. Each new rule thus depends
on the performance of the previous one.

Previous work on applying bagging to ILP [4] suggests that exploring vari-
ability from using different seed examples can be sufficient for generating diverse
classifiers. We shall follow a similar approach: we use hypotheses generated from
different runs of the ILP system, and combine them through unweighted voting.
With this method, we consider an example to be positive depending on the num-
ber of clauses that are satisfied for that example. The number of clauses we need
to satisfy to classify the example as positive is a variable threshold parameter.
One major advantage of using a voting method is that we can obtain different
values of precision and recall by varying the voting threshold. Thus, although a
voting method does not give an estimate of the probability for each classification,
it does provide an excellent baseline to compare with Bayesian-based methods.

3.2 Bayesian Networks

Rule 1 Rule 2 Rule 3 Rule n-2 Rule n-1 Rule n

Fig.1. A Naive Bayes Net.

We expect every learned clause to be related to a clause in the “true” theory.
Hence, we would also expect that the way each learned clause classifies an ex-
ample is somehow dependent on the example’s true classification. This suggests
a simple approach where we represent the outcome for each clause as a random
variable, whose value depends on the example’s classification. The Naive Bayes
approach is shown in Figure 1 [12]. Advantages of this approach are that it is
straightforward to understand as well as easy and fast to train.

The major drawback with Naive Bayes is that it makes the assumption that
the clauses are independent given the class value. Often, we expect clauses to
be strongly related. Learning a full Bayes Net is an NP-complete problem, so
in this work, we experimented with Tree Augmented Naive Bayes (TAN) [6]
networks. Figure 2 shows an example of a TAN network. TAN models allow for
more complex network structures than Naive Bayes. The model was proposed
by Geiger in 1992 [8] and it extends work done by Chow and Liu [2]. Friedman,



Rule n-2 Rule n-1

Rule 1 Rule 2 Rule 3

Fig. 2. A TAN Bayes Net.

Geiger and Goldszmidt [6] evaluated the algorithm on its viability for classifica-
tion tasks. The TAN model, while retaining the basic structure of Naive Bayes,
also permits each attribute to have at most one other parent, allowing the model
to capture dependencies between attributes. To decide which arcs to include in
the ’augmented’ network, the algorithm makes a complete graph between all the
non-class attributes, where the weight of each edge is given as the conditional
mutual information between those two attributes. A maximum weight spanning
tree is constructed over this graph, and the edges that appear in the spanning
tree are added to the network. Geiger proved that the TAN model can be con-
structed in polynomial time with a guarantee that the model maximizes the Log
Likelihood of the network structure given the dataset.

The problem arises of whether different Bayes networks could do better. We
report on some preliminary work using the Sparse Candidate Algorithm [7]. The
Sparse Candidate algorithm tries to speed up learning a full Bayesian Network
by limiting the search space of possible networks. The central premise is that
time is wasted in the search process by evaluating edges between attributes that
are not highly related. The algorithm retains standard search techniques, such
as greedy hill climbing, but uses mutual information to limit the number of
possible parents for each attribute to small ’candidate’ set. The algorithm works
in two phases. In the first phase, the candidate set of parents is picked for each
attribute. The candidate set must include all current parents of a node. The
second step involves performing the actual search. These two steps are repeated
either for a set number of times or until the score of the network converges.

4 Results

This section presents our results and analysis of the performance of several appli-
cations. For each application we show precision versus recall curves for the four
methods: Naive Bayes, TAN, Sparse Candidate and voting. All our experiments
were performed using Srinivasan’s Aleph ILP system [16] running on the Yap



Prolog system. We used our own software for Naive Bayes and TAN. For the
Sparse Candidate Algorithm we used the LearnBayes program provided by Nir
Friedman and Gal Elidan. For this algorithm we set the number of candidate
parents to be five and we used the Bayesian Information Criterion as the scoring
function. All results are obtained using five fold cross-validation.

Our main experiment was performed on synthetic datasets developed by
Information Extraction & Transport, Inc. within the EAGLE Project [15,11].
The datasets are generated by simulating an artificial world with large numbers
of relationships between agents. The data focuses on individuals which may have
capabilities, belong to groups, and participate in a wide range of events. In our
case, given that some individuals may be known through different identifiers
(e.g., through two different phone numbers), we were interested in recognizing
whether two identifiers refer to the same individual.

All datasets were generated by the same simulator, but with different pa-
rameters for observability (how much information is available as evidence), cor-
ruption, and clutter (irrelevant information that is similar to the information
being sought). Five datasets were provided for training, and six for evaluation.
All the datasets include detailed data on a few individuals, including aliases for
some individuals. Depending on the dataset, the data may or may not have been
corrupted.

Our methodology was as follows. First, we used the five training datasets to
generate rules, using the ILP system Aleph. Using the rules learned from the
training set, we selected the ones with best accuracy and combined them with
domain expert knowledge to provide new feedback to the training phase. Using
the final set of learned rules, we converted each of the evaluation datasets into a
set of propositional feature vectors, such that each rule appeared as an attribute
in the feature vector. Each rule served as a boolean attribute, which received a
value of one if the rule matched the example and zero otherwise. For each of the
six test datasets, we performed five fold cross validation. The network structure
and parameters were learned on four of the folds, while the accuracy was tested
on the remaining fold. For each dataset, we fixed the ratio of negative examples
to positive examples at seventy to one. This is an arbitrary ratio since the full
datasets are exceedingly large, and the ground truth files were only recently
released.

The precision/recall (P/R) curves for the different datasets are seen in Fig-
ures 3 through 8. On each curve, we included 95% confidence intervals on the
precision score for select levels of recall. The curves were obtained by averaging
the precision and recall values for fixed thresholds. The precision recall curve for
the TAN algorithm dominates the curves for Naive Bayes and voting on all six
of the datasets. For each dataset, there are several places where TAN yields at
least a 20 percentage point increase in precision, for the same level of recall, over
both Naive Bayes and voting. On two of the six datasets, Naive Bayes beats vot-
ing, while on the remaining four they have comparable performance. One reason
for TAN’s dominance compared to Naive Bayes is the presence of rules which
are simply refinements of other rules. The TAN model is able to capture some
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of these interdependencies, whereas Naive Bayes explicitly assumes that these
dependencies do not exist. Naive Bayes’ independence assumption accounts for
the similar performance compared to voting on several of the datasets. TAN and
the Sparse Candidate algorithm had similar precision recall curves. The package
we used for the Sparse Candidate algorithm only allows for building generative
models. TAN is a discriminative model, so it emphasizes differentiating between
positive and negative examples. An important follow-up experiment would be to
adapt the Sparse Candidate algorithm to use discriminative scoring functions.

In situations with imprecise rules and a preponderance of negative exam-
ples, such as these link discovery domains, Bayesian models and especially TAN
provide an advantage. One area where both TAN and Naive Bayes excel is in
handling imprecise rules. The Bayes nets effectively weight the precision of each
rule either individually or based on the outcome of another rule in the case of
TAN. The Bayesian nets further combine these probabilities to make a predic-
tion of the final classification, allowing them to discount the influence of spurious
rules in the classification process. Ensemble voting does not have this flexibility
and consequently lacks robustness to imprecise rules. Another area where TAN
provides an advantage is when multiple imprecise rules provide significant over-
lapping coverage on positive examples and a low level of overlapping coverage
on negative examples. The TAN network can model this scenario and weed out
the false positives. One potential disadvantage to the Bayesian approach is that
it could be overly cautious about classifying something as a positive. The high
number of negative examples relative to the number of positive examples, and
the corresponding concern of a high false positive rate, helps mitigate this po-
tential problem. In fact, at similar levels of recall, TAN has a lower false positive
rate than voting.

5 The CLP(BN') Representation

Using Bayesian classifiers to join the rules means that we will have two distinct
classifiers using very different technology: a logic program (a set of rules), and
a Bayes net. Some further insight may be obtained by using formalisms that
combine logic and probabilities, such as CLP(BN).

CLP(BAN) is based on the observation that in Datalog, missing values are
represented by Skolem constants; more generally, in logic programming missing
values, or existentially-quantified variables, are represented by terms built from
Skolem functors. CLP(BN) represents such terms with unknown values as con-
straints. Constraints are kept in a separate store and can be updated as execution
proceeds (ie, if we receive new evidence on a variable). Unifying a term with a
constrained variable invokes a specialized solver. The solver is also activated be-
fore presenting the answer to a query. Syntactically, constraints are represented
as terms of the form {C' = Skolem with CPT}, where C is the logical variable,
Skolem identifies the skolem function, and C'PT gives the parameters for the
probability distribution.
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First, we show how the Naive Bayes net classifier can be built using CLP(BN).
The value taken by the classifier is a random variable that may take the value t
or £ with some prior probability:

classifier(C) :-
{ C = classifier with p([f,t],[0.25,0.75]) }.

Each rule I'’s score V is known to depend on the classifier only:

rule(I,V) :-
classifier(C),
rule_cpt(I,P1,P2,P3,P4),
{V = rule(I) with p([f,t],[P1,P2,P3,P4],[C]) }.

Rule I’s score is V, which is either £ or t. The value of V depends on
the value of the classifier, C, according to the conditional probability table
[P1,P2,P3,P4]. Our implementation stores the tables for each rule in a database:

rule_cpt(1,0.91,0.66,0.09,0.34).
rule_cpt(2,0.98,0.87,0.02,0.13)

rule_cpt(3,0.99,0.79,0.01,0.21).
rule_cpt(4,0.99,0.87,0.01,0.13).

This fully describes the Bayes net. To actually evaluate a rule we just need
to introduce the evidence given by the different rules:

nbayes(A,B,C) :-
all_evidence(0,39,A,B),
classifier(C).

all_evidence(N,N,_,_).
all_evidence(IO,N,A,B) :-
10 < N, I is I0+1,
rule_evidence(I,A,B),
all_evidence(I,N,A,B).

rule_evidence(I,A,B) :- equals(I,A,B), !, rule(I,t).
rule_evidence(I,A,B) :- rule(I,f).

The predicate nbayes/3 receives a pair of individuals A and B, adds evidence
from all rules, and then asks for the new probability distribution on the clas-
sifier,C. The predicate all_evidence recursively considers evidence from every
rule. The predicate rule_evidence/3 calls rule I on the pair A and B. If the rule
succeeds, evidence from rule I is t, otherwise it adds evidence f.

A TAN network only differs in that a rule node may have two parents, the
classifier C and some other node J. This is described in the following clause:
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rule(I,V) :-
rule_cpt(I,J,P1,P2,P3,P4,P5,P6,P7,P8),
classifier(C),
rule(J,V1),
{ V = rule(I) with p([£f,t],[P1,P2,P3,P4,P5,P6,P7,P8],[C,V1]) }.

More complex networks can be described in a similar fashion.

CLP(BAN) offers two main advantages. First, we can offer interactive access
to the full classifier. Second, we gain some insight since our task now involves
learning a single CLP(BN) program, where each newly induced rule will result
in recomputing the probability parameters currently in the database.

6 Relationship to Other Work

Our present work fits into the popular category of using ILP for feature construc-
tion. Such work treats ILP-constructed rules as Boolean features, re-represents
each example as a feature vector, and then uses a feature-vector learner to pro-
duce a final classifier. To our knowledge, the work closest to ours is by Kononenko
and Pompe [12], who were the fist to apply Naive Bayes to combine clauses. Other
work in this category was by Srinivasan and King [17], for the task of predict-
ing biological activities of molecules from their atom-and-bond structures. Some
other research, especially on propositionalization of First Order Logic (FOL) [1],
have been developed that convert the training sets to propositions and then ap-
ply feature vector techniques to the learning phase. This is similar to what we
do; however, we first learn from FOL and then learn the network structure and
parameters using the feature vectors obtained with the FOL training, resulting
in much smaller feature vectors than in propositionalization.

Our paper contributes three novel points to this category of work. First,
it highlights the relationship between this category of work and ensembles in
ILP, because when the feature-vector learner is Naive Bayes the learned model
can be considered a weighted vote of the rules. Second, it shows that when the
features are ILP-learned rules, the independence assumption in Naive Bayes may
be violated badly enough to yield a high false positive rate. This false positive
rate can be brought down by permitting strong dependencies to be explicitly
noted, through learning a tree-augmented Naive Bayes net (TAN). Third, the
present paper provides some early experimental evidence suggesting that a more
computationally expensive full Bayes net learning algorithm may not provide
added benefit in performance.

7 Conclusions

One often has to deal with erroneous and missing information in multi-relational
data mining. We compare how four different approaches for combining rules
learned by an ILP system perform for an application where data is subject
to corruption and unobservability. We were particularly interested in Bayesian
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methods because they associate a probability with each prediction, which can
be thought of as the classifier’s confidence in the final classification.

In our application, we obtained the best precision/recall results using a TAN
network to combine rules. Precision was a major concern to us due to the high
ratio of negative examples to positive examples. TAN had better precision than
Naive Bayes because it is more robust at handling high redundancy between
clauses. TAN also outperformed voting in this application. Initial results for the
sparse candidate algorithm show a significant increase in computation time, but
no significant improvements in precision/recall.

In future work we plan to experiment with different applications and with
full Bayesian networks trained using a discriminative scoring function. We also
plan to further continue work based on the observation that we learn a single
CLP(BN) network: this suggests that the two learning phases could be better
integrated.
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