An Integrated Approach to
Learning Bayesian Networks of Rules

Jesse Davis!, Elizabeth Burnside!, Inés de Castro Dutra?,
David Page!, Vitor Santos Costa?

! Department of Biostatistics and Medical Informatics,
University of Wisconsin-Madison, USA
2 COPPE/Sistemas, UFRJ Centro de Tecnologia, Bloco H-319, Cx. Postal 68511
Rio de Janeiro, Brasil

Abstract. Inductive Logic Programming (ILP) is a popular approach
for learning rules for classification tasks. An important question is how
to combine the individual rules to obtain a useful classifier. In some in-
stances, converting each learned rule into a binary feature for a Bayes
net learner improves the accuracy compared to the standard decision list
approach [3,4,13]. This results in a two-step process, where rules are
generated in the first phase, and the classifier is learned in the second
phase. We propose an algorithm that interleaves the two steps, by incre-
mentally building a Bayes net during rule learning. Each candidate rule
is introduced into the network, and scored by whether it improves the
performance of the classifier. We call the algorithm SAYU for Score As
You Use. We evaluate two structure learning algorithms Naive Bayes and
Tree Augmented Naive Bayes. We test SAYU on four different datasets
and see a significant improvement in two out of the four applications.
Furthermore, the theories that SAYU learns tend to consist of far fewer
rules than the theories in the two-step approach.

1 Introduction

Inductive Logic Programming (ILP) is a popular approach for learning in a re-
lational environment. Given a set of positive and negative examples, an ILP
system finds a logical description of the underlying data model that differenti-
ates between the positive and negative examples. Usually this description is a
set of rules or clauses, forming a logic program. In this case, unseen examples
are applied to each clause in succession, forming a decision list. If the example
matches one of the rules, it receives a positive label. If the example does not
match any rule, it receives the negative classification. In an ideal world, where
the rules would perfectly discriminate between the two classes, the decision list
would represent an optimal combination scheme. In practice, it is difficult to find
rules that do not cover any negative examples. As the precision of the individ-
ual rules declines, so does the accuracy of the decision list, as it maximizes the
number of false positives.

The key question becomes how to combine a set of rules to obtain a useful
classifier. Previous work has shown that an effective approach is to treat each

learned rule as an attribute in a propositional learner, and to use the classifier
to determine the final label of the example [3,4,13]. This methodology defines
a two-step process. In the first step, an ILP algorithm learns a set of rules.
In the second step, a classifier combines the learned rules. One weakness of
this approach is that the rules learned in the first step are being evaluated by
a different metric than how they are ultimately scored in the second step. ILP
traditionally scores clauses through a coverage score or compression metric. Thus
we have no guarantee that the rule learning process will select the rules that best
contribute to the final classifier.

We propose an alternative approach, based on the idea of constructing the
classifier as we learn the rules. In our approach, rules are scored by how much
they improve the classifier, providing a tight coupling between rule generation
and rule usage. We call this methodology Score As You Use or SAYU. Recently
Landwehr, Kersting and De Raedt[9] have also provided a tight coupling between
rule generation and rule usage, by integrating FOIL and Naive Bayes, although
their scoring function for rules is not exactly the improvement in performance
of the Naive Bayes classifier that the rule provides. The relationship to this
important work is discussed in Section 5.

In order to implement SAYU, we first defined an interface that allows an
ILP algorithm to control a propositional learner. Second, we developed a greedy
algorithm that uses the interface to decide whether to retain a candidate clause.
We implemented this interface using Aleph to learn ILP rules, and Bayesian net-
works as the combining mechanism. Previous experience has shown good results
in using Bayes nets as a combining mechanism [3,4,13]. We used two differ-
ent Bayes net structure learning algorithms, Naive Bayes and Tree Augmented
Naive Bayes (TAN) [6] as propositional learners. Our results show that, given the
same amount of CPU time, SAYU clearly outperforms the original two-step ap-
proach. Furthermore, SAYU learns smaller theories. These results were obtained
even though SAYU considers far fewer rules than standard ILP.

2 Implementing SAYU

SAYU requires an interface to propose rules to the propositional learner. Ad-
ditionally, SAYU needs to know the score of each clause in order to help guide
rule search. The interface consists of the following three methods.

The Init() function initializes the propositional learner with a table contain-
ing only the class attribute. The NewAttribute(NewFeature) function intro-
duces NewPFeature into the training set and learns a new classifier incorporat-
ing this attribute. It returns a score for the new network on a set of examples.
The Commit() function permanently incorporates the most recently evaluated
feature into the classifier.

We use the interface to design a greedy learning algorithm, where the ILP
system proposes a rule and converts it into a new attribute. The rule is then
incorporated into the learner. If the rule improves the score, it is retained by the
classifier. Otherwise, we discard the rule and revert back to the old classifier.

Input: Stop Criteria, Scoring Function
Output: Propositional Classifier
CurrentScore = Init();
while Stop criteria not met do
Choose a positive example as a seed and saturate the example;
repeat
NewFeature = Generate new clause according to saturated example;
NewScore = NewAttribute(NewFeature);
if NewScore exceeds CurrentScore then
| Commit();
end

until NewScore exceeds CurrentScore;
end

Algorithm 1: Implementing SAYU

Our implementation depends on the ILP system and on the propositional
learner. Following previous work, we used saturation based learning ILP sys-
tems, in the style of the MDIE algorithm used in Progol [11] and Aleph [19].
In MDIE, the ILP search proceeds by randomly choosing an unexplained seed,
and saturating that seed to obtain its most specific, or saturated clause. It then
searches the space of clauses that generalize the saturated clause until finding
the best clause.

The algorithm we used for this work follows the same principles, with one
major difference: we search for the first good clause for each seed, instead of
continuing search until finding the best clause. The main reason for picking the
first good clause is that the best clause may be hard to find, thus exhaustively
searching for the best clause may end up wasting our time on a single seed. Our
implementation is shown in Algorithm 1.

Next, we present our propositional learning algorithms. Bayesian learning
algorithms have several important advantages for our purposes. First, they al-
low us to give examples a probability. Second, Naive Bayes is a well known
approach that often performs well, and is particularly suitable for incremental
learning. The drawback of Naive Bayes is that it assumes that all of the rules
are independent, given the class value. We evaluate Naive Bayes against Tree
Augmented Naive Bayes (TAN) [6]. TAN networks can be learned efficiently,
and can represent a limited set of dependencies between the attributes.

Finally, we need to define a scoring function. The main goal is to use the
scoring function for both learning and evaluation. Furthermore, we wish to be
able to handle datasets that have a highly skewed class distribution. In the
presence of skew, precision and recall are often used to evaluate classifier quality.
In order to characterize how the algorithm performs over the whole precision
recall space, we follow Goadrich et.al. [7], and adopt the area under the precision-
recall curve as our score metric. When calculating the area under the precision-
recall curve, we integrate from recall levels of 0.2 or greater. Precision-recall

curves can be misleading at low levels of recall as they have high variation in
that region.

3 Methodology

We evaluated our algorithm with four very different datasets, corresponding to
different applications of ILP. Two of the applications are relatively novel, the
Mammography and Yeast Proteins datasets. The other application, Carcinogen-
ests, is well-known in the Inductive Logic Programming Community. Finally,
we used the Univeristy of Washington Advised By dataset that is becoming a
popular benchmark in Statistical Relational Learning [17,16].

Mammography. The Mammography dataset was the original motivation of this
work. The National Mammography Database (NMD) standard established by
the American College of Radiology. The NMD was designed to standardize data
collection for mammography practices in the United States and is widely used
for quality assurance. The database consisted of 47,669 mammography exami-
nations on 18,270 patients. The dataset contains 435 malignant abnormalities
and 65,365 benign abnormalities. It is important to note that the data consists
of a radiologist’s interpretation of a mammogram and not the raw image data.
A mammogram can contain multiple abnormalities. The target predicate we are
trying to predict is whether a given abnormality is benign or malignant. We
randomly divided the abnormalities into ten roughly equal-sized sets, each with
approximately one-tenth of the malignant abnormalities and one-tenth of the
benign abnormalities. We ensured that all abnormalities belonging to a given
patient appeared in the same fold [2].

Yeast Protein. Our second task consists of learning whether a yeast gene codes
for a protein involved in the general function category of metabolism. We used for
this task the MIPS (Munich Information Center for Protein Sequence) Compre-
hensive Yeast Genome Database, as of February 2005 [10]. Positive and negative
examples were obtained from the MIPS function category catalog. The positives
are all proteins/genes that code for metabolism, according to the MIPS func-
tional categorization. The negatives are all genes that have known functions in
the MIPS function categorization and do not code for metabolism. Notice that
the same gene may code for several different functions, or may code for different
sub-functions. We used information on gene location, phenotype, protein class,
and enzymes. We also used gene-to-gene interaction and protein complex data.
The dataset contains 1,299 positive examples and 5,456 negative examples. We
randomly divided the data into ten folds. Each fold contained approximately the
same number of positive and negative examples.

Carcinogenesis. Our third dataset concerns the well-known problem of predict-
ing carcinogenicity test outcomes on rodents [18]. This dataset has a number of
attractive features: it is an important practical problem; the background knowl-
edge consists of a number of non-determinate predicate definitions; experience

suggests that a fairly large search space needs to be examined to obtain a good
clause. The dataset contains 182 positive carcinogenicity tests and 148 nega-
tive tests. We randomly divided the data into ten folds. Each fold contained
approximately the same number of positive and negative examples.

Advised By. Our last dataset concerns learning whether one entity is advised
by another entity, and it is based on real data obtained by Richardson and
Domingos from the University of Washington CS Department [16]. The example
distribution is skewed, with 113 positive examples versus 2,711 negative exam-
ples. Following the original authors, we divide the data in 5 folds, each one
corresponding to a different group in the CS Department.

4 Experimental Setup and Results

On the first three datasets we perform stratified, ten-fold cross validation in
order to obtain significance results. On each round of cross validation, we use
five folds as a training set, four folds as a tuning set and one fold as a test
set. We only saturate examples from the training set. Since the Advised By
dataset only has five folds, we used two folds for a training set and two folds
as a tuning set. The communication between the Bayes net learner and the ILP
algorithm is computationally expensive. The Bayes net algorithm might have
to learn a new network topology and new parameters. Furthermore, inference
must be performed to compute the score after incorporating a new feature. The
SAYU algorithm is strictly more expensive than standard ILP as SAYU also
has to prove whether a rule covers each example in order to create the new
feature. To reflect the added cost, we use a time-based stop criteria for the new
algorithm. In effect, we test whether, given an equal amount of CPU time, the
two-step approach or SAYU performs better.

To obtain a performance baseline we first ran a set of experiments that use
the original two-step process. In all experiments we use Srinivasan’s Aleph ILP
System [19] as the rule learning algorithm. First, we used Aleph running under
induce_cover to learn a set of rules for each fold. Induce_cover implements a
a variant of Progol’s MDIE greedy covering algorithm, where we do not discard
previously covered examples when we score a new clause. Second, we selected
the rules using a greedy algorithm, where we pick the rule with the highest m-
estimate such that it covers an unexplained training example. Subsequently, we
converted each rule into a binary feature for a Naive Bayes and TAN classifier. In
the baseline experiments, we used both the training and tuning data to construct
the classifier and learn its parameters. Furthermore, we recorded the CPU time
that it took for each fold to run to completion. This time was used as the stop
criteria for the corresponding fold when evaluating the integrated approach. To
offset potential differences in computer speeds, all of the experiments for a given
dataset were run on the same machine.

For SAYU, we use only the training set to learn the rules. We use the training
set to learn the structure and parameters of the Bayes net, and we use the tuning

Pr eci si on

Manmogr aphy

0.

Al eph TAN -
Al eph NB

SAYU- NB

SAYU- TAN ——

0 0.2 0.4 0.6 0.8
Recal |
Fig. 1. Mammography Precision-Recall Curves.
Algorithm |Clauses in Theory|Number Predicates per Clause|Clauses Scored
Aleph 99.6 2.8213 620000.0
SAYU-NB 39.1 1.4655 85342.9
SAYU-TAN 32.8 1.4207 20944.4

Table 1. Mammography. All metrics given are averages over all ten folds.

1

set to calculate the score of a network structure. Again, we use Aleph to perform
the clause saturation and propose candidate clauses to include in the Bayes Net.
In order to retain a clause in the network, the area under the precision-recall
curve of the Bayes net incorporating the rule must achieve at least a two percent
improvement over the area of the precision-recall curve of the best Bayes net.

Algorithm |Clauses in Theory|Number Predicates per Clause|Clauses Scored
Aleph 169.5 2.9345 915654.3

SAYU-NB 13.9 1.1367 190320.4

SAYU-TAN 12.5 1.152 131719.8

Table 2. Yeast Protein. All metrics given are averages over all ten folds.

Yeast Protein

1 T T T
SAYU- TAN ——
SAYU- NB s
0.8 Al eph TAN ----=--
Al eph NB e
c
© 0.6}
n
‘o
L 0.4}
(a1}
0.2 | o
0 1 1 1
0 0.2 0.4 0.6 0.8 1
Recal |
Fig. 2. Yeast Protein Function Precision-Recall Curves.
Algorithm |Clauses in Theory|Number Predicates per Clause|Clauses Scored
Aleph 185.6 3.5889 3533521.1
SAYU-NB 8.7 1.6897 874587.7
SAYU-TAN 12.1 1.9504 679274.6

Table 3. Carcinogenesis. All metrics given are averages over all ten folds.

Figures 1 through 4 show precision-recall curves for all four datasets. In all
graphs, curves were generated by pooling results over all ten folds. SAYU-NB
refers to the integrated approach of incrementally learning a Naive Bayes net.
SAYU-TAN refers to the integrated approach of incrementally learning a TAN
network. Aleph-NB refers to the two-step approach consisting of rule learning
with Aleph and rule combination with Naive Bayes. We use Aleph-TAN to rep-
resent learning rules with Aleph and then layering a TAN network over them.

The Mammography dataset (Figure 1) shows a clear win for SAYU over the
original two-step methodology. We used the paired t-test to compare the areas
under the curve for every fold, and we found the difference to be statistically
significant at the 99% level of confidence. The difference between using SAYU-
TAN and SAYU-NB is not significant. The difference between using TAN and
Naive Bayes to combine the Aleph learned rules is also not significant. Moreover,

Car ci nogenesi s

1 T T T
! SAYU- TAN ——
SAYU- NB ---eeseeees
0.8 [\ ™ Al eph TAN ------- |
9 0.6 ',l","' "\.V/‘"
»
)
® 0.4} |
o
0.2t |
0 L 1 L
0 0.2 0.4 0.6 0.8 1
Recal |

Fig. 3. Carcinogenesis Precision-Recall Curves.

the results using SAYU match our best results on this dataset [2], which had
required more computational effort.

The Yeast Protein dataset (Figure 2) also shows a win for SAYU over the
original two-step methodology. The difference is not as striking as in the Mam-
mography dataset, mostly because Aleph TAN learning did very well on one of
the folds. In this case Aleph TAN is significantly better than Aleph NB with
98% confidence. SAYU-TAN learning is significantly better than Aleph NB with
99% confidence, and Aleph TAN with 95% confidence. SAYU-NB is better than
Aleph NB with 99% confidence. However, it is not significantly better than Aleph
TAN (only at 90% confidence), despite the fact that SAYU-NB beats two-step
TAN on nine out of ten folds.

The results for Carcinogenesis (Figure 3) are ambiguous: no method is sig-
nificantly better than the other. One possible explanation is that precision-recall
might not be an appropriate evaluation metric for this dataset. Unlike the other
datasets, this one only has a small skew in the class distribution and there are
more positive examples than negative examples. A more appropriate scoring
function for this dataset might be the area under the ROC curve. We ran SAYU
using this metric and again found no difference between the integrated approach
and the two-step method. We believe an essential piece of future work is to run
a simulation study to try better discern the conditions under which the SAYU
algorithm provides an advantage over the two-step approach.

Advi sed By

SAYU- TAN ———
SAYU- NB ---seeeeee-

Al eph TAN ------- 1
Al eph NB e

Pr eci si on

0 0.2 0.4
Recal |

Fig. 4. Advised By Precision-Recall Curves.

As we had discussed before, implementing SAYU is costly, as we now need
to build a new propositional classifier when evaluating each rule. Moreover, the
differences in scoring methods may lead to learning very different sets of clauses.
Tables 1 through 3 display several statistics for the first three datasets. We have
omitted the statistics for the Advised By dataset in interest of space. First, we
look at the average number of clauses in a theory in the two-step approach, and
compare it with SAYU-NB and SAYU-TAN. Second, we compare average clause
length, measured by the number of literals per clause body. Finally, we show
the average number of clauses scored in each fold. Table 1 shows that SAYU’s
theories contain far fewer clauses than the two-step algorithm in Mammography.
Moreover, if finds shorter clauses, some even with a single attribute. The two
columns are very similar for SAYU-NB and SAYU-TAN. The last column shows
that the cost of using SAYU is very high on this dataset: we only generate a
tenth of the number of clauses when using Naive Bayes. Results for SAYU-TAN
are even worse as it only generates 3% as many clauses as the original Aleph
run. Even so, the SAYU-based algorithms perform better.

The Yeast dataset (Table 2) tells a similar story. Again, the SAYU-based ap-
proaches require fewer clauses to obtain a better result. Again, SAYU generates
smaller clauses with the average clause length lower than for Mammography.
The cost of implementing SAYU was less in this case. We believe this is because
of the cost of transporting the bitmaps (representing the new feature) through

the Java-Prolog interface is smaller, since the dataset is not as large. Finally,
Carcinogenesis (Table 3) again shows SAYU-based approaches learning smaller
theories with shorter clauses, and paying a heavy price for interfacing with the
propositional learning. Carcinogenesis is the smallest benchmark, so its cost is
smaller than Mammography or Yeast Protein.

In all datasets, the theory found by SAYU consists of significantly fewer and
shorter clauses. Even with the simpler classifier, SAYU does at least as well
as the two-step approach. Furthermore, SAYU achieves these benefits despite
evaluating significantly fewer rules than Aleph.

Subsequent to these experiments, we have more recently run a further exper-
iment on the “Advised-By” task of Domingos, used to test learning in Markov
Logic Networks (MLN) [17]. The task is to predict students’ advisors from web
pages. Using the same folds for 5-fold cross-validation used in [17], SAYU with
either TAN or Naive Bayes achieves higher area under the PR curve than MLN;
specifically, SAYU-TAN achieves 0.414, SAYU-NB achieves 0.394, and MLN
achieves 0.295 (taken from [17]). We do not know whether the comparison with
MLN is significant, because we do not have the per-fold numbers of MLN. SAYU-
TAN, SAYU-NB, Aleph-TAN and Aleph-NB all achieve roughly the same areas,
and the differences among them are not significant.

All our results show no significant benefit from using SAYU-TAN over SAYU-
NB. We believe there are two reasons for that. First, the SAYU algorithm itself
might be searching for independent attributes for the classifier, especially when
we are using SAYU-NB. Second, Naive Bayes is computationally more efficient,
as the network topology is fixed. In fact, only the conditional probability table
corresponding to the newly introduced rule must be built in order to evaluate
the new rule. Thus, SAYU-NB benefits from considering more rules.

5 Related Work

The present work builds upon previous work on using ILP for feature construc-
tion. Such work treats ILP-constructed rules as Boolean features, re-represents
each example as a feature vector, and then uses a feature-vector learner to pro-
duce a final classifier. To our knowledge, Pompe and Kononenko [13] were the
first to apply Naive Bayes to combine clauses. Other work in this category was
by Srinivasan and King [18], who use rules as extra features for the task of pre-
dicting biological activities of molecules from their atom-and-bond structures.
More generally, research on propositionalization of First Order Logic [1] is simi-
lar in that it converts the training sets to propositions and then applies feature
vector techniques in the learning phase.

There also has been significant research on alternatives to the standard deci-
sion list approach. One can use formalisms such as relational trees [12] to change
the structure of rules themselves. A popular alternative to decision lists is vot-
ing. Voting has been used in ensemble-based approaches, such as bagging [5] and
boosting [8,15]. Boosting relies on the insight that one should focus on misclas-
sified examples. Search is directed by having a sequence of steps, such that at

each consecutive step misclassified examples become more and more valuable.
We do not change example weights at each step. Instead, we rely on the classi-
fier itself and trust the tuning data to give us approximate performance of the
global system. On the other hand, we do try to focus search on examples where
we perform worse, by skewing seed selection.

ROCCER is a more recent example of a two-step algorithm that starts from
a set of rules and tries to maximize classifier performance [14]. ROCCER takes
a set of rules, and returns a subset that corresponds to a convex hull in ROC
space. ROCCER relies on the Apriori algorithm to obtain the set of rules.

To our knowledge, the first work to replace a two-step approach with a tight
coupling between rule learning and rule usage is the work appearing earlier this
year (done in parallel with ours) by Landwehr, Kersting and De Raedt [9]. That
work presented a new system called nFOIL. The significant differences in the two
pieces of work appear to be the following. First, nFOIL scores clauses by condi-
tional log likelihood rather than improvement in classifier accuracy or classifier
AUC (area under ROC or PR curve). Second, nFOIL can handle multiple-class
classification tasks, which SAYU cannot. Third, the present paper reports exper-
iments on data sets with significant class skew, to which probabilistic classifiers
are often sensitive. Finally, both papers cite work last year showing that TAN
outperformed Naive Bayes for rule combination [4]; the present paper shows that
once clauses are scored as they are actually used, the advantage of TAN seems
to disappear. More specifically, TAN no longer significantly outperforms Naive
Bayes. Hence the present paper may be seen as providing some justification for
the decision of Landwehr et al. to focus on Naive Bayes.

6 Conclusions and Future Work

Prior work has shown that combining ILP-induced rules by a learned Bayesian
network can improve classification performance over an ordinary union of the
rules [3,4]. Nevertheless, in that earlier work, rules were scored using a standard
ILP scoring function (compression), and the Bayesian network was constructed
afterward. The present paper proposes an approach that integrates rule learning
and Bayesian network learning. Each candidate rule is temporarily added to the
current set of rules, and a Bayesian network is learned over these rules. The score
of the rule is the improvement in performance of the new Bayesian network over
the previous best network. Performance is measured as area under the precision-
recall curve, omitting recalls between 0 and 0.2. (Precision-recall curves have
high variation in that region.)

This paper shows that the new integrated approach results in significantly
improved performance over the prior, two-step approach on two of three datasets,
and no significant change on a third dataset. In addition, on all three datasets,
the integrated approach results in a simpler classifier—and hence potentially
improved comprehensibility—as measured by the average number and length of
learned clauses.

Acknowledgments. Support for this research was partially provided by U.S.
Air Force grant F30602-01-2-0571. Inés Dutra and Vitor Santos Costa were vis-
iting UW-Madison. Vitor Santos Costa was partially supported by the Fundacgao
para a Ciéncia e Tecnologia. Elizabeth Burnside is supported by a General Elec-
tric Research in Radiology Academic Fellowship. We would like to thank Mark
Goadrich and Rich Maclin for reading over drafts of this paper.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

E. Alphonse and C. Rouveirol. Lazy propositionalisation for relational learning.
In Horn W., editor, ECAI’00, Berlin, Allemagne, pages 256—260. IOS Press, 2000.
J. Davis, E. Burnside, I. C. Dutra, D. Page, R. Ramakrishnan, V. Santos Costa,
and J. Shavlik. View learning for statistical relational learning: With an application
to mammography. In IJCAI05, Edinburgh, Scotland, 2005.

J. Davis, I. C. Dutra, D. Page, and V. Santos Costa. Establishing Entity Equiv-
alence in Multi-Relation Domains. In International Conference on Intelligence
Analysis, Vienna, Va, May 2005.

J. Davis, V. Santos Costa, I. M. Ong, D. Page, and I. C. Dutra. Using Bayesian
Classifiers to Combine Rules. In 8rd MRDM, Seattle, USA, August 2004.

I. C. Dutra, D. Page, and J. Shavlik V. Santos Costa. An empirical evaluation of
bagging in inductive logic programming. pages 48-65, September 2002.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian networks classifiers. Ma-
chine Learning, 29:131-163, 1997.

M. Goadrich, L. Oliphant, and J. Shavlik. Learning Ensembles of First-Order
Clauses for Recall-Precision Curves: A Case Study in Biomedical Information Ex-
traction. In Proceedings of the 14th ILP, Porto, Portugal, 2004.

S. Hoche and S. Wrobel. Relational learning using constrained confidence-rated
boosting. In ILP01, volume 2157, pages 51-64, September 2001.

N. Landwehr, K. Kersting, and L. De Raedt. nFOIL: Integrating Naive Bayes and
FOIL. In National Conference on Artificial Intelligene (AAAI), 2005.

H. W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase, A. Kaps, K. Lemcke,
G. Mannhaupt, F. Pfeiffer, C. Schiiller, S. Stocker, and B. Weil. Mips: a database
for genomes and protein sequences. Nucleic Acids Research, 28(1):37-40, Jan 2000.
S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245—
286, 1995.

J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning relational probability
trees. In KDD ’03, pages 625—-630. ACM Press, 2003.

U. Pompe and I. Kononenko. Naive Bayesian classifier within ILP-R. In
L. De Raedt, editor, ILP95, pages 417-436, 1995.

R. Prati and P. Flach. Roccer: an algorithm for rule learning based on roc analysis.
In IJCAIO5, Edinburgh, Scotland, 2005.

J. R. Quinlan. Boosting first-order learning. Algorithmic Learning Theory, 7Tth
International Workshop, Lecture Notes in Computer Science, 1160:143-155, 1996.
M. Richardson and P. Domingos. Markov logic networks, 2004.

P. Singla and P. Domingos. Discriminative training of Markov Logic Networks. In
National Conference on Artificial Intelligene (AAAI), 2005.

A. Srinivasan and R. King. Feature construction with inductive logic program-
ming: A study of quantitative predictions of biological activity aided by structural
attributes. In ILP97, pages 89-104, 1997.

Ashwin Srinivasan. The Aleph Manual, 2001.

