
CS 540 Introduction to Artificial Intelligence
Neural Networks (III)

University of Wisconsin-Madison
Spring 2023

Today’s goals

• Understanding deep neural networks as computational graphs.

• Forward propagation of inputs to outputs.

• Backward propagation of loss gradients to weights and biases.

• Understand numerical stability issues in training neural networks.

• Vanishing or exploding gradients.

• Review of generalization how to use regularization for better
generalization.

• Overfitting, underfitting

• Weight decay and dropout

Demo: Why multiple layers?

•https://playground.tensorflow.org/

https://playground.tensorflow.org/

Part I: Neural Networks as a
Computational Graph

Hidden layer
Input

m neurons

• Input
• Hidden
• Intermediate output

x ∈ ℝd

W(1) ∈ ℝm×d, b(1) ∈ ℝm

h = σ(W(1)x + b(1))

h ∈ ℝm

Review: neural networks with one hidden layer

m x n n x 1 m x 1

=+

m x 1m × d
d × 1

m × 1 m × 1

x ∈ ℝd

W b

Review: neural networks with one hidden layer

m x n n x 1 m x 1

=+

m x 1m × d
d × 1

m × 1 m × 1

x ∈ ℝd

W b

Element-wise

activation function

Key elements: linear operations + Nonlinear activations

Review: neural networks with one hidden layer

f1 f2

Deep neural networks (DNNs)
h1 = σ(W(1)x + b(1))
h2 = σ(W(2)h1 + b(2))
h3 = σ(W(3)h2 + b(3))

f = W(4)h3 + b(4)

p = softmax(f)

NNs are composition
of nonlinear

functions

Neural networks as variables + operations
a = sigmoid(Wx + b)

• Decompose functions into atomic operations

• Separate data (variables) and computing (operations)

• Can describe with a computational graph

Neural networks as a computational graph

• A two-layer neural network

Neural networks as a computational graph

• A two-layer neural network
• Forward propagation vs. backward propagation

Neural networks: forward propagation

• A two-layer neural network
• Intermediate variables Z

z1 z2 z3 z4 z5

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• First, define a neural network as a computational graph

• Nodes are variables and operations.

• Must be a directed graph

• All operations must be differentiable.

• Backpropagation computes partial derivatives starting

from the loss and then working backwards through the
graph.

Backward propagation: A modern treatment

Backward propagation: PyTorch

Forward propagation

Backward propagation

Gradient Descent

Hidden layer

Input
m=3 neurons

x1

x2

Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss

 , where the ground truth and predicted probabilities . Recall that the

softmax function turns output into probabilities: . What is the partial derivative

?

ℓ(y, ŷ) = −
k

∑
j=1

yj log ̂yj y, ŷ ∈ ℝk

̂yj =
exp fj(x)

∑k
i exp fi(x)

∂fjℓ(y, ŷ)

x ∈ ℝd

Output

fk

…
f1

A.

B.

C.

̂yj − yj

exp(yj) − yj

yj − ̂yj

Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss

 , where . Recall that the softmax function turns output into

probabilities: . What is the partial derivative ?

ℓ(y, ŷ) = −
k

∑
j=1

yj log ̂yj y, ŷ ∈ ℝk

̂yj =
exp fj(x)

∑k
i exp fi(x)

∂fjℓ(y, ŷ)

ℓ(y, ŷ) = −
k

∑
j=1

yj log
exp(fj)

∑k
i=1 exp(fi)

=
k

∑
j=1

yj log
k

∑
i=1

exp(fi) −
k

∑
j=1

yj fj

= log
k

∑
i=1

exp(fi) −
k

∑
j=1

yj fj .

Rewrite

∂fjℓ(y, ŷ) =
exp(fj)

∑k
i=1 exp(fk)

− yj = ̂yj − yj .We have

Hidden layer

Input
m=3 neurons

x1

x2

x ∈ ℝd

Output

fk

…
f1

Part II: Numerical Stability

Gradients for Neural Networks

• Compute the gradient of the loss w.r.t.

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of many matrices

{
Wikipedia

Two Issues for Deep Neural Networks d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10

Issues with Gradient Exploding

• Value out of range: infinity value (NaN)
• Sensitive to learning rate (LR)

• Not small enough LR -> larger gradients
• Too small LR -> No progress
• May need to change LR dramatically during training

Gradient Vanishing

• Use sigmoid as the activation function

σ(x) =
1

1 + e−x σ′ (x) = σ(x)(1 − σ(x))

Small
gradients

Small
gradients

Issues with Gradient Vanishing

• Gradients with value 0
• No progress in training

• No matter how to choose learning rate
• Severe with bottom layers

• Only top layers are well trained
• No benefit to make networks deeper

How to
stabilize
training?

Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range
• E.g. in [1e-6, 1e3]

• Multiplication -> plus
• Architecture change (e.g., ResNet)

• Normalize
• Batch Normalization, Gradient clipping

• Proper activation functions

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Part III: Generalization & Regularization

How good are
the models?

Training Error and Generalization Error

• Training error: model error on the training data
• Generalization error: model error on new data
• Example: practice a future exam with past exams

• Doing well on past exams (training error) doesn’t
guarantee a good score on the future exam
(generalization error)

Underfitting
Overfitting

Image credit: hackernoon.com

Model Capacity

• The ability to fit variety of functions
• Low capacity models struggles to

fit training set
• Underfitting

• High capacity models can
memorize the training set
• Overfitting

Influence of Model Complexity

Also known as “Test
loss”

* Recent research has challenged this view for some types of models.

Estimate Neural Network Capacity

• It’s hard to compare complexity
between different families of models.
• e.g. K-NN vs neural networks

• Given a model family, two main factors
matter:
• The number of parameters
• The values taken by each parameter

d + 1

(d + 1)m + (m + 1)k

Data Complexity

• Multiple factors matters
• # of examples
• # of features in each example
• time/space structure
• # of labels

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.

Quiz Break: Adding more layers to a multi-layer
perceptron may cause ______.

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Lower test loss.

E. None of these.

Quiz Break: Adding more layers to a multi-layer
perceptron may cause ______.

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.

How to regularize the model for
better generalization?

Weight
Decay

Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value
range

• Often do not regularize bias b
• Doing or not doing has little difference in

practice
• A small means more regularization

min L(w, b) subject to ∥w∥2 ≤ B

B

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

min L(w, b) +
λ
2

∥w∥2

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

• Hyper-parameter controls regularization importance
• : no effect
•

min L(w, b) +
λ
2

∥w∥2

λ = 0
λ → ∞, w* → 0

λ

Illustrate the Effect on Optimal Solutions

w̃*
w*

w* = arg min L(w, b) +
λ
2

∥w∥2

w̃* = arg min L(w, b)

Dropout
Hinton et al.

courses.d2l.ai/berkeley-stat-157

Apply Dropout

• Often apply dropout on the output of hidden fully-
connected layers

h = σ(W(1)x + b(1))
h′ = dropout(h)
o = W(2)h′ + b(2)

p = softmax(o)

Dropout

Dropout
Hinton et al.

Q3. In standard dropout regularization, with dropout probability p, the each intermediate

activation h is replaced by a random variable h’ as: .

To make . What is “?”

h′ = {0 with probability p
? otherwise

E[h′] = h

Hidden layer1

Input
m=3 neurons

x1

x2

x ∈ ℝd …

h1

h2

h3

A. h

B. h/p

C.h/(1-p)

D. h(1-p)

Q3. In standard dropout regularization, with dropout probability p, the each intermediate

activation h is replaced by a random variable h’ as: .

To make . What is “?”

h′ = {0 with probability p
? otherwise

E[h′] = h

Hidden layer1

Input
m=3 neurons

x1

x2

x ∈ ℝd …

h1

h2

h3

A. h

B. h/p

C.h/(1-p)

D. h(1-p)

What we’ve learned today…
• Deep neural networks

• Computational graph (forward and backward propagation)

• Numerical stability in training

• Gradient vanishing/exploding

• Generalization and regularization

• Overfitting, underfitting

• Weight decay and dropout

