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Today’s goals

• Understanding deep neural networks as computational graphs.


• Forward propagation of inputs to outputs.


• Backward propagation of loss gradients to weights and biases.


• Understand numerical stability issues in training neural networks.


• Vanishing or exploding gradients.


• Review of generalization how to use regularization for better 
generalization.


• Overfitting, underfitting


• Weight decay and dropout



Demo: Why multiple layers?

•https://playground.tensorflow.org/

https://playground.tensorflow.org/


Part I: Neural Networks as a 
Computational Graph



Hidden layer 
Input 

m neurons

• Input 
• Hidden 
• Intermediate output   

x ∈ ℝd

W(1) ∈ ℝm×d, b(1) ∈ ℝm

h = σ(W(1)x + b(1))

h ∈ ℝm

Review: neural networks with one hidden layer
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W b

Review: neural networks with one hidden layer
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=+

m x 1m × d
d × 1

m × 1 m × 1

x ∈ ℝd

W b

Element-wise 

activation function

Key elements: linear operations + Nonlinear activations

Review: neural networks with one hidden layer



f1 f2

Deep neural networks (DNNs)
h1 = σ(W(1)x + b(1))
h2 = σ(W(2)h1 + b(2))
h3 = σ(W(3)h2 + b(3))

f = W(4)h3 + b(4)

p = softmax(f)

NNs are composition 
of nonlinear 

functions



Neural networks as variables + operations
a = sigmoid(Wx + b)

• Decompose functions into atomic operations

• Separate data (variables) and computing (operations)

• Can describe with a computational graph



Neural networks as a computational graph

• A two-layer neural network



Neural networks as a computational graph

• A two-layer neural network
• Forward propagation vs. backward propagation



Neural networks: forward propagation

• A two-layer neural network
• Intermediate variables Z

z1 z2 z3 z4 z5



• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L
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• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation



• First, define a neural network as a computational graph

• Nodes are variables and operations.


• Must be a directed graph

• All operations must be differentiable.

• Backpropagation computes partial derivatives starting 

from the loss and then working backwards through the 
graph.


Backward propagation: A modern treatment



Backward propagation: PyTorch

Forward propagation

Backward propagation

Gradient Descent



Hidden layer 

Input 
m=3 neurons

x1

x2

Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss 

 , where the ground truth and predicted probabilities . Recall that the 

softmax function turns output into probabilities: . What is the partial derivative 

?

ℓ(y, ŷ) = −
k

∑
j=1

yj log ̂yj y, ŷ ∈ ℝk

̂yj =
exp fj(x)

∑k
i exp fi(x)

∂fjℓ(y, ŷ)

x ∈ ℝd

Output 

fk

…
f1

A. 


B. 


C.

̂yj − yj

exp(yj) − yj

yj − ̂yj



Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss 

 , where . Recall that the softmax function turns output into 

probabilities: . What is the partial derivative ?

ℓ(y, ŷ) = −
k

∑
j=1

yj log ̂yj y, ŷ ∈ ℝk

̂yj =
exp fj(x)

∑k
i exp fi(x)

∂fjℓ(y, ŷ)

ℓ(y, ŷ) = −
k

∑
j=1

yj log
exp( fj)

∑k
i=1 exp( fi)

=
k

∑
j=1

yj log
k

∑
i=1

exp( fi) −
k

∑
j=1

yj fj

= log
k

∑
i=1

exp( fi) −
k

∑
j=1

yj fj .

Rewrite

∂fjℓ(y, ŷ) =
exp( fj)

∑k
i=1 exp( fk)

− yj = ̂yj − yj .We have

Hidden layer 

Input 
m=3 neurons

x1

x2

x ∈ ℝd

Output 

fk

…
f1



Part II: Numerical Stability



Gradients for Neural Networks

• Compute the gradient of the loss    w.r.t. 

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of many matrices

{
Wikipedia



Two Issues for Deep Neural Networks d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10



Issues with Gradient Exploding

• Value out of range: infinity value (NaN) 
• Sensitive to learning rate (LR) 

• Not small enough LR -> larger gradients 
• Too small LR -> No progress  
• May need to change LR dramatically during training



Gradient Vanishing 

• Use sigmoid as the activation function  

σ(x) =
1

1 + e−x σ′ (x) = σ(x)(1 − σ(x))

Small 
gradients

Small 
gradients



Issues with Gradient Vanishing

• Gradients with value 0 
• No progress in training 

• No matter how to choose learning rate 
• Severe with bottom layers 

• Only top layers are well trained 
• No benefit to make networks deeper



How to 
stabilize 
training?



Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range 
• E.g. in [1e-6, 1e3] 

•  Multiplication -> plus 
• Architecture change (e.g., ResNet) 

• Normalize 
• Batch Normalization, Gradient clipping  

• Proper activation functions 



Quiz. Which of the following are TRUE about the vanishing gradient problem in neural 
networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients. 

B.Using the ReLU function can reduce this problem. 

C. If a network has the vanishing gradient problem for one training point due to the 

sigmoid function, it will also have a vanishing gradient for every other training point. 

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if 

trained with the cross-entropy loss.
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Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following 
statement is NOT true? 

A. Sigmoid function is more expensive to compute 

B. ReLU has non-zero gradient everywhere 

C. The gradient of Sigmoid is always less than 0.3  

D. The gradient of ReLU is constant for positive input 
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Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero 
gradient everywhere?? 

A.Yes 

B. No 

 



Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero 
gradient everywhere?? 
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Part III: Generalization & Regularization



How good are 
the models?



Training Error and Generalization Error

• Training error: model error on the training data 
• Generalization error: model error on new data 
• Example: practice a future exam with past exams 

• Doing well on past exams (training error) doesn’t 
guarantee a good score on the future exam 
(generalization error)



Underfitting  
Overfitting 

Image credit: hackernoon.com



Model Capacity 

• The ability to fit variety of functions 
• Low capacity models struggles to 

fit training set 
• Underfitting 

• High capacity models can 
memorize the training set 
• Overfitting



Influence of Model Complexity

Also known as “Test 
loss”

* Recent research has challenged this view for some types of models. 



Estimate Neural Network Capacity 

• It’s hard to compare complexity 
between different families of models. 
• e.g. K-NN vs neural networks 

• Given a model family, two main factors 
matter: 
• The number of parameters  
• The values taken by each parameter

d + 1

(d + 1)m + (m + 1)k



Data Complexity

• Multiple factors matters 
• # of examples 
• # of features in each example 
• time/space structure 
• # of labels 



Quiz Break: When training a neural network, 
which one below indicates that the network has 
overfit the training data?

A. Training loss is low and generalization loss is high.


B. Training loss is low and generalization loss is low.


C. Training loss is high and generalization loss is high.


D. Training loss is high and generalization loss is low.


E. None of these.
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Quiz Break: Adding more layers to a multi-layer 
perceptron may cause ______.

A. Vanishing gradients during back propagation.


B. A more complex decision boundary.


C. Underfitting.


D. Lower test loss.


E. None of these.



Quiz Break: Adding more layers to a multi-layer 
perceptron may cause ______.

A. Vanishing gradients during back propagation.


B. A more complex decision boundary.


C. Underfitting.


D. Higher test loss.


E. None of these.



How to regularize the model for 
better generalization?



Weight 
Decay



Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value 
range 

• Often do not regularize bias b  
• Doing or not doing has little difference in 

practice 
• A small     means more regularization

min L(w, b) subject to ∥w∥2 ≤ B

B



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

min L(w, b) +
λ
2

∥w∥2



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as 

• Hyper-parameter    controls regularization importance 
•          :   no effect 
•

min L(w, b) +
λ
2

∥w∥2

λ = 0
λ → ∞, w* → 0

λ



Illustrate the Effect on Optimal Solutions

w̃*
w*

w* = arg min L(w, b) +
λ
2

∥w∥2

w̃* = arg min L(w, b)



Dropout
Hinton et al.



courses.d2l.ai/berkeley-stat-157

Apply Dropout

• Often apply dropout on the output of hidden fully-
connected layers

h = σ(W(1)x + b(1))
h′ = dropout(h)
o = W(2)h′ + b(2)

p = softmax(o)



Dropout



Dropout
Hinton et al.



Q3. In standard dropout regularization,  with dropout probability p, the each intermediate 

activation h is replaced by a random variable h’ as: . 


To make . What is “?”


h′ = {0 with probability p
? otherwise

E[h′ ] = h
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A.  h


B. h/p


C.h/(1-p)


D. h(1-p)



Q3. In standard dropout regularization,  with dropout probability p, the each intermediate 

activation h is replaced by a random variable h’ as: . 


To make . What is “?”


h′ = {0 with probability p
? otherwise

E[h′ ] = h

Hidden layer1 

Input 
m=3 neurons

x1

x2

x ∈ ℝd …

h1

h2

h3

A.  h


B. h/p


C.h/(1-p)


D. h(1-p)



What we’ve learned today…
• Deep neural networks


• Computational graph (forward and backward propagation)


• Numerical stability in training


• Gradient vanishing/exploding


• Generalization and regularization


• Overfitting, underfitting


• Weight decay and dropout


