
CS540 Introduction to Artificial Intelligence

Deep Learning I: Convolutional Neural Networks

University of Wisconsin-Madison

Announcements
• Homeworks:

• HW 7 due in two weeks; provide feedback

• Midterms are being graded

• Class roadmap: Tuesday, Mar 28 Deep Learning I

Thursday, Mar 30 Deep Learning II

Tuesday, April 4 Neural Network
Review

Thursday, April 6
 Search

Today’s Goals

Today’s Goals

• Build an understanding of convolutional neural networks.

Today’s Goals

• Build an understanding of convolutional neural networks.

• Why do we want convolutional layers?

Today’s Goals

• Build an understanding of convolutional neural networks.

• Why do we want convolutional layers?

• What are convolutional neural networks?

Today’s Goals

• Build an understanding of convolutional neural networks.

• Why do we want convolutional layers?

• What are convolutional neural networks?

• 2D vs 3D convolutional networks.

Today’s Goals

• Build an understanding of convolutional neural networks.

• Why do we want convolutional layers?

• What are convolutional neural networks?

• 2D vs 3D convolutional networks.

• Padding and stride.

Today’s Goals

• Build an understanding of convolutional neural networks.

• Why do we want convolutional layers?

• What are convolutional neural networks?

• 2D vs 3D convolutional networks.

• Padding and stride.

• Multiple input and output channels

Today’s Goals

• Build an understanding of convolutional neural networks.

• Why do we want convolutional layers?

• What are convolutional neural networks?

• 2D vs 3D convolutional networks.

• Padding and stride.

• Multiple input and output channels

• Pooling

Review: Deep Neural Networks

How to classify
Cats vs. dogs?

How to classify
Cats vs. dogs?

How to classify
Cats vs. dogs?

How to classify
Cats vs. dogs?

36M floats in a RGB image!

Cats vs. dogs?

Fully Connected Networks

Cats vs. dogs?

Output

Hidden layer
Input

100 neurons

Fully Connected Networks

Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output

Hidden layer
Input

100 neurons

Fully Connected Networks

Convolutions come to rescue!

Where is
Waldo?

• Translation
Invariance

• Locality

Why Convolution?

2-D Convolution

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

0x0 + 1x1 + 3x2 + 4x3 = 19

2-D Convolution

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

0x0 + 1x1 + 3x2 + 4x3 = 19

2-D Convolution

(vdumoulin@ Github)

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

0x0 + 1x1 + 3x2 + 4x3 = 19

2-D Convolution

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

1x0 + 2x1 + 4x2 + 5x3 = 25

2-D Convolution

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

3x0 + 4x1 + 6x2 + 7x3 = 37

2-D Convolution

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

4x0 + 5x1 + 7x2 + 8x3 = 43

2-D Convolution Layer

• input matrix

• kernel matrix

• output matrix 

 

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

X: nh x nw

W: kh x kw

Y = X * W

2-D Convolution Layer

• input matrix

• kernel matrix

• output matrix 

 

0 1 2

3 4 5

6 7 8

0 1

2 3

19 25

37 43

X: nh x nw

W: kh x kw

Y = X * W
Convolution operator not multiplication

2-D Convolution Layer

• input matrix

• kernel matrix

• b: scalar bias

• output matrix 

 

• W and b are learnable parameters

0 1 2

3 4 5

6 7 8

0 1

2 3

20 26

38 44

X: nh x nw

W: kh x kw

Y = X * W + b

Examples

(wikipedia)

Examples

(wikipedia)

Edge Detection

Examples

Sharpen

(wikipedia)

Edge Detection

Examples

Sharpen

Gaussian Blur

(wikipedia)

Edge Detection

Convolutional Neural Networks

• Convolutional networks: neural networks that use
convolution in place of general matrix multiplication in at
least one of their layers

• Strong empirical performance in applications – particularly
computer vision.

• Examples: image classification, object detection.

Advantage: sparse interaction

Advantage: sparse interaction

Q1. Suppose we want to perform convolution as follows. What’s the output?

A.

B.

C.

D.

1 2

4 5

0 1 2

3 4 5

6 7 8

0 1

1 -1

1 2

3 4

1 3

3 5

0 1

3 4

Q1. Suppose we want to perform convolution as follows. What’s the output?

A.

B.

B.

B.

1 2

4 5

1 2

3 4

1 3

3 5

0 1

3 4

0 1 2

3 4 5

6 7 8

0 1

1 -1

1 2

4 5

Padding and Stride

Padding

• Given a 32 x 32 input image

• Apply convolution with 5 x 5 kernel

• 28 x 28 output with 1 layer

• 4 x 4 output with 7 layers

Padding

• Given a 32 x 32 input image

• Apply convolution with 5 x 5 kernel

• 28 x 28 output with 1 layer

• 4 x 4 output with 7 layers

• Shape decreases faster with larger kernels

• Shape reduces from tonh x nw

(nh – kh+1) x (nw – kw+1)

Convolutional Layers: Padding

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input
• Why?

Convolutional Layers: Padding

Padding adds rows/columns around input
• Why?

1. Keeps edge information

Convolutional Layers: Padding

Padding adds rows/columns around input
• Why?

1. Keeps edge information
2. Preserves sizes / allows deep networks

• ie, for a 32x32 input image, 5x5 kernel, after

1 layer, get 28x28, after 7 layers, only 4x4

Convolutional Layers: Padding

Padding adds rows/columns around input
• Why?

1. Keeps edge information
2. Preserves sizes / allows deep networks

• ie, for a 32x32 input image, 5x5 kernel, after

1 layer, get 28x28, after 7 layers, only 4x4
3. Can combine different filter sizes

Convolutional Layers: Padding

Convolutional Layers: Padding

• Padding ph rows and pw columns, output shape is

Convolutional Layers: Padding

• Padding ph rows and pw columns, output shape is

(nh-kh+ph+1) x (nw-kw+pw+1)

Convolutional Layers: Padding

• Padding ph rows and pw columns, output shape is

(nh-kh+ph+1) x (nw-kw+pw+1)

• Common choice is ph = kh-1 and pw=kw-1

• Odd kh: pad ph/2 on both sides

• Even kh: pad ceil(ph/2) on top, floor(ph/2) on bottom

Stride

• Stride is the #rows / #columns per slide
Example: strides of 3 and 2 for height
and width

Stride

• Stride is the #rows / #columns per slide
Example: strides of 3 and 2 for height
and width

Stride 2,2

Stride

• Stride is the #rows / #columns per slide
Example: strides of 3 and 2 for height
and width

Stride 2,2

Convolutional Layers: Stride

Convolutional Layers: Stride

• Given stride sh for the height and stride sw for the width,  
the output shape is

Convolutional Layers: Stride

• Given stride sh for the height and stride sw for the width,  
the output shape is

⌊(nh-kh+ph+sh)/sh⌋ x ⌊(nw-kw+pw+sw)/sw⌋

Convolutional Layers: Stride

• Given stride sh for the height and stride sw for the width,  
the output shape is

⌊(nh-kh+ph+sh)/sh⌋ x ⌊(nw-kw+pw+sw)/sw⌋

• Set ph = kh-1, pw = kw-1, then get

Convolutional Layers: Stride

• Given stride sh for the height and stride sw for the width,  
the output shape is

⌊(nh-kh+ph+sh)/sh⌋ x ⌊(nw-kw+pw+sw)/sw⌋

• Set ph = kh-1, pw = kw-1, then get

⌊(nh+sh-1)/sh⌋ x ⌊(nw+sw-1)/sw⌋

Q2. Suppose we want to perform convolution on a single channel image
of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is
the dimension of the output?

A.3x3

B.7x7

C.5x5

D.2x2

7

7

Q2. Suppose we want to perform convolution on a single channel image
of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is
the dimension of the output?

A.3x3

B.7x7

C.5x5

D.2x2

7

7

⌊(nh-kh+ph+sh)/sh⌋ x ⌊(nw-kw+pw+sw)/sw⌋

Multiple Input and
Output Channels

Multiple Input Channels

• Color image may have three RGB channels

• Converting to grayscale loses information

Multiple Input Channels

• Color image may have three RGB channels

• Converting to grayscale loses information

Multiple Input Channels

• Have a kernel matrix for each channel, and then sum
results over channels

Multiple Input Channels

• Have a kernel matrix for each channel, and then sum
results over channels

Multiple Input Channels

• Have a kernel matrix for each channel, and then sum
results over channels

Multiple Input Channels

• Have a kernel matrix for each channel, and then sum
results over channels

Multiple Input Channels

• Have a kernel matrix for each channel, and then sum
results over channels

Multiple Input Channels

• Have a kernel matrix for each channel, and then sum
results over channels

Convolutional Layers: Channels

Tensor: generalization of matrix to higher dimensions

“Slices” of tensors

Convolutional Layers: Channels

• How to integrate multiple channels?

• Have a kernel for each channel, and then sum results over

channels

Tensor: generalization of matrix to higher dimensions

“Slices” of tensors

Convolutional Layers: Channels

• How to integrate multiple channels?

• Have a kernel for each channel, and then sum results over

channels

Tensor: generalization of matrix to higher dimensions

“Slices” of tensors

Convolutional Layers: Channels

• How to integrate multiple channels?

• Have a kernel for each channel, and then sum results over

channels

Tensor: generalization of matrix to higher dimensions

“Slices” of tensors

Convolutional Layers: Channels

• How to integrate multiple channels?

• Have a kernel for each channel, and then sum results over

channels

Tensor: generalization of matrix to higher dimensions

“Slices” of tensors

Convolutional Layers: Channels

• How to integrate multiple channels?

• Have a kernel for each channel, and then sum results over

channels

Tensor: generalization of matrix to higher dimensions

“Slices” of tensors

Multiple Output Channels

• No matter how many inputs channels, so far we always
get single output channel

• We can have multiple 3-D kernels, each one generates
an output channel

Multiple Output Channels

• No matter how many inputs channels, so far we always
get single output channel

• We can have multiple 3-D kernels, each one generates
an output channel

• Input

• Kernels

• Output

Multiple Output Channels

• No matter how many inputs channels, so far we always
get single output channel

• We can have multiple 3-D kernels, each one generates
an output channel

• Input

• Kernels

• Output

Multiple Output Channels

• No matter how many inputs channels, so far we always
get single output channel

• We can have multiple 3-D kernels, each one generates
an output channel

• Input

• Kernels

• Output

Multiple Output Channels

• No matter how many inputs channels, so far we always
get single output channel

• We can have multiple 3-D kernels, each one generates
an output channel

• Input

• Kernels

• Output

Multiple Output Channels

• No matter how many inputs channels, so far we always
get single output channel

• We can have multiple 3-D kernels, each one generates
an output channel

• Input

• Kernels

• Output

Multiple Output Channels

• No matter how many inputs channels, so far we always
get single output channel

• We can have multiple 3-D kernels, each one generates
an output channel

• Input

• Kernels

• Output

Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern

Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern

(Gabor filters)

A.64 x 3 x 3 x 222 x 222

B.64 x 3 x 3 x 222

C.3 x 3 x 222 x 222

D.64 x 3 x 3 x 3 x 222 x 222

Q3. Suppose we want to perform convolution on an RGB image of size
224x224 (no padding) with 64 kernels, each with height 3 and width 3.
Stride = 1. Which is a reasonable estimate of the total number of scalar
multiplications involved in this operation (without considering any
optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222

B.64 x 3 x 3 x 222

C.3 x 3 x 222 x 222

D.64 x 3 x 3 x 3 x 222 x 222

Q3. Suppose we want to perform convolution on an RGB image of size
224x224 (no padding) with 64 kernels, each with height 3 and width 3.
Stride = 1. Which is a reasonable estimate of the total number of scalar
multiplications involved in this operation (without considering any
optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222

B.64 x 3 x 3 x 222

C.3 x 3 x 222 x 222

D.64 x 3 x 3 x 3 x 222 x 222

Q3. Suppose we want to perform convolution on an RGB image of size
224x224 (no padding) with 64 kernels, each with height 3 and width 3.
Stride = 1. Which is a reasonable estimate of the total number of scalar
multiplications involved in this operation (without considering any
optimization in matrix multiplication)?

For each kernel, we slide the
window to 222 x 222 different
locations. For each location, the
number of multiplication is 3x3x3.
So in total 64x3x3x3x222x222

A.64 x 222 x 222

B.64 x 3 x 3 x 222

C.3 x 3 x 3 x 64

D.(3 x 3 x 3 + 1) x 64

Q4. Suppose we want to perform convolution on a RGB image of size 224
x 224 (no padding) with 64 kernels, each with height 3 and width 3.
Stride = 1. The convolution layer has bias parameters. Which is a
reasonable estimate of the total number of learnable parameters?

A.64 x 222 x 222

B.64 x 3 x 3 x 222

C.3 x 3 x 3 x 64

D.(3 x 3 x 3 + 1) x 64

Q4. Suppose we want to perform convolution on a RGB image of size 224
x 224 (no padding) with 64 kernels, each with height 3 and width 3.
Stride = 1. The convolution layer has bias parameters. Which is a
reasonable estimate of the total number of learnable parameters?

A.64 x 222 x 222

B.64 x 3 x 3 x 222

C.3 x 3 x 3 x 64

D.(3 x 3 x 3 + 1) x 64

Q4. Suppose we want to perform convolution on a RGB image of size 224
x 224 (no padding) with 64 kernels, each with height 3 and width 3.
Stride = 1. The convolution layer has bias parameters. Which is a
reasonable estimate of the total number of learnable parameters?

Each kernel is 3D kernel across 3
input channels, so has 3x3x3
parameters. Each kernel has 1 bias
parameter. So in total (3x3x3+1)x64

courses.d2l.ai/berkeley-stat-157

Pooling Layer

Pooling

Pooling

2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

Padding, Stride, and Multiple Channels

• Pooling layers have similar padding
and stride as convolutional layers

• No learnable parameters

• Apply pooling for each input channel to

obtain the corresponding output
channel 
 
#output channels = #input channels

Padding, Stride, and Multiple Channels

• Pooling layers have similar padding
and stride as convolutional layers

• No learnable parameters

• Apply pooling for each input channel to

obtain the corresponding output
channel 
 
#output channels = #input channels

Padding, Stride, and Multiple Channels

• Pooling layers have similar padding
and stride as convolutional layers

• No learnable parameters

• Apply pooling for each input channel to

obtain the corresponding output
channel 
 
#output channels = #input channels

Average Pooling

• Max pooling: the strongest pattern signal in a window

• Average pooling: replace max with mean in max pooling

• The average signal strength in a window

Max pooling Average pooling

Q5. Suppose we want to perform 2x2 average pooling on the following
single channel feature map of size 4x4 (no padding), and stride = 2.
What is the output?

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30
70 90

16 8
20 25

20 30
20 25

12 2
70 5

Q5. Suppose we want to perform 2x2 average pooling on the following
single channel feature map of size 4x4 (no padding), and stride = 2.
What is the output?

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30
70 90

16 8
20 25

20 30
20 25

12 2
70 5

Q6. What is the output if we replace average pooling with 2 x 2 max
pooling (other settings are the same)?

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30
70 90

16 8
20 25

20 30
20 25

12 2
70 5

Q6. What is the output if we replace average pooling with 2 x 2 max
pooling (other settings are the same)?

A.

B.

C.

D.

20 30
70 90

16 8
20 25

20 30
20 25

12 2
70 5

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

Summary

Summary

• Intro of convolutional computations

• 2D convolution

• Padding, stride

• Multiple input and output channels

• Pooling

Acknowledgement:
Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html

https://courses.d2l.ai/berkeley-stat-157/index.html

