

CS540 Introduction to Artificial Intelligence Deep Learning I: Convolutional Neural Networks

University of Wisconsin-Madison

Announcements

- Homeworks:
 - HW 7 due in two weeks; provide feedback
- Midterms are being graded
- Class roadmap:

ūesday, Mar 28	Deep Learning I
hursday, Mar 30	Deep Learning II
ūesday, April 4	Neural Network Review
hursday, April 6	Search

Build an understanding of convolutional neural networks.

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks?

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks? lacksquare
 - 2D vs 3D convolutional networks.

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks?
 - 2D vs 3D convolutional networks.
 - Padding and stride.

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks? ullet
 - 2D vs 3D convolutional networks.
 - Padding and stride.
 - Multiple input and output channels

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks? ullet
 - 2D vs 3D convolutional networks.
 - Padding and stride.
 - Multiple input and output channels
 - Pooling

Review: Deep Neural Networks

$\mathbf{h}_1 = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$ $\mathbf{h}_2 = \sigma(\mathbf{W}^{(2)}\mathbf{h}_1 + \mathbf{b}^{(2)})$ $\mathbf{h}_3 = \sigma(\mathbf{W}^{(3)}\mathbf{h}_2 + \mathbf{b}^{(3)})$ $f = W^{(4)}h_3 + b^{(4)}$ $\mathbf{p} = \operatorname{softmax}(\mathbf{f})$

NNs are composition of nonlinear functions

Dual **12NP**

wide-angle and telephoto cameras

Dual 1210P wide-angle and

telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?

Fully Connected Networks

Cats vs. dogs?

Fully Connected Networks

Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Convolutions come to rescue!

Where is Waldo?

Why Convolution?

- Translation
 Invariance
- Locality

Input

Kernel

0	1	2
3	4	5
6	7	8

*

0x0 + 1x1 + 3x2 + 4x3 = 19

19	25
37	43

Input

Kernel

0	1	2
3	4	5
6	7	8

*

Input

Kernel

0	1	2
3	4	5
6	7	8

*

(vdumoulin@ Github)

Kernel Input

1x0 + 2x1 + 4x2 + 5x3 = 25

19	25
37	43

Input

0	1	2	
3	4	5	
6	7	8	

*

3x0 + 4x1 + 6x2 + 7x3 = 37

19	25
37	43

Input

0	1	2	
3	4	5	
6	7	8	

4x0 + 5x1 + 7x2 + 8x3 = 43

*

19	25
37	43

2-D Convolution Layer

- **X**: $n_h \ge n_w$ input matrix
- W: $k_h \propto k_w$ kernel matrix
- **Y**: $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix
 - Y = X * W

19	25
37	43

2-D Convolution Layer

- **X**: $n_h \ge n_w$ input matrix
- W: $k_h \propto k_w$ kernel matrix
- **Y**: $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix
 - Y = X *

19	25
37	43

v + 1) Output matrix Convolution operator not multiplication * W

2-D Convolution Layer

- **X**: $n_h \ge n_w$ input matrix
- W: $k_h \propto k_w$ kernel matrix
- b: scalar bias
- **Y**: $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix
- W and b are learnable parameters

Y = X * W + b

	20	26
	38	44

(wikipedia)

$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

(wikipedia)

Edge Detection

 $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

 $\left[egin{array}{cccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \end{array}
ight]$

(wikipedia)

Edge Detection

Sharpen

 $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

(wikipedia)

Edge Detection

Sharpen

Convolutional Neural Networks

- Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers
- Strong empirical performance in applications particularly computer vision.
- Examples: image classification, object detection.

Advantage: sparse interaction

Fully connected layer, *m*×*n* edges

Figure from *Deep Learning*, by Goodfellow, Bengio, and Courville

Advantage: sparse interaction

Convolutional layer, $\leq m \times k$ edges

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

urville

Q1. Suppose we want to perform convolution as follows. What's the output?

0	1	2
3	4	5
6	7	8

*

0	1
1	-1

Q1. Suppose we want to perform convolution as follows. What's the output?

- $0 \times 0 + 1 \times 1 + 3 \times 1 + 4 \times (-1) + 1 = 1$ $1 \times 0 + 2 \times 1 + 4 \times 1 + 5 \times (-1) + 1 = 2$ $3 \times 0 + 4 \times 1 + 6 \times 1 + 7 \times (-1) + 1 = 4$ $4 \times 0 + 5 \times 1 + 7 \times 1 + 8 \times (-1) + 1 = 5$

Β.

B

3 1 3 5

0	1
3	4

Padding and Stride

Padding

- Given a 32 x 32 input image
- Apply convolution with 5 x 5 kernel
 - 28 x 28 output with 1 layer
 - 4 x 4 output with 7 layers

Padding

- Given a 32 x 32 input image
- Apply convolution with 5 x 5 kernel
 - 28 x 28 output with 1 layer
 - 4 x 4 output with 7 layers
- Shape decreases faster with larger kernels
 - Shape reduces from $n_h \ge n_w$ to

$$(n_h - k_h + 1) \ge (n_w - k_h)$$

Padding adds rows/columns around input

Padding adds rows/columns around input

Padding adds rows/columns around input

Output

0	3	8	4
9	19	25	10
21	37	43	16
6	7	8	0

Padding adds rows/columns around input

Padding adds rows/columns around input

- **Padding** adds rows/columns around input
- Why?

Padding adds rows/columns around input • Why?

1. Keeps edge information

Padding adds rows/columns around input • Why?

- 1. Keeps edge information
- 2. Preserves sizes / allows deep networks • ie, for a 32x32 input image, 5x5 kernel, after 1 layer, get 28x28, after 7 layers, only 4x4

Padding adds rows/columns around input • Why?

- 1. Keeps edge information
- 2. Preserves sizes / allows deep networks • ie, for a 32x32 input image, 5x5 kernel, after 1 layer, get 28x28, after 7 layers, only 4x4

3. Can combine different filter sizes

Padding p_h rows and p_w columns, output shape is

Padding p_h rows and p_w columns, output shape is

- $(n_h k_h + p_h + 1) \times (n_w k_w + p_w + 1)$

- Padding p_h rows and p_w columns, output shape is $(n_h k_h + p_h + 1) \ge (n_w k_w + p_w + 1)$
- Common choice is $p_h = k_h 1$ and

- Odd k_h : pad $p_h/2$ on both sides
- Even k_h : pad ceil($p_h/2$) on top, floor($p_h/2$) on bottom

$$p_{w} = k_{w} - 1$$

floor($p_h/2$) on bottom

Stride

Stride is the #rows / #columns per slide

Example: strides of 3 and 2 for height and width

Input

 $0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$ $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$

Output

Stride

Stride is the #rows / #columns per slide

Example: strides of 3 and 2 for height and width Kernel Input

 $0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$ $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$

Stride 2,2

Stride

Stride is the #rows / #columns per slide

Example: strides of 3 and 2 for height and width Kernel Input

 $0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$ $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$

Stride 2,2

- Given stride s_h for the height and stride s_w for the width, the output shape is

• Given stride s_h for the height and stride s_w for the width, the output shape is

 $[(n_{h}-k_{h}+p_{h}+s_{h})/s_{h}] \times [(n_{w}-k_{w}+p_{w}+s_{w})/s_{w}]$

• Given stride s_h for the height and stride s_w for the width, the output shape is

• Set $p_h = k_h - 1$, $p_w = k_w - 1$, then get

- $[(n_{h}-k_{h}+p_{h}+s_{h})/s_{h}] \times [(n_{w}-k_{w}+p_{w}+s_{w})/s_{w}]$

• Given stride s_h for the height and stride s_w for the width, the output shape is

• Set $p_h = k_h - 1$, $p_w = k_w - 1$, then get

- $[(n_{h}-k_{h}+p_{h}+s_{h})/s_{h}] \times [(n_{w}-k_{w}+p_{w}+s_{w})/s_{w}]$

 - $[(n_h+s_h-1)/s_h] \times [(n_w+s_w-1)/s_w]$

Q2. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3 **B.7x7** C.5x5 D.2x2

Q2. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3 **B.7x7** C.5x5 D.2x2

 $[(n_{h}-k_{h}+p_{h}+s_{h})/s_{h}] \times [(n_{w}-k_{w}+p_{w}+s_{w})/s_{w}]$

Multiple Input and Output Channels

- Color image may have three RGB channels
- Converting to grayscale loses information

e RGB channels es information

- Color image may have three RGB channels
- Converting to grayscale loses information

 Have a kernel matrix for each channel, and then sum results over channels

Input

*

 Have a kernel matrix for each channel, and then sum results over channels

Input

Kernel

Have a kernel matrix for each channel, and then sum results over channels

*

Kernel

+

 Have a kernel matrix for each channel, and then sum results over channels

Kernel

+

 Have a kernel matrix for each channel, and then sum results over channels

Kernel

+

 $(1 \times 1 + 2 \times 2 + 4 \times 3 + 5 \times 4)$ $+(0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3)$ = 56

 Have a kernel matrix for each channel, and then sum results over channels

Tensor: generalization of matrix to higher dimensions

- How to integrate multiple channels?
 - channels

Tensor: generalization of matrix to higher dimensions

Have a kernel for each channel, and then sum results over

- How to integrate multiple channels?
 - channels

$$\mathbf{X}: c_i \times n_h \times n_w$$

Tensor: generalization of matrix to higher dimensions

Have a kernel for each channel, and then sum results over

- How to integrate multiple channels?
 - channels

$$\mathbf{X} : c_i \times n_h \times n_w$$
$$\mathbf{W} : c_i \times k_h \times k_w$$

Tensor: generalization of matrix to higher dimensions

Have a kernel for each channel, and then sum results over

- How to integrate multiple channels?
 - Have a kernel for each channel, and then sum results over channels

 $\mathbf{X}: c_i \times n_h \times n_w$ $W: c_i \times k_h \times k_w$ $\mathbf{Y}: m_h \times m_w$

Tensor: generalization of matrix to higher dimensions

- How to integrate multiple channels?
 - channels

 $\mathbf{X}: c_i \times n_h \times n_w$ $\mathbf{W}: c_i \times k_h \times k_w$ $\mathbf{Y}: m_h \times m_w$

Tensor: generalization of matrix to higher dimensions

Have a kernel for each channel, and then sum results over

- No matter how many inputs channels, so far we always get single output channel
- an output channel

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input
- Kernels
- Output

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- $\mathbf{X}: c_i \times n_h \times n_w$ • Input
- Kernels
- Output

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input $\mathbf{X}: c_i \times n_h \times n_w$
- Kernels $W: c_o \times c_i \times k_h \times k_w$
- Output

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input $\mathbf{X}: c_i \times n_h \times n_w$
- Kernels $W: c_o \times c_i \times k_h \times k_w$
- **Output** $\mathbf{Y}: c_o \times m_h \times m_w$

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input $\mathbf{X}: c_i \times n_h \times n_w$
- Kernels $W: c_o \times c_i \times k_h \times k_w$
- **Output** $\mathbf{Y}: c_o \times m_h \times m_w$

• We can have multiple 3-D kernels, each one generates

$Y_{i...} = X \star W_{i...}$

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input $\mathbf{X}: c_i \times n_h \times n_w$
- Kernels $W: c_o \times c_i \times k_h \times k_w$
- **Output** $\mathbf{Y}: c_o \times m_h \times m_w$

 $\mathbf{Y}_{i\ldots} = \mathbf{X} \star \mathbf{W}_{i\ldots}$ for $i = 1, ..., c_{n}$

Multiple Input/Output Channels

Each 3-D kernel may recognize a particular pattern

Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern

(Gabor filters)

Q3. Suppose we want to perform convolution on an RGB image of size 224x224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222 B.64 x 3 x 3 x 222 C.3 x 3 x 222 x 222 D.64 x 3 x 3 x 3 x 222 x 222

Q3. Suppose we want to perform convolution on an RGB image of size 224x224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222 B.64 x 3 x 3 x 222 C.3 x 3 x 222 x 222 D.64 x 3 x 3 x 3 x 222 x 222

Q3. Suppose we want to perform convolution on an RGB image of size 224x224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222 B.64 x 3 x 3 x 222 C.3 x 3 x 222 x 222 D.64 x 3 x 3 x 3 x 222 x 222

For each kernel, we slide the window to 222 x 222 different locations. For each location, the number of multiplication is 3x3x3. So in total 64x3x3x3x222x222

Q4. Suppose we want to perform convolution on a RGB image of size 224 x 224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?

A.64 x 222 x 222 B.64 x 3 x 3 x 222 C. 3 x 3 x 3 x 64 $D.(3 \times 3 \times 3 + 1) \times 64$

Q4. Suppose we want to perform convolution on a RGB image of size 224 x 224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?

A.64 x 222 x 222 B.64 x 3 x 3 x 222 C. 3 x 3 x 3 x 64 $D.(3 \times 3 \times 3 + 1) \times 64$

Q4. Suppose we want to perform convolution on a RGB image of size 224 x 224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?

A.64 x 222 x 222 B.64 x 3 x 3 x 222 C. 3 x 3 x 3 x 64 $D.(3 \times 3 \times 3 + 1) \times 64$

Each kernel is 3D kernel across 3 input channels, so has 3x3x3 parameters. Each kernel has 1 bias parameter. So in total (3x3x3+1)x64

Pooling Layer

Pooling

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?

B

Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

Pooling

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

2-D Max Pooling

 Returns the maximal value in the sliding window

Input

		4
	•	7

max(0,1,3,4) = 4

Output

2-D Max Pooling

 Returns the maximal value in the sliding window

Input

2 x 2 Max Pooling

4
7

max(0,1,3,4) = 4

Output

2-D Max Pooling

 Returns the maximal value in the sliding window

Input

2 x 2 Max Pooling

4
7

max(0,1,3,4) = 4

Output

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

#output channels = #input channels

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

#output channels = #input channels

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

#output channels = #input channels

Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
 - The average signal strength in a window

Max pooling

Average pooling

Q5. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?

30 20 25 20

Β.

C.

12	2
70	5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3
Q5. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q6. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?

(
	ノ	

D.

 12
 2

 70
 5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q6. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?

ノ	

D.

 12
 2

 70
 5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Summary

Summary

- Intro of convolutional computations
 - 2D convolution
 - Padding, stride
 - Multiple input and output channels
 - Pooling

Acknowledgement:

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html