

# **CS540 Introduction to Artificial Intelligence Deep Learning I: Convolutional Neural Networks**

University of Wisconsin-Madison



# Announcements

- Homeworks:
  - HW 7 due in two weeks; provide feedback
- Midterms are being graded
- Class roadmap:

| ūesday, Mar 28   | Deep Learning I          |
|------------------|--------------------------|
| hursday, Mar 30  | Deep Learning II         |
| ūesday, April 4  | Neural Network<br>Review |
| hursday, April 6 | Search                   |



Build an understanding of convolutional neural networks.

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks?

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks? lacksquare
  - 2D vs 3D convolutional networks.

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks?
  - 2D vs 3D convolutional networks.
  - Padding and stride.

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks? ullet
  - 2D vs 3D convolutional networks.
  - Padding and stride.
  - Multiple input and output channels

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks? ullet
  - 2D vs 3D convolutional networks.
  - Padding and stride.
  - Multiple input and output channels
  - Pooling

# **Review: Deep Neural Networks**



# $\mathbf{h}_1 = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$ $\mathbf{h}_2 = \sigma(\mathbf{W}^{(2)}\mathbf{h}_1 + \mathbf{b}^{(2)})$ $\mathbf{h}_3 = \sigma(\mathbf{W}^{(3)}\mathbf{h}_2 + \mathbf{b}^{(3)})$ $f = W^{(4)}h_3 + b^{(4)}$ $\mathbf{p} = \operatorname{softmax}(\mathbf{f})$

NNs are composition of nonlinear functions









# Dual **12NP**

wide-angle and telephoto cameras





#### Dual 1210P wide-angle and

telephoto cameras

#### **36M** floats in a RGB image!

# **Fully Connected Networks**

#### Cats vs. dogs?







# **Fully Connected Networks**

#### Cats vs. dogs?









# **Fully Connected Networks**

#### Cats vs. dogs?









~ 36M elements x 100 = ~3.6B parameters!

# Convolutions come to rescue!

# Where is Waldo?





#### Why Convolution?

- Translation
   Invariance
- Locality



#### Input

Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |



\*

#### 0x0 + 1x1 + 3x2 + 4x3 = 19

| 19 | 25 |
|----|----|
| 37 | 43 |

#### Input

Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |



\*



#### Input

Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |



\*



(vdumoulin@ Github)

Kernel Input



1x0 + 2x1 + 4x2 + 5x3 = 25

| 19 | 25 |
|----|----|
| 37 | 43 |

#### Input



| 0 | 1 | 2 |  |
|---|---|---|--|
| 3 | 4 | 5 |  |
| 6 | 7 | 8 |  |



\*

### 3x0 + 4x1 + 6x2 + 7x3 = 37

| 19 | 25 |
|----|----|
| 37 | 43 |

#### Input



| 0 | 1 | 2 |  |
|---|---|---|--|
| 3 | 4 | 5 |  |
| 6 | 7 | 8 |  |



### 4x0 + 5x1 + 7x2 + 8x3 = 43

\*

| 19 | 25 |
|----|----|
| 37 | 43 |

## **2-D Convolution Layer**



- **X**:  $n_h \ge n_w$  input matrix
- W:  $k_h \propto k_w$  kernel matrix
- **Y**:  $(n_h k_h + 1) \times (n_w k_w + 1)$  output matrix
  - Y = X \* W

| 19 | 25 |
|----|----|
| 37 | 43 |

## **2-D Convolution Layer**



- **X**:  $n_h \ge n_w$  input matrix
- W:  $k_h \propto k_w$  kernel matrix
- **Y**:  $(n_h k_h + 1) \times (n_w k_w + 1)$  output matrix
  - Y = X \*

| 19 | 25 |
|----|----|
| 37 | 43 |

# v + 1) Output matrix Convolution operator not multiplication \* W

## **2-D Convolution Layer**



- **X**:  $n_h \ge n_w$  input matrix
- W:  $k_h \propto k_w$  kernel matrix
- b: scalar bias
- **Y**:  $(n_h k_h + 1) \times (n_w k_w + 1)$  output matrix
- W and b are learnable parameters

# Y = X \* W + b

|  | 20 | 26 |
|--|----|----|
|  | 38 | 44 |



(wikipedia)

# $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$



(wikipedia)



#### Edge Detection

 $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ 

 $\left[ egin{array}{cccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \end{array} 
ight]$ 



(wikipedia)



#### Edge Detection

#### Sharpen

 $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ 







(wikipedia)



#### Edge Detection

#### Sharpen





## **Convolutional Neural Networks**

- Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers
- Strong empirical performance in applications particularly computer vision.
- Examples: image classification, object detection.

## Advantage: sparse interaction

Fully connected layer, *m*×*n* edges



Figure from *Deep Learning*, by Goodfellow, Bengio, and Courville


#### Advantage: sparse interaction

Convolutional layer,  $\leq m \times k$  edges



Figure from Deep Learning, by Goodfellow, Bengio, and Courville

#### urville

#### Q1. Suppose we want to perform convolution as follows. What's the output?

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

\*

| 0 | 1  |
|---|----|
| 1 | -1 |





#### Q1. Suppose we want to perform convolution as follows. What's the output?



- $0 \times 0 + 1 \times 1 + 3 \times 1 + 4 \times (-1) + 1 = 1$  $1 \times 0 + 2 \times 1 + 4 \times 1 + 5 \times (-1) + 1 = 2$  $3 \times 0 + 4 \times 1 + 6 \times 1 + 7 \times (-1) + 1 = 4$  $4 \times 0 + 5 \times 1 + 7 \times 1 + 8 \times (-1) + 1 = 5$









Β.

B

3 1 3 5

| 0 | 1 |
|---|---|
| 3 | 4 |



# Padding and Stride



#### Padding

- Given a 32 x 32 input image
- Apply convolution with 5 x 5 kernel
  - 28 x 28 output with 1 layer
  - 4 x 4 output with 7 layers



























#### Padding

- Given a 32 x 32 input image
- Apply convolution with 5 x 5 kernel
  - 28 x 28 output with 1 layer
  - 4 x 4 output with 7 layers
- Shape decreases faster with larger kernels
  - Shape reduces from  $n_h \ge n_w$  to

$$(n_h - k_h + 1) \ge (n_w - k_h)$$

























Padding adds rows/columns around input

**Padding** adds rows/columns around input



#### Padding adds rows/columns around input



Output

| 0  | 3  | 8  | 4  |
|----|----|----|----|
| 9  | 19 | 25 | 10 |
| 21 | 37 | 43 | 16 |
| 6  | 7  | 8  | 0  |



**Padding** adds rows/columns around input

**Padding** adds rows/columns around input



- **Padding** adds rows/columns around input
- Why?



**Padding** adds rows/columns around input • Why?

1. Keeps edge information



**Padding** adds rows/columns around input • Why?

- 1. Keeps edge information
- 2. Preserves sizes / allows deep networks • ie, for a 32x32 input image, 5x5 kernel, after 1 layer, get 28x28, after 7 layers, only 4x4



**Padding** adds rows/columns around input • Why?

- 1. Keeps edge information
- 2. Preserves sizes / allows deep networks • ie, for a 32x32 input image, 5x5 kernel, after 1 layer, get 28x28, after 7 layers, only 4x4

3. Can combine different filter sizes



Padding p<sub>h</sub> rows and p<sub>w</sub> columns, output shape is

Padding p<sub>h</sub> rows and p<sub>w</sub> columns, output shape is

- $(n_h k_h + p_h + 1) \times (n_w k_w + p_w + 1)$

- Padding  $p_h$  rows and  $p_w$  columns, output shape is  $(n_h k_h + p_h + 1) \ge (n_w k_w + p_w + 1)$
- Common choice is  $p_h = k_h 1$  and

- Odd  $k_h$ : pad  $p_h/2$  on both sides
- Even  $k_h$ : pad ceil( $p_h/2$ ) on top, floor( $p_h/2$ ) on bottom

$$p_{w} = k_{w} - 1$$

# floor( $p_h/2$ ) on bottom

#### Stride

# Stride is the #rows / #columns per slide

Example: strides of 3 and 2 for height and width

Input





 $0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$  $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$ 

Output





#### Stride

Stride is the #rows / #columns per slide

Example: strides of 3 and 2 for height and width Kernel Input



 $0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$  $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$ 





Stride 2,2



#### Stride

Stride is the #rows / #columns per slide

Example: strides of 3 and 2 for height and width Kernel Input



 $0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$  $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$ 





Stride 2,2



- Given stride  $s_h$  for the height and stride  $s_w$  for the width, the output shape is

• Given stride  $s_h$  for the height and stride  $s_w$  for the width, the output shape is

 $[(n_{h}-k_{h}+p_{h}+s_{h})/s_{h}] \times [(n_{w}-k_{w}+p_{w}+s_{w})/s_{w}]$ 

• Given stride  $s_h$  for the height and stride  $s_w$  for the width, the output shape is

• Set  $p_h = k_h - 1$ ,  $p_w = k_w - 1$ , then get

- $[(n_{h}-k_{h}+p_{h}+s_{h})/s_{h}] \times [(n_{w}-k_{w}+p_{w}+s_{w})/s_{w}]$

• Given stride  $s_h$  for the height and stride  $s_w$  for the width, the output shape is

• Set  $p_h = k_h - 1$ ,  $p_w = k_w - 1$ , then get

- $[(n_{h}-k_{h}+p_{h}+s_{h})/s_{h}] \times [(n_{w}-k_{w}+p_{w}+s_{w})/s_{w}]$ 

  - $[(n_h+s_h-1)/s_h] \times [(n_w+s_w-1)/s_w]$

Q2. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3 **B.7x7** C.5x5 D.2x2



Q2. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3 **B.7x7** C.5x5 D.2x2

 $[(n_{h}-k_{h}+p_{h}+s_{h})/s_{h}] \times [(n_{w}-k_{w}+p_{w}+s_{w})/s_{w}]$ 



## Multiple Input and Output Channels



- Color image may have three RGB channels
- Converting to grayscale loses information



#### e RGB channels es information

- Color image may have three RGB channels
- Converting to grayscale loses information



 Have a kernel matrix for each channel, and then sum results over channels

Input



\*

 Have a kernel matrix for each channel, and then sum results over channels

Input

Kernel






Have a kernel matrix for each channel, and then sum results over channels



\*

Kernel



+

 Have a kernel matrix for each channel, and then sum results over channels



Kernel



+



 Have a kernel matrix for each channel, and then sum results over channels



Kernel



+

 $(1 \times 1 + 2 \times 2 + 4 \times 3 + 5 \times 4)$  $+(0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3)$ = 56





 Have a kernel matrix for each channel, and then sum results over channels



Tensor: generalization of matrix to higher dimensions

- How to integrate multiple channels?
  - channels

Tensor: generalization of matrix to higher dimensions

Have a kernel for each channel, and then sum results over

- How to integrate multiple channels?
  - channels

$$\mathbf{X}: c_i \times n_h \times n_w$$

Tensor: generalization of matrix to higher dimensions

Have a kernel for each channel, and then sum results over

- How to integrate multiple channels?
  - channels

$$\mathbf{X} : c_i \times n_h \times n_w$$
$$\mathbf{W} : c_i \times k_h \times k_w$$

Tensor: generalization of matrix to higher dimensions

Have a kernel for each channel, and then sum results over

- How to integrate multiple channels?
  - Have a kernel for each channel, and then sum results over channels

 $\mathbf{X}: c_i \times n_h \times n_w$  $W: c_i \times k_h \times k_w$  $\mathbf{Y}: m_h \times m_w$ 

Tensor: generalization of matrix to higher dimensions

- How to integrate multiple channels?
  - channels

 $\mathbf{X}: c_i \times n_h \times n_w$  $\mathbf{W}: c_i \times k_h \times k_w$  $\mathbf{Y}: m_h \times m_w$ 

Tensor: generalization of matrix to higher dimensions

Have a kernel for each channel, and then sum results over



- No matter how many inputs channels, so far we always get single output channel
- an output channel

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input
- Kernels
- Output

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- $\mathbf{X}: c_i \times n_h \times n_w$ • Input
- Kernels
- Output

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input  $\mathbf{X}: c_i \times n_h \times n_w$
- Kernels  $W: c_o \times c_i \times k_h \times k_w$
- Output

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input  $\mathbf{X}: c_i \times n_h \times n_w$
- Kernels  $W: c_o \times c_i \times k_h \times k_w$
- **Output**  $\mathbf{Y}: c_o \times m_h \times m_w$

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input  $\mathbf{X}: c_i \times n_h \times n_w$
- Kernels  $W: c_o \times c_i \times k_h \times k_w$
- **Output**  $\mathbf{Y}: c_o \times m_h \times m_w$

### • We can have multiple 3-D kernels, each one generates

# $Y_{i...} = X \star W_{i...}$

- No matter how many inputs channels, so far we always get single output channel
- an output channel
- Input  $\mathbf{X}: c_i \times n_h \times n_w$
- Kernels  $W: c_o \times c_i \times k_h \times k_w$
- **Output**  $\mathbf{Y}: c_o \times m_h \times m_w$

 $\mathbf{Y}_{i\ldots} = \mathbf{X} \star \mathbf{W}_{i\ldots}$ for  $i = 1, ..., c_{n}$ 

### Multiple Input/Output Channels

Each 3-D kernel may recognize a particular pattern



### Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern









### (Gabor filters)

Q3. Suppose we want to perform convolution on an RGB image of size 224x224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222 B.64 x 3 x 3 x 222 C.3 x 3 x 222 x 222 D.64 x 3 x 3 x 3 x 222 x 222



Q3. Suppose we want to perform convolution on an RGB image of size 224x224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222 B.64 x 3 x 3 x 222 C.3 x 3 x 222 x 222 D.64 x 3 x 3 x 3 x 222 x 222



Q3. Suppose we want to perform convolution on an RGB image of size 224x224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222 B.64 x 3 x 3 x 222 C.3 x 3 x 222 x 222 D.64 x 3 x 3 x 3 x 222 x 222

For each kernel, we slide the window to 222 x 222 different locations. For each location, the number of multiplication is 3x3x3. So in total 64x3x3x3x222x222



Q4. Suppose we want to perform convolution on a RGB image of size 224 x 224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?

A.64 x 222 x 222 B.64 x 3 x 3 x 222 C. 3 x 3 x 3 x 64  $D.(3 \times 3 \times 3 + 1) \times 64$ 



Q4. Suppose we want to perform convolution on a RGB image of size 224 x 224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?

A.64 x 222 x 222 B.64 x 3 x 3 x 222 C. 3 x 3 x 3 x 64  $D.(3 \times 3 \times 3 + 1) \times 64$ 



Q4. Suppose we want to perform convolution on a RGB image of size 224 x 224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?

A.64 x 222 x 222 B.64 x 3 x 3 x 222 C. 3 x 3 x 3 x 64  $D.(3 \times 3 \times 3 + 1) \times 64$ 

Each kernel is 3D kernel across 3 input channels, so has 3x3x3 parameters. Each kernel has 1 bias parameter. So in total (3x3x3+1)x64



# Pooling Layer



### Pooling



Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?

# **B**

Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

### Pooling

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

### **2-D Max Pooling**

 Returns the maximal value in the sliding window

Input



|  |   | 4 |
|--|---|---|
|  | • | 7 |

max(0,1,3,4) = 4

Output



### **2-D Max Pooling**

 Returns the maximal value in the sliding window

Input



2 x 2 Max Pooling

| 4 |
|---|
| 7 |

max(0,1,3,4) = 4

Output





### **2-D Max Pooling**

 Returns the maximal value in the sliding window

Input



2 x 2 Max Pooling

| 4 |
|---|
| 7 |

max(0,1,3,4) = 4

Output





# Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

### **#output channels = #input channels**

# Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

### **#output channels = #input channels**



# Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

### **#output channels = #input channels**



### Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
  - The average signal strength in a window

### Max pooling



### Average pooling



Q5. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?





30 20 25 20

Β.

C.

| 12 | 2 |
|----|---|
| 70 | 5 |

| 12 | 20 | 30 | 0 |
|----|----|----|---|
| 20 | 12 | 2  | 0 |
| 0  | 70 | 5  | 2 |
| 8  | 2  | 90 | 3 |
Q5. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?



| 12 | 20 | 30 | 0 |
|----|----|----|---|
| 20 | 12 | 2  | 0 |
| 0  | 70 | 5  | 2 |
| 8  | 2  | 90 | 3 |

# Q6. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?





| ( |   |  |
|---|---|--|
|   | ノ |  |
|   |   |  |

D.



 12
 2

 70
 5

| 12 | 20 | 30 | 0 |
|----|----|----|---|
| 20 | 12 | 2  | 0 |
| 0  | 70 | 5  | 2 |
| 8  | 2  | 90 | 3 |

# Q6. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?







| ノ |  |
|---|--|

D.



 12
 2

 70
 5

| 12 | 20 | 30 | 0 |
|----|----|----|---|
| 20 | 12 | 2  | 0 |
| 0  | 70 | 5  | 2 |
| 8  | 2  | 90 | 3 |

### Summary

## Summary

- Intro of convolutional computations
  - 2D convolution
  - Padding, stride
  - Multiple input and output channels
  - Pooling



#### Acknowledgement:

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html