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Announcements
• Homeworks:


• HW 7 due in two weeks; provide feedback

• Midterms are being graded

• Class roadmap: Tuesday, Mar 28 Deep Learning I

Thursday, Mar 30 Deep Learning II

Tuesday, April 4 Neural Network 
Review

Thursday, April 6
 Search
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Today’s Goals

• Build an understanding of convolutional neural networks.

• Why do we want convolutional layers?

• What are convolutional neural networks?

• 2D vs 3D convolutional networks.

• Padding and stride.

• Multiple input and output channels

• Pooling



Review: Deep Neural Networks
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How to classify 
Cats vs. dogs?

36M floats in a RGB image!
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Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output 

Hidden layer 
Input 

100 neurons

Fully Connected Networks



Convolutions come to rescue!



Where is 
Waldo?



• Translation 
Invariance


• Locality

Why Convolution?
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2-D Convolution
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X: nh x nw

W: kh x kw

Y = X * W
Convolution operator not multiplication



2-D Convolution Layer

•                   input matrix

•                   kernel matrix

• b: scalar bias

•                                                      output matrix 

 

• W and b are learnable parameters 

 

0 1 2

3 4 5

6 7 8

0 1

2 3

20 26

38 44

X: nh x nw

W: kh x kw

Y = X * W + b
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Examples

Sharpen

Gaussian Blur

(wikipedia)

Edge Detection



Convolutional Neural Networks

• Convolutional networks: neural networks that use 
convolution in place of general matrix multiplication in at 
least one of their layers

• Strong empirical performance in applications – particularly 
computer vision.


• Examples: image classification, object detection.




Advantage: sparse interaction



Advantage: sparse interaction



Q1. Suppose we want to perform convolution as follows. What’s the output?  

A. 
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D. 
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Q1. Suppose we want to perform convolution as follows. What’s the output?  

A. 


B.  


B. 


B. 

1 2

4 5

1 2

3 4
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Padding and Stride



Padding

• Given a 32 x 32 input image

• Apply convolution with 5 x 5 kernel 


• 28 x 28 output with 1 layer

• 4 x 4 output with 7 layers 



Padding

• Given a 32 x 32 input image

• Apply convolution with 5 x 5 kernel 


• 28 x 28 output with 1 layer

• 4 x 4 output with 7 layers 


• Shape decreases faster with larger kernels  

• Shape reduces from              tonh x nw

(nh – kh+1) x (nw – kw+1)
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Convolutional Layers: Padding

Padding adds rows/columns around input
• Why?

1. Keeps edge information
2. Preserves sizes / allows deep networks

• ie, for a 32x32 input image, 5x5 kernel, after    

1 layer, get 28x28, after 7 layers, only 4x4
3. Can combine different filter sizes
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Convolutional Layers: Padding

• Padding ph rows and pw columns, output shape is

(nh-kh+ph+1) x (nw-kw+pw+1)

• Common choice is ph = kh-1 and pw=kw-1


• Odd kh: pad ph/2 on both sides


• Even kh: pad ceil(ph/2) on top, floor(ph/2) on bottom
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Convolutional Layers: Stride

• Given stride sh for the height and stride sw for the width,  
the output shape is

⌊(nh-kh+ph+sh)/sh⌋ x ⌊(nw-kw+pw+sw)/sw⌋

• Set ph = kh-1, pw = kw-1, then get

⌊(nh+sh-1)/sh⌋ x ⌊(nw+sw-1)/sw⌋



Q2. Suppose we want to perform convolution on a single channel image 
of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is 
the dimension of the output?  

A.3x3


B.7x7


C.5x5


D.2x2
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Q2. Suppose we want to perform convolution on a single channel image 
of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is 
the dimension of the output?  

A.3x3


B.7x7


C.5x5


D.2x2

7

7

⌊(nh-kh+ph+sh)/sh⌋ x ⌊(nw-kw+pw+sw)/sw⌋
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• How to integrate multiple channels?

• Have a kernel for each channel, and then sum results over 

channels

Tensor: generalization of matrix to higher dimensions

“Slices” of tensors
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Multiple Output Channels

• No matter how many inputs channels, so far we always 
get single output channel


• We can have multiple 3-D kernels, each one generates 
an output channel


• Input

• Kernels

• Output  



Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern



Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern

(Gabor filters)
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Q3. Suppose we want to perform convolution on an RGB image of size 
224x224 (no padding) with 64 kernels, each with height 3 and width 3. 
Stride = 1. Which is a reasonable estimate of the total number of scalar 
multiplications involved in this operation (without considering any 
optimization in matrix multiplication)?  
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Q3. Suppose we want to perform convolution on an RGB image of size 
224x224 (no padding) with 64 kernels, each with height 3 and width 3. 
Stride = 1. Which is a reasonable estimate of the total number of scalar 
multiplications involved in this operation (without considering any 
optimization in matrix multiplication)?  

For each kernel, we slide the 
window to 222 x 222 different 
locations. For each location, the 
number of multiplication is 3x3x3.  
So in total 64x3x3x3x222x222
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Q4. Suppose we want to perform convolution on a RGB image of size 224 
x 224 (no padding) with 64 kernels, each with height 3 and width 3. 
Stride = 1. The convolution layer has bias parameters. Which is a 
reasonable estimate of the total number of learnable parameters?
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A.64 x 222 x 222


B.64 x 3 x 3 x 222


C.3 x 3 x 3 x 64


D.(3 x 3 x 3 + 1) x 64

Q4. Suppose we want to perform convolution on a RGB image of size 224 
x 224 (no padding) with 64 kernels, each with height 3 and width 3. 
Stride = 1. The convolution layer has bias parameters. Which is a 
reasonable estimate of the total number of learnable parameters?

Each kernel is 3D kernel across 3 
input channels, so has 3x3x3 
parameters. Each kernel has 1 bias 
parameter. So in total (3x3x3+1)x64



courses.d2l.ai/berkeley-stat-157

Pooling Layer
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Padding, Stride, and Multiple Channels

• Pooling layers have similar padding 
and stride as convolutional layers


• No learnable parameters

• Apply pooling for each input channel to 

obtain the corresponding output 
channel 
 
#output channels = #input channels



Average Pooling

• Max pooling: the strongest pattern signal in a window

• Average pooling: replace max with mean in max pooling


• The average signal strength in a window

Max pooling Average pooling



Q5. Suppose we want to perform 2x2 average pooling on the following 
single channel feature map of size 4x4 (no padding), and stride = 2. 
What is the output?  
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Q6. What is the output if we replace average pooling with 2 x 2 max 
pooling (other settings are the same)?

A.


B.


C.
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Q6. What is the output if we replace average pooling with 2 x 2 max 
pooling (other settings are the same)?

A.


B.


C.


D.


20 30
70 90

16 8
20 25

20 30
20 25

12 2
70 5

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3



Summary



Summary

• Intro of convolutional computations


• 2D convolution


• Padding, stride


• Multiple input and output channels


• Pooling 
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