CS540 Introduction to Artificial Intelligence Deep Learning I: Convolutional Neural Networks

University of Wisconsin-Madison

Announcements

- Homeworks:
- HW 7 due in two weeks; provide feedback
- Midterms are being graded
- Class roadmap:

Tuesday, Mar 28	Deep Learning I
Thursday, Mar 30	Deep Learning II
Tuesday, April 4	Neural Network Review
Thursday, April 6	Search

Today's Goals

Today's Goals

- Build an understanding of convolutional neural networks.

Today's Goals

- Build an understanding of convolutional neural networks.
-Why do we want convolutional layers?

Today's Goals

- Build an understanding of convolutional neural networks.
-Why do we want convolutional layers?
- What are convolutional neural networks?

Today's Goals

- Build an understanding of convolutional neural networks.
-Why do we want convolutional layers?
- What are convolutional neural networks?
- 2D vs 3D convolutional networks.

Today's Goals

- Build an understanding of convolutional neural networks.
-Why do we want convolutional layers?
- What are convolutional neural networks?
- 2D vs 3D convolutional networks.
- Padding and stride.

Today's Goals

- Build an understanding of convolutional neural networks.
-Why do we want convolutional layers?
- What are convolutional neural networks?
- 2D vs 3D convolutional networks.
- Padding and stride.
- Multiple input and output channels

Today's Goals

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks?
- 2D vs 3D convolutional networks.
- Padding and stride.
- Multiple input and output channels
- Pooling

Review: Deep Neural Networks

Output layer

Hidden layer

Hidden layer

Hidden layer

Input layer

$$
\begin{aligned}
& \mathbf{h}_{1}=\sigma\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right) \\
& \mathbf{h}_{2}=\sigma\left(\mathbf{W}^{(2)} \mathbf{h}_{1}+\mathbf{b}^{(2)}\right) \\
& \mathbf{h}_{3}=\sigma\left(\mathbf{W}^{(3)} \mathbf{h}_{2}+\mathbf{b}^{(3)}\right) \\
& \mathbf{f}=\mathbf{W}^{(4)} \mathbf{h}_{3}+\mathbf{b}^{(4)} \\
& \mathbf{p}=\text { softmax(f) } \\
& \text { NNs are composition } \\
& \text { of nonlinear } \\
& \text { functions }
\end{aligned}
$$

How to classify

Cats vs. dogs?

How to classify

Cats vs. dogs?

How to classify

Cats vs. dogs?

wide-angle and telephoto cameras

How to classify

Cats vs. dogs?

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?

Fully Connected Networks

Input
Hidden layer 100 neurons

Cats vs. dogs?

Fully Connected Networks

Cats vs. dogs?

Input
Hidden layer 100 neurons

$\sim 36 \mathrm{M}$ elements $\times 100=\sim 3.6 \mathrm{~B}$ parameters!

Convolutions come to rescue!

Where is Waldo?

Why Convolution?

- Translation Invariance
- Locality

2-D Convolution

Input
Kernel
Output

0	1	2
3	4	5
6	7	8

0	1			
2	3	$=$	19	25
:---	:---			
37	43			

$$
0 \times 0+1 \times 1+3 \times 2+4 \times 3=19
$$

2-D Convolution

2-D Convolution

(vdumoulin@ Github)

2-D Convolution

Input

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$\quad=$	19	25	
:---	:---				
37	43				

$$
1 \times 0+2 x 1+4 \times 2+5 \times 3=25
$$

2-D Convolution

Input
Kernel Output

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$\quad=$	19	25	
:---	:---				
37	43				

$$
3 x 0+4 x 1+6 x 2+7 x 3=37
$$

2-D Convolution

Input

0	1	2
3	4	5
6	7	8

$$
4 x 0+5 x 1+7 x 2+8 x 3=43
$$

2-D Convolution Layer

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$\quad=$	19	25	
:---	:---				
37	43				

- X: $n_{h} \times n_{w}$ input matrix
- W: $k_{h} \times k_{w}$ kernel matrix
- Y: $\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)$ output matrix

$$
Y=X * W
$$

2-D Convolution Layer

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$\quad=$	19	25	
:---	:---				
37	43				

- X: $n_{h} \times n_{w}$ input matrix
- W: $k_{h} \times k_{w}$ kernel matrix
- Y: $\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)$ output matrix

$$
Y=X * W
$$

2-D Convolution Layer

0	1	2
3	4	5
6	7	8

- X: $n_{h} \times n_{w}$ input matrix
- W: $k_{h} \times k_{w}$ kernel matrix
- b: scalar bias
- Y: $\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)$ output matrix

$$
Y=X * W+b
$$

- W and b are learnable parameters

Examples

(wikipedia)

Examples

$$
\left[\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right]
$$

(wikipedia)

Examples

$$
\left[\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right]
$$

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

Edge Detection

Sharpen
(wikipedia)

Examples

$$
\left[\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right]
$$

Edge Detection

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

Sharpen
(wikipedia)

$$
\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

Convolutional Neural Networks

- Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers
- Strong empirical performance in applications - particularly computer vision.
- Examples: image classification, object detection.

Advantage: sparse interaction

Fully connected layer, $m \times n$ edges

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Advantage: sparse interaction

Convolutional layer, $\leq m \times k$ edges

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Q1. Suppose we want to perform convolution as follows. What's the output?
A.

1	2
4	5

B.	1	2
3	4	
	1 3 C. 5	

D.

0	1
3	4

Q1. Suppose we want to perform convolution as follows. What's the output?

0	1	2
3	4	5
6	7	8

$0 \times 0+1 \times 1+3 \times 1+4 \times(-1)+1=1$
$1 \times 0+2 \times 1+4 \times 1+5 \times(-1)+1=2$
$3 \times 0+4 \times 1+6 \times 1+7 \times(-1)+1=4$
$4 \times 0+5 \times 1+7 \times 1+8 \times(-1)+1=5$

0	1
3	4

Padding

- Given a 32×32 input image
- Apply convolution with 5×5 kernel
- 28×28 output with 1 layer
- 4×4 output with 7 layers

0

Padding

－Given a 32×32 input image
－Apply convolution with 5×5 kernel
－ 28×28 output with 1 layer
－ 4×4 output with 7 layers

－Shape decreases faster with larger kernels
－Shape reduces from $n_{h} \times n_{w}$ to

ロ

$$
\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)
$$

Convolutional Layers: Padding

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input

Input

*

0	3	8	4
9	19	25	10
21	37	43	16
6	7	8	0

Convolutional Layers: Padding

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input

Convolutional Layers: Padding

Padding adds rows/columns around input

- Why?

Convolutional Layers: Padding

Padding adds rows/columns around input

- Why?

1. Keeps edge information

Convolutional Layers: Padding

Padding adds rows/columns around input

- Why?

1. Keeps edge information
2. Preserves sizes / allows deep networks

- ie, for a 32×32 input image, 5×5 kernel, after 1 layer, get 28×28, after 7 layers, only 4×4

Convolutional Layers: Padding

Padding adds rows/columns around input

- Why?

1. Keeps edge information
2. Preserves sizes / allows deep networks

- ie, for a 32×32 input image, 5×5 kernel, after 1 layer, get 28×28, after 7 layers, only 4×4

3. Can combine different filter sizes

Convolutional Layers: Padding

Convolutional Layers: Padding

- Padding p_{h} rows and p_{w} columns, output shape is

Convolutional Layers: Padding

- Padding p_{h} rows and p_{w} columns, output shape is

$$
\left(n_{h}-k_{h}+p_{h}+1\right) \times\left(n_{w}-k_{w}+p_{w}+1\right)
$$

Convolutional Layers: Padding

- Padding p_{h} rows and p_{w} columns, output shape is

$$
\left(n_{h}-k_{h}+p_{h}+1\right) \times\left(n_{w}-k_{w}+p_{w}+1\right)
$$

- Common choice is $p_{h}=k_{h}-1$ and $p_{w}=k_{w}-1$
- Odd $k_{h}:$ pad $p_{h} / 2$ on both sides
- Even k_{h} : pad ceil $\left(p_{h} / 2\right)$ on top, floor $\left(p_{h} / 2\right)$ on bottom

Stride

- Stride is the \#rows / \#columns per slide

Example: strides of 3 and 2 for height and width

Input
Kernel
Output

Stride

- Stride is the \#rows / \#columns per slidı

Example: strides of 3 and 2 for height and width

Input
Kernel
Output

Stride 2,2

$$
\begin{aligned}
& 0 \times 0+0 \times 1+1 \times 2+2 \times 3=8 \\
& 0 \times 0+6 \times 1+0 \times 2+0 \times 3=6
\end{aligned}
$$

Stride

- Stride is the \#rows / \#columns per slidı

Example: strides of 3 and 2 for height and width

Input
Kernel
Output

Stride 2,2

$$
\begin{aligned}
& 0 \times 0+0 \times 1+1 \times 2+2 \times 3=8 \\
& 0 \times 0+6 \times 1+0 \times 2+0 \times 3=6
\end{aligned}
$$

Convolutional Layers: Stride

Convolutional Layers: Stride

- Given stride s_{h} for the height and stride s_{w} for the width, the output shape is

Convolutional Layers: Stride

- Given stride s_{h} for the height and stride s_{w} for the width, the output shape is

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

Convolutional Layers: Stride

- Given stride s_{h} for the height and stride s_{w} for the width, the output shape is

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

- Set $p_{h}=k_{h}-1, p_{w}=k_{w}-1$, then get

Convolutional Layers: Stride

- Given stride s_{h} for the height and stride s_{w} for the width, the output shape is

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

- Set $p_{h}=k_{h}-1, p_{w}=k_{w}-1$, then get

$$
\left\lfloor\left(n_{h}+s_{h}-1\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}+s_{w}-1\right) / s_{w}\right\rfloor
$$

Q2. Suppose we want to perform convolution on a single channel image of size 7×7 (no padding) with a kernel of size 3×3, and stride $=2$. What is the dimension of the output?

7
A. 3×3
B. $7 x 7$
C. 5×5
D. 2×2

Q2. Suppose we want to perform convolution on a single channel image of size 7×7 (no padding) with a kernel of size 3×3, and stride $=2$. What is the dimension of the output?

7
A. 3×3
B. $7 x 7$
C. 5×5
D. 2×2

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

Multiple Input and Output Channels

Multiple Input Channels

- Color image may have three RGB channels
- Converting to grayscale loses information

Multiple Input Channels

- Color image may have three RGB channels
- Converting to grayscale loses information

Multiple Input Channels

- Have a kernel matrix for each channel, and then sum results over channels

Input

$=$

Multiple Input Channels

- Have a kernel matrix for each channel, and then sum results over channels

Input
Kernel

Multiple Input Channels

- Have a kernel matrix for each channel, and then sum results over channels

Multiple Input Channels

- Have a kernel matrix for each channel, and then sum results over channels

Multiple Input Channels

- Have a kernel matrix for each channel, and then sum results over channels

Input
Kernel
Input
Kernel

$$
\begin{gathered}
(1 \times 1+2 \times 2+4 \times 3+5 \times 4) \\
+(0 \times 0+1 \times 1+3 \times 2+4 \times 3) \\
=56
\end{gathered}
$$

Multiple Input Channels

- Have a kernel matrix for each channel, and then sum results over channels

Convolutional Layers: Channels

"Slices" of tensors

Tensor: generalization of matrix to higher dimensions

Convolutional Layers: Channels

- How to integrate multiple channels?
- Have a kernel for each channel, and then sum results over channels
"Slices" of tensors

Tensor: generalization of matrix to higher dimensions

Convolutional Layers: Channels

- How to integrate multiple channels?
- Have a kernel for each channel, and then sum results over channels

$$
\mathbf{X}: c_{i} \times n_{h} \times n_{w}
$$

"Slices" of tensors

Tensor: generalization of matrix to higher dimensions

Convolutional Layers: Channels

- How to integrate multiple channels?
- Have a kernel for each channel, and then sum results over channels

$$
\begin{gathered}
\mathbf{X}: c_{i} \times n_{h} \times n_{w} \\
\mathbf{W}: c_{i} \times k_{h} \times k_{w}
\end{gathered}
$$

Convolutional Layers: Channels

- How to integrate multiple channels?
- Have a kernel for each channel, and then sum results over channels

$$
\begin{aligned}
\mathbf{X} & : c_{i} \times n_{h} \times n_{w} \\
\mathbf{W} & : c_{i} \times k_{h} \times k_{w} \\
\mathbf{Y} & : m_{h} \times m_{w} \\
& \text { Tensor: generalization of matrix to higher dimensions }
\end{aligned}
$$

Convolutional Layers: Channels

- How to integrate multiple channels?
- Have a kernel for each channel, and then sum results over channels

$$
\begin{aligned}
& \mathbf{X}: c_{i} \times n_{h} \times n_{w} \quad \mathbf{Y}=\sum_{i=0}^{c_{i}} \mathbf{X}_{i,:,:} \star \mathbf{W}_{i,:,:} \\
& \mathbf{W}: c_{i} \times k_{h} \times k_{w} \\
& \mathbf{Y}: m_{h} \times m_{w} \\
& \quad \text { "Slices" of tensors } \\
& \quad \text { Tensor: generalization of matrix to higher dimensions }
\end{aligned}
$$

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input
- Kernels
- Output

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input $\quad \mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernels
- Output

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input $\quad \mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernels $\mathbf{W}: c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input $\quad \mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernels $\mathbf{W}: c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output $\mathbf{Y}: c_{o} \times m_{h} \times m_{w}$

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input $\quad \mathbf{x}: c_{i} \times n_{h} \times n_{w}$
- Kernels $\mathbf{W}: c_{o} \times c_{i} \times k_{h} \times k_{w}$

$$
\mathbf{Y}_{i,,:,}=\mathbf{X} \star \mathbf{W}_{i,,,,:,}
$$

- Output $\mathbf{Y}: c_{o} \times m_{h} \times m_{w}$

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input $\quad \mathbf{x}: c_{i} \times n_{h} \times n_{w}$
- Kernels $\mathbf{W}: c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output $\mathbf{Y}: c_{o} \times m_{h} \times m_{w}$

$$
\begin{aligned}
\mathbf{Y}_{i,,: ;} & =\mathbf{X} \star \mathbf{W}_{i,,:,:,} \\
\text { for } i & =1, \ldots, c_{o}
\end{aligned}
$$

Multiple Input/Output Channels

- Each 3-D kernel may recognize a particular pattern

Multiple Input/Output Channels

- Each 3-D kernel may recognize a particular pattern

(Gabor filters)

Q3. Suppose we want to perform convolution on an RGB image of size 224×224 (no padding) with 64 kernels, each with height 3 and width 3. Stride $=1$. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?
A. $64 \times 3 \times 3 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 222 \times 222$
D. $64 \times 3 \times 3 \times 3 \times 222 \times 222$

Q3. Suppose we want to perform convolution on an RGB image of size 224×224 (no padding) with 64 kernels, each with height 3 and width 3. Stride $=1$. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?
A. $64 \times 3 \times 3 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 222 \times 222$
D. $64 \times 3 \times 3 \times 3 \times 222 \times 222$

Q3. Suppose we want to perform convolution on an RGB image of size 224×224 (no padding) with 64 kernels, each with height 3 and width 3. Stride $=1$. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?
A. $64 \times 3 \times 3 \times 222 \times 222$

B. $64 \times 3 \times 3 \times 222$

C. $3 \times 3 \times 222 \times 222$
D. $64 \times 3 \times 3 \times 3 \times 222 \times 222$

For each kernel, we slide the window to 222×222 different locations. For each location, the number of multiplication is $3 \times 3 \times 3$. So in total $64 \times 3 \times 3 \times 3 \times 222 \times 222$

Q4. Suppose we want to perform convolution on a RGB image of size 224 $\times 224$ (no padding) with 64 kernels, each with height 3 and width 3 . Stride $=1$. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?
A. $64 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 3 \times 64$
D. $(3 \times 3 \times 3+1) \times 64$

Q4. Suppose we want to perform convolution on a RGB image of size 224 $\times 224$ (no padding) with 64 kernels, each with height 3 and width 3 . Stride $=1$. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?
A. $64 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 3 \times 64$
D. $(3 \times 3 \times 3+1) \times 64$

Q4. Suppose we want to perform convolution on a RGB image of size 224 $\times 224$ (no padding) with 64 kernels, each with height 3 and width 3 . Stride $=1$. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?
A. $64 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 3 \times 64$
D. $(3 \times 3 \times 3+1) \times 64$

Each kernel is 3D kernel across 3 input channels, so has $3 \times 3 \times 3$ parameters. Each kernel has 1 bias parameter. So in total $(3 x 3 x 3+1) \times 64$

Pooling

Pooling

2-D Max Pooling

- Returns the maximal value in the sliding window

Input
Output

0	1	2
3	4	5
6	7	8

4	5
7	8

$$
\max (0,1,3,4)=4
$$

2-D Max Pooling

- Returns the maximal value in the sliding window

Input
Output

0	1	2
3	4	5
6	7	8

4	5
7	8

$$
\max (0,1,3,4)=4
$$

2-D Max Pooling

- Returns the maximal value in the sliding window

Input
Output

0	1	2
3	4	5
6	7	8

4	5
7	8

$$
\max (0,1,3,4)=4
$$

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel
\#output channels = \#input channels

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel
 \#output channels = \#input channels

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel
 \#output channels = \#input channels

Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling - The average signal strength in a window

Max pooling

Average pooling

Q5. Suppose we want to perform 2×2 average pooling on the following single channel feature map of size 4×4 (no padding), and stride $=2$.

What is the output?

A. \quad| $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :--- |
| 70 | 90 |

B. \quad| $\mathbf{1 6}$ | $\mathbf{8}$ |
| :--- | :--- |
| 20 | 25 |

$\mathbf{1 2}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{0}$
20	12	2	0
0	70	5	2
8	2	90	3

C. \quad| $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :--- |
| 20 | 25 |

D. | $\mathbf{1 2}$ | $\mathbf{2}$ |
| :--- | :--- |
| 70 | 5 |

Q5. Suppose we want to perform 2×2 average pooling on the following single channel feature map of size 4×4 (no padding), and stride $=2$.
What is the output?

A. \quad| $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :--- |
| 70 | 90 |

B. \quad| $\mathbf{1 6}$ | $\mathbf{8}$ |
| :--- | :--- |
| 20 | 25 |

C. \quad| $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :--- |
| 20 | 25 |

D.

$\mathbf{1 2}$	$\mathbf{2}$
70	5

Q6. What is the output if we replace average pooling with 2×2 max pooling (other settings are the same)?

A. \quad| $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :--- |
| 70 | 90 |

B. \quad| $\mathbf{1 6}$ | $\mathbf{8}$ |
| :--- | :--- |
| 20 | 25 |

$\mathbf{1 2}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{0}$
20	12	2	0
0	70	5	2
8	2	90	3

C. \quad| $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :--- |
| 20 | 25 |

D. | $\mathbf{1 2}$ | 2 |
| :--- | :--- |
| 70 | 5 |

Q6. What is the output if we replace average pooling with 2×2 max pooling (other settings are the same)?

	$\mathbf{2 0}$ $\mathbf{3 0}$ A. 70 90	
B.	$\mathbf{1 6}$ $\mathbf{8}$ 20 25	

C. | $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :--- |
| 20 | 25 |

D. | $\mathbf{1 2}$ | $\mathbf{2}$ |
| :--- | :--- |
| 70 | 5 |
| | |

Summary

Summary

- Intro of convolutional computations
- 2D convolution
- Padding, stride
- Multiple input and output channels
- Pooling

Acknowledgement

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:

