CS540 Introduction to Artificial Intelligence Neural Networks: Review University of Wisconsin-Madison

Spring 2023

Announcements

- Homeworks:
- HW 7 due in one week
- Midterms are being graded; solutions on Canvas.
- Final exam is May 12, 5:05-7:05 pm.
- Class roadmap:
- Practice Questions on Canvas

Tuesday, April 4

Thursday, April 6

Tuesday, April 11

Thursday, April 13
Advanced Search

How to classify

Cats vs. dogs?

Neural networks can also be used for regression.

- Typically, no activation on outputs, mean squared error loss function.

How to classify

Cats vs. dogs?

- Typically, no activation on outputs, mean squared error loss function.

Inspiration from neuroscience

- Inspirations from human brains
- Networks of simple and homogenous units (a.k.a neuron)

Perceptron

- Given input \mathbf{x}, weight \mathbf{w} and bias b, perceptron outputs:

$$
o=\sigma\left(\mathbf{w}^{\top} \mathbf{x}+b\right) \quad \sigma(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Cats vs. dogs?

Perceptron

- Given input \mathbf{x}, weight \mathbf{w} and bias b, perceptron outputs:

$$
o=\sigma\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

$$
\sigma(x)=\left\{\begin{array}{ll}
1 & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right. \text { Activation function }
$$

Cats vs. dogs?

Perceptron

- Goal: learn parameters $\mathbf{w}=\left\{w_{1}, w_{2}, \ldots, w_{d}\right\}$ and b to minimize the classification error

Cats vs. dogs?

Example 2: Predict whether a user likes a song or not

Example 2: Predict whether a user likes a song or not Using Perceptron

- DisLike
- Like

Learning logic functions using perceptron

The perceptron can learn an AND function

$$
\xrightarrow[0]{ }
$$

Learning logic functions using perceptron

The perceptron can learn an AND function

$$
\begin{aligned}
& x_{1}=1, x_{2}=1, y=1 \\
& x_{1}=1, x_{2}=0, y=0 \\
& x_{1}=0, x_{2}=1, y=0 \\
& x_{1}=0, x_{2}=0, y=0
\end{aligned}
$$

Learning logic functions using perceptron

The perceptron can learn an AND function

Output $\sigma\left(x_{1} w_{1}+x_{2} w_{2}+b\right)$

$$
\sigma(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
w_{1}=1, w_{2}=1, b=-1.5
$$

Learning OR function using perceptron

The perceptron can learn an OR function

Output $\sigma\left(x_{1} w_{1}+x_{2} w_{2}+b\right)$

$$
\sigma(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
w_{1}=1, w_{2}=1, b=-0.5
$$

XOR Problem (Minsky \& Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)

$$
\begin{aligned}
& x_{1}=1, x_{2}=1, y=0 \\
& x_{1}=1, x_{2}=0, y=1 \\
& x_{1}=0, x_{2}=1, y=1 \\
& x_{1}=0, x_{2}=0, y=0
\end{aligned}
$$

XOR Problem (Minsky \& Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)

$$
\begin{aligned}
& x_{1}=1, x_{2}=1, y=0 \\
& x_{1}=1, x_{2}=0, y=1 \\
& x_{1}=0, x_{2}=1, y=1 \\
& x_{1}=0, x_{2}=0, y=0
\end{aligned}
$$

This contributed to the first Al winter

Quiz break

Which one of the following is NOT true about perceptron?
A. Perceptron only works if the data is linearly separable.
B. Perceptron can learn AND function
C. Perceptron can learn XOR function
D. Perceptron is a supervised learning algorithm

Quiz break

Which one of the following is NOT true about perceptron?
A. Perceptron only works if the data is linearly separable.
B. Perceptron can learn AND function
C. Perceptron can learn XOR function
D. Perceptron is a supervised learning algorithm

Multilayer Perceptron

Single Hidden Layer

How to classify

Cats vs. dogs?

Hidden layer
m neurons
Input

Output

Single Hidden Layer

- Input $\mathbf{x} \in \mathbb{R}^{d}$
- Hidden $\mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^{m}$
- Intermediate output

$$
\mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b})
$$

σ is an element-wise activation function

Neural networks with one hidden layer

$m \times d$

```
\(d \times 1\)
```


W

Neural networks with one hidden layer

Neural networks with one hidden layer

Neural networks with one hidden layer

Key elements: linear operations + Nonlinear activations

Single Hidden Layer

- Output $f=\mathbf{w}_{2}^{\top} \mathbf{h}+b_{2}$

Hidden layer
m neurons

- Normalize the output into probability using sigmoid $p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-f}}$

Input \square

Sigmoid

Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

$$
\begin{aligned}
p(y \mid \mathbf{x}) & =\operatorname{softmax}(\mathbf{f}) \\
& =\frac{\exp f_{y}(x)}{\sum_{i}^{k} \exp f_{i}(x)}
\end{aligned}
$$

Deep neural networks (DNNs)

$$
\begin{aligned}
\mathbf{h}_{1} & =\sigma\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right) \\
\mathbf{h}_{2} & =\sigma\left(\mathbf{W}_{2} \mathbf{h}_{1}+\mathbf{b}_{2}\right) \\
\mathbf{h}_{3} & =\sigma\left(\mathbf{W}_{3} \mathbf{h}_{2}+\mathbf{b}_{3}\right) \\
\mathbf{f} & =\mathbf{W}_{4} \mathbf{h}_{3}+\mathbf{b}_{4} \\
\mathbf{y} & =\operatorname{softmax}(\mathbf{f})
\end{aligned}
$$

Deep neural networks (DNNs)

$$
\begin{aligned}
\mathbf{h}_{1} & =\sigma\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right) \\
\mathbf{h}_{2} & =\sigma\left(\mathbf{W}_{2} \mathbf{h}_{1}+\mathbf{b}_{2}\right) \\
\mathbf{h}_{3} & =\sigma\left(\mathbf{W}_{3} \mathbf{h}_{2}+\mathbf{b}_{3}\right) \\
\mathbf{f} & =\mathbf{W}_{4} \mathbf{h}_{3}+\mathbf{b}_{4} \\
\mathbf{y} & =\operatorname{softmax}(\mathbf{f})
\end{aligned}
$$

NNs are composition of nonlinear functions

Classify MNIST handwritten digits

Classify MNIST handwritten digits

How to train a neural network?

Loss function: $\frac{1}{|D|} \sum_{i} \ell\left(\mathbf{x}_{i}, y_{i}\right)$

Hidden layer
m neurons
Input

How to train a neural network?

Loss function: $\frac{1}{|D|} \sum_{i} \ell\left(\mathbf{x}_{i}, y_{i}\right)$
Per-sample loss:
Hidden layer
m neurons

How to train a neural network?

Loss function: $\frac{1}{|D|} \sum_{i} \ell\left(\mathbf{x}_{i}, y_{i}\right)$
Per-sample loss:
Hidden layer
m neurons

$$
\ell(\mathbf{x}, y)=\sum_{j=1}^{K}-y_{j} \log p_{j}
$$

Also known as cross-entropy loss or softmax loss

Cross-Entropy Loss

How to train a neural network?

Update the weights W to minimize the loss function

$$
L=\frac{1}{|D|} \sum_{i} \ell\left(\mathbf{x}_{i}, y_{i}\right)
$$

Hidden layer m neurons
Input

Use gradient descent!

Gradient Descent

- Choose a learning rate $\alpha>0$
- Initialize the model parameters w_{0}
- For $t=1,2, \ldots$
- Update parameters:

$$
\begin{aligned}
\mathbf{w}_{t} & =\mathbf{w}_{t-1}-\alpha \frac{\partial L}{\partial \mathbf{w}_{t-1}} \\
& =\mathbf{w}_{t-1}-\alpha \frac{1}{|D|} \sum_{\mathbf{x} \in D} \frac{\partial \ell\left(\mathbf{x}_{i}, y_{i}\right)}{\partial \mathbf{w}_{t-1}}
\end{aligned}
$$

- Repeat until converges

Gradient Descent

- Choose a learning rate $\alpha>0$
- Initialize the model parameters w_{0}
- For $t=1,2, \ldots$
- Update parameters:

$$
\begin{aligned}
\mathbf{w}_{t} & =\mathbf{w}_{t-1}-\alpha \frac{\partial L}{\partial \mathbf{w}_{t-1}} \quad \begin{array}{c}
\begin{array}{c}
\text { D can } \\
\text { be very larg } \\
\text { Expensive }
\end{array} \\
\\
\end{array}=\mathbf{w}_{t-1}-\alpha \frac{1}{|D|} \sum_{\mathbf{x} \in D} \frac{\partial \ell\left(\mathbf{x}_{i}, y_{i}\right)}{\partial \mathbf{w}_{t-1}}
\end{aligned}
$$

- Repeat until converges

Minibatch Stochastic Gradient Descent

- Choose a learning rate $\alpha>0$
- Initialize the model parameters w_{0}
- For $t=1,2, \ldots$
- Randomly sample a subset (mini-batch) $B \subset D$ Update parameters:

$$
\mathbf{w}_{t}=\mathbf{w}_{t-1}-\alpha \frac{1}{|B|} \sum_{\mathbf{x} \in B} \frac{\partial \ell\left(\mathbf{x}_{i}, y_{i}\right)}{\partial \mathbf{w}_{t-1}}
$$

- Repeat

Calculate gradient: backpropagation with chain rule

- Define a loss function L , must compute $\frac{\partial L}{\partial \mathbf{W}}, \frac{\partial L}{\partial b}$ for all
weights and biases.

Calculate gradient: backpropagation with chain rule

- Define a loss function L , must compute $\frac{\partial L}{\partial \mathbf{W}}, \frac{\partial L}{\partial b}$ for all
weights and biases.
- Gradient to a variable = gradient on the top \mathbf{x} gradient from the current operation

$$
\frac{\partial L}{\partial \boldsymbol{W}}=\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial W}
$$

Calculate gradient: backpropagation with chain rule

- Define a loss function L, must compute $\frac{\partial L}{\partial \mathbf{W}}, \frac{\partial L}{\partial b}$ for all
weights and biases.
- Gradient to a variable = gradient on the top \mathbf{x} gradient from the current operation

$$
\frac{\partial L}{\partial \boldsymbol{W}}=\frac{\partial L}{\partial \boldsymbol{z}_{1}} \frac{\partial \boldsymbol{z}_{1}}{\partial \boldsymbol{W}}
$$

Calculate gradient: backpropagation with chain rule

- Define a loss function L, must compute $\frac{\partial L}{\partial \mathbf{W}}, \frac{\partial L}{\partial b}$ for all
weights and biases.
- Gradient to a variable = gradient on the top \mathbf{x} gradient from the current operation

$$
\frac{\partial L}{\partial \boldsymbol{W}}=\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial \boldsymbol{W}}
$$

Calculate gradient: backpropagation with chain rule

- Define a loss function L , must compute $\frac{\partial L}{\partial \mathbf{W}}, \frac{\partial L}{\partial b}$ for all
weights and biases.
- Gradient to a variable = gradient on the top \mathbf{x} gradient from the current operation

$$
\frac{\partial L}{\partial \boldsymbol{W}}=\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial W}
$$

Calculate gradient: backpropagation with chain rule

- Define a loss function L , must compute $\frac{\partial L}{\partial \mathbf{W}}, \frac{\partial L}{\partial b}$ for all
weights and biases.
- Gradient to a variable = gradient on the top \mathbf{x} gradient from the current operation

$$
\frac{\partial L}{\partial \boldsymbol{W}}=\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial W}
$$

Non-convex Optimization

[Gao and Li et al., 2018]

How to classify

Cats vs. dogs?

How to classify

Cats vs. dogs?

Dual 12MP
wide-angle and telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?

Fully Connected Networks

Fully Connected Networks

Convolutions come to rescue!

Where is Waldo?

Why Convolution?

- Translation Invariance
- Locality

2-D Convolution

2-D Convolution

Input

0	1	2
3	4	5
6	7	8

$*$| 0 | 1 |
| :--- | :--- |
| 2 | 3 |$=$| 19 | 25 |
| :--- | :--- |
| 37 | 43 |

2-D Convolution

Input

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$=$	19	25	
:---	:---				
37	43				

$$
\begin{aligned}
& 0 \times 0+1 \times 1+3 \times 2+4 \times 3=19 \\
& 1 \times 0+2 \times 1+4 \times 2+5 \times 3=25 \\
& 3 \times 0+4 \times 1+6 \times 2+7 \times 3=37 \\
& 4 \times 0+5 \times 1+7 \times 2+8 \times 3=43
\end{aligned}
$$

2-D Convolution

Input		Kernel				
0 1 2 3 4 5 6 7 8$*$0 1 2 3				$\quad=$	19	25
:---	:---					
37	43					

$$
\begin{aligned}
& 0 \times 0+1 \times 1+3 \times 2+4 \times 3=19 \\
& 1 \times 0+2 \times 1+4 \times 2+5 \times 3=25 \\
& 3 \times 0+4 \times 1+6 \times 2+7 \times 3=37 \\
& 4 \times 0+5 \times 1+7 \times 2+8 \times 3=43
\end{aligned}
$$

2-D Convolution Layer

0	1	2
3	4	5
6	7	8

0	1			
2	3	$=$	19	25
:---	:---			
37	43			

- X: $n_{h} \times n_{w}$ input matrix
- $\mathbf{W}: k_{h} \times k_{w}$ kernel matrix
- b: scalar bias
- Y: $\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)$ output matrix

$$
\mathbf{Y}=\mathbf{X} \star \mathbf{W}+b
$$

- W and b are learnable parameters

2-D Convolution Layer with Stride and Padding

- Stride is the \#rows/\#columns per slide
- Padding adds rows/columns around input
- Output shape

Kernel/filter size

0	0	0	0	0
0	0	1	2	0
0	3	4	5	0
0	6	7	8	0
0	0	0	0	0

*

$\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor$

4

Input size
Pad
Stride

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel
Input
Kernel

$*$| 0 1 | |
| :--- | :--- |
| 2 | 3 |$=$

1	2	3
4	5	6
7	8	9

$*$| 1 | 2 |
| :---: | :---: |
| 3 | 4 |
| | t |

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel
Input
Kernel

$*$| | |
| :--- | :--- |
| 0 | 1 |
| 2 | 3 |$=$

1	2	3			
4	5	6			
7	8	9	$*$	1	2
:---	:---				
3	4				

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3				

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel
Input
Kernel
Output

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel
Input
Kernel
Output

1	2	3
4	5	6
7	8	9

0	1	2
3	4	5
6	7	8

$$
(1 \times 1+2 \times 2+4 \times 3+5 \times 4)
$$

$$
+(0 \times 0+1 \times 1+3 \times 2+4 \times 3)
$$

$$
=56
$$

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a 2D kernel for each channel, and then sum results over channels

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Also call each 3D kernel a "filter", which produce only one output channel (due to summation over channels)

Multiple filters (in one layer)

- Apply multiple filters on the input
- Each filter may learn different features about the input
- Each filter (3D kernel) produces one output channel

RGB (3 input channels)

Conv1 Filters in AlexNet

- 96 filters (each of size 11x11x3)
- Gabor filters

Figures from Visualizing and Understanding Convolutional Networks by M. Zeiler and R. Fergus

Multiple Output Channels

- The \# of output channels = \# of filters
- Input $\mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernel W: $c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output Y: $c_{o} \times m_{h} \times m_{w}$

$$
\begin{aligned}
& \mathbf{Y}_{i,, ;}=\mathbf{X} \star \mathbf{W}_{i,, ;, ;} \\
& \text { for } i=1, \ldots, c_{o}
\end{aligned}
$$

Multiple Output Channels

- The \# of output channels = \# of filters
- Input $\mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernel W: $c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output Y: $c_{o} \times m_{h} \times m_{w}$

$$
\begin{aligned}
& \mathbf{Y}_{i, ; ;}=\mathbf{X} \star \mathbf{W}_{i, ;, ; ;} \\
& \text { for } i=1, \ldots, c_{o}
\end{aligned}
$$

Multiple Output Channels

- The \# of output channels = \# of filters
- Input $\mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernel W: $c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output Y: $c_{o} \times m_{h} \times m_{w}$

$$
\begin{aligned}
& \mathbf{Y}_{i,, ;}=\mathbf{X} \star \mathbf{W}_{i,, ;, ;} \\
& \text { for } i=1, \ldots, c_{o}
\end{aligned}
$$

Convolutional Neural Networks

LeNet Architecture

ATET LeNet 5 RESEARCH $^{\text {LIN }}$ answer: 0

ATET LeNet 5 RESEARCH $^{\text {LIN }}$ answer: 0

Quiz break

Which one of the following is NOT true?
A. LeNet has two convolutional layers
B. The first convolutional layer in LeNet has $5 \times 5 \times 6 \times 3$ parameters, in case of RGB input
C. Pooling is performed right after convolution
D. Pooling layer does not have learnable parameters

Quiz break

Which one of the following is NOT true?
A. LeNet has two convolutional layers
B. The first convolutional layer in LeNet has $5 \times 5 \times 6 \times 3$ parameters, in case of RGB input
C. Pooling is performed right after convolution
D. Pooling layer does not have learnable parameters

Pooling is performed after ReLU: conv->relu->pooling

Evolution of neural net architectures

Evolution of neural net architectures

Deng et al. 2009

AlexNet

[Krizhevsky et al. 2012]

AlexNet vs LeNet Architecture

AlexNet Architecture

ResNet: Going deeper in depth

[He et al. 2015]

Going deeper in deep learning

Going deeper in deep learning

- Convolutional neural networks are one of many special types of layers.

Going deeper in deep learning

- Convolutional neural networks are one of many special types of layers.
- Main use is for processing images.

Going deeper in deep learning

- Convolutional neural networks are one of many special types of layers.
- Main use is for processing images.
- Also can be useful for handling time series.

Going deeper in deep learning

- Convolutional neural networks are one of many special types of layers.
- Main use is for processing images.
- Also can be useful for handling time series.
- Other common architectures:

Going deeper in deep learning

- Convolutional neural networks are one of many special types of layers.
- Main use is for processing images.
- Also can be useful for handling time series.
- Other common architectures:
- Recurrent neural networks: hidden activations are a function of input and activations from previous inputs. Designed for sequential data such as text.

Going deeper in deep learning

- Convolutional neural networks are one of many special types of layers.
- Main use is for processing images.
- Also can be useful for handling time series.
- Other common architectures:
- Recurrent neural networks: hidden activations are a function of input and activations from previous inputs. Designed for sequential data such as text.
- Graph neural networks: take graph data as input.

Going deeper in deep learning

- Convolutional neural networks are one of many special types of layers.
- Main use is for processing images.
- Also can be useful for handling time series.
- Other common architectures:
- Recurrent neural networks: hidden activations are a function of input and activations from previous inputs. Designed for sequential data such as text.
- Graph neural networks: take graph data as input.
- Transformers: take sequences as input and learn what parts of input to pay attention to.

Brief history of neural networks

What we've learned today...

What we've learned today...

- Modeling a single neuron

What we've learned today...

- Modeling a single neuron
- Linear perceptron

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron
- Multi-layer perceptron

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks
- Loss function (cross entropy)

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks
- Loss function (cross entropy)
- Backpropagation and SGD

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks
- Loss function (cross entropy)
- Backpropagation and SGD
- Convolutional neural networks

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks
- Loss function (cross entropy)
- Backpropagation and SGD
- Convolutional neural networks
- Convolution, pooling, stride, padding

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks
- Loss function (cross entropy)
- Backpropagation and SGD
- Convolutional neural networks
- Convolution, pooling, stride, padding
- Basic architectures (LeNet etc.)

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks
- Loss function (cross entropy)
- Backpropagation and SGD
- Convolutional neural networks
- Convolution, pooling, stride, padding
- Basic architectures (LeNet etc.)
- More advanced architectures (AlexNet, ResNet etc)

Thank you!

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li : https://courses.d2l.ai/berkeley-stat-157/index.html

