
1

CS540 Intro to AI 
Uninformed Search

University of Wisconsin-Madison 
Spring 2023



2

Announcements
Homeworks:  

- Homework 7 due Tuesday 

Class roadmap:

Thursday, April 6 Uninformed Search
Tuesday, April 11 Informed Search
Thursday, April 13 Advanced Search

Tuesday, April 18 Games I
Thursday, April 20 Games II
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Announcements
Homeworks:  

- Homework 7 due Tuesday 

Class roadmap:

Thursday, April 6 Uninformed Search
Tuesday, April 11 Informed Search
Thursday, April 13 Advanced Search

Tuesday, April 18 Games I
Thursday, April 20 Games II

(Mostly) Done with neural networks — check 
understanding with practice questions on Canvas.
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Many AI problems can be 
formulated as search.

How to make a sequence of decisions to reach a 
desired goal.

Leverage computation and a known model of world 
dynamics to make decisions.

“How the world changes in response to agent actions”
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http://xkcd.com/1134/
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http://xkcd.com/1134/
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The search problem

• State space S : all valid configurations
• Initial state I = {(CSDF,)} ⊆ S 
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in one step from state s
▪ succs((CSDF,)) = {(CD, SF)}
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• Cost(s,s’)=1 for all steps. (weighted later)
• The search problem: find a solution path from a 
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A directed graph in state space

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD  , CSDF

C    S       D       F

start goal
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Search examples

• 8-puzzle 

• States = 3x3 array configurations
• Actions / Operators = up to 4 kinds of movement
• Cost = 1 for each move
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Search examples

• Water jugs: how to get 1? 

State = (x,y), where x = number of gallons of water in the 5-gallon jug and 
y is gallons in the 2-gallon jug 

Initial State = (5,0) 

Goal State = (*,1), where * means any amount 

 

25
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Search examples

• Water jugs: how to get 1? 

State = (x,y), where x = number of gallons of water in the 5-gallon jug and 
y is gallons in the 2-gallon jug 

Initial State = (5,0) 

Goal State = (*,1), where * means any amount 

Operators 
(x,y) -> (0,y) ; empty 5-gal jug 
(x,y) -> (x,0) ; empty 2-gal jug 
(x,2) and x<=3 -> (x+2,0) ; pour 2-gal into 5-gal 
(x,0) and x>=2 -> (x-2,2) ; pour 5-gal into 2-gal 
(1,0) -> (0,1) ; empty 5-gal into 2-gal 

 

25
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Search examples

• Route finding (State? Successors? Cost weighted)
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A directed graph in state space

• In general there will be many generated, but un-expanded states at any 
given time 

• One has to choose which one to expand next

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD  , CSDF

C    S       D       F

start goal
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Different search strategies

• The generated, but not yet expanded states form the 
fringe (OPEN). 

• The essential difference is which one to expand first. 
• Deep or shallow?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD  , CSDF

start goal



15

Uninformed search on trees

• Uninformed means we only know: 
– The goal test 
– The succs() function 

• But not which non-goal states are better: that would 
be informed search (next topic). 

• For now, we also assume succs() graph is a tree. 
▪ Won’t encounter repeated states. 
▪ We will relax it later. 

• Many search strategies:  
• We will see BFS, UCS, DFS, IDS 

• Differ by what un-expanded nodes to expand
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Breadth-first search (BFS)
Expand the shallowest node first 
• Examine states one step away from the initial states 
• Examine states two steps away from the initial states 
• and so on… 
ripple

goal
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Breadth-first search (BFS)
Use a queue (First-in First-out) 
1. en_queue(Initial states) 
2. While (queue not empty) 
3.     s = de_queue() 
4.     if (s==goal) success! 
5.     T = succs(s) 
6.     en_queue(T) 
7. endWhile 

Initial state: A 
Goal state: G

Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN) 
 [A] 

Use a queue (First-in First-out) 
1. en_queue(Initial states) 
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Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN) 
 [CB]  A

Use a queue (First-in First-out) 
1. en_queue(Initial states) 
2. While (queue not empty) 
3.     s = de_queue() 
4.     if (s==goal) success! 
5.     T = succs(s) 
6.     en_queue(T) 
7. endWhile 

Initial state: A 
Goal state: G

Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN) 
 [EDC]  B

Use a queue (First-in First-out) 
1. en_queue(Initial states) 
2. While (queue not empty) 
3.     s = de_queue() 
4.     if (s==goal) success! 
5.     T = succs(s) 
6.     en_queue(T) 
7. endWhile 

Initial state: A 
Goal state: G

Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN) 
[GFED]  C 

If G is a goal, we've seen it, but 
we don't stop! 

Use a queue (First-in First-out) 
1. en_queue(Initial states) 
2. While (queue not empty) 
3.     s = de_queue() 
4.     if (s==goal) success! 
5.     T = succs(s) 
6.     en_queue(T) 
7. endWhile 

Initial state: A 
Goal state: G

Search tree
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Breadth-first search (BFS)

queue 
[] G  

... until much later we pop G. 
 Looking foolish? 

Indeed.  But let’s be 
consistent…

Use a queue (First-in First-out) 
1. en_queue(Initial states) 
2. While (queue not empty) 
3.     s = de_queue() 
4.     if (s==goal) success! 
5.     T = succs(s) 
6.     en_queue(T) 
7. endWhile 

Search tree
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Breadth-first search (BFS)

queue 
[] G  

... until much later we pop G. 

We need back pointers to 
recover the solution path.

Looking foolish? 
Indeed.  But let’s be 
consistent…

Use a queue (First-in First-out) 
1. en_queue(Initial states) 
2. While (queue not empty) 
3.     s = de_queue() 
4.     if (s==goal) success! 
5.     T = succs(s) 
6.     en_queue(T) 
7. endWhile 

Search tree
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Performance of BFS

• Assume:  
▪ the graph may be infinite.  
▪ Goal(s) exists and is only finite steps away. 

• Will BFS find at least one goal? 
• Will BFS find the least cost goal? 
• Time complexity? 

▪ # states generated 
▪ Goal d edges away 
▪ Branching factor b 

• Space complexity? 
▪ # states stored

goal
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Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will 

find a goal.
• Optimality: yes if edges cost 1 (more generally 

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node 

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)
▪ The queue / fringe (smaller, but still O(bd))
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What’s in the fringe (queue) for BFS?

• Convince yourself this is O(bd)

goal
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Performance of search algorithms on trees

O(bd)O(bd)Y, if 1YBreadth-first 
search

spacetimeoptimalComplete

1.   Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth



28

Q1-1: You are running BFS on a finite tree-structured state space 
graph that does not have a goal state. What is the behavior of BFS?

1. Visit all N nodes, then 
return one at random 

2. Visit all N nodes, then 
stop and return “failure” 

3. Visit all N nodes, then 
return the node farthest 
from the initial state 

4. Get stuck in an infinite 
loop



29

Q1-1: You are running BFS on a finite tree-structured state space 
graph that does not have a goal state. What is the behavior of BFS?

1. Visit all N nodes, then 
return one at random 

2. Visit all N nodes, then 
stop and return “failure” 

3. Visit all N nodes, then 
return the node farthest 
from the initial state 

4. Get stuck in an infinite 
loop



30

Performance of BFS
Four measures of search algorithms: 
• Completeness (not finding all goals): yes, BFS will 

find a goal. 
• Optimality: yes if edges cost 1 (more generally 

positive non-decreasing in depth), no otherwise. 
• Time complexity (worst case): goal is the last node 

at radius d. 
▪ Have to generate all nodes at radius d. 
▪ b + b2 + … + bd ~ O(bd) 

• Space complexity (bad) 
▪ Back pointers for all generated nodes O(bd) 
▪ The queue / fringe (smaller, but still O(bd))



30

Performance of BFS
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• Space complexity (bad) 
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Uniform-cost search

• Find the least-cost goal 

• Each node has a path cost from start (= sum of 
edge costs along the path). 

• Expand the least cost node first. 

• Use a priority queue instead of a normal queue 

▪ Always take out the least cost item 
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Uniform-cost search (UCS)

• Complete and optimal (if edge costs ≥ ε > 0) 
• Time and space: can be much worse than 

BFS 
▪ Let C* be the cost of the least-cost goal 
▪ O(bC*/ ε)

goal
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Performance of search algorithms on trees

O(bC*/ε)O(bC*/ε)YYUniform-cost 
search2

O(bd)O(bd)Y, if 1YBreadth-first 
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth 
2. edge costs ≥ ε > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth
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Q1-2: You are running UCS in the state space graph below. You just called 
the successor function on node D. What is the cost of node F?

1. 2 

2. 7 

3. 8 

4. 9

I

A B C

E

10
2

3

66

D

1

F
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Q1-3: You are running UCS in the state space graph below. You just 
expanded (visited) node C. What node will the search expand next?

1. A 

2. D 

3. E 

4. F

I

A B C

E

10
2

3

66

D

1

F
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Q1-3: You are running UCS in the state space graph below. You just 
expanded (visited) node C. What node will the search expand next?

1. A 

2. D 

3. E 

4. F

I

A B C

E

10
2

3

66

D

1

F
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General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION) 
    # problem describes the start state, operators, goal test, and 
    #   operator costs 
    # queueing-function is a comparator function that ranks two states 
    # general-search returns either a goal node or "failure" 

    nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE)) 
    loop 
       if EMPTY(nodes) then return "failure" 
       node = REMOVE-FRONT(nodes) 
       if problem.GOAL-TEST(node.STATE) succeeds then return node 
       nodes = QUEUEING-FUNCTION(nodes, EXPAND(node, 
                        problem.OPERATORS)) 
       # succ(s)=EXPAND(s, OPERATORS) 
       # Note: The goal test is NOT done when nodes are generated 
       # Note: This algorithm does not detect loops 
    end
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Performance of BFS
Four measures of search algorithms: 
• Completeness (not finding all goals): yes, BFS will 

find a goal. 
• Optimality: yes if edges cost 1 (more generally 

positive non-decreasing in depth), no otherwise. 
• Time complexity (worst case): goal is the last node 
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▪ b + b2 + … + bd ~ O(bd) 

• Space complexity (bad) 
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Solution: 
Uniform-cost 

search

Solution: 
Depth-first 

search
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1. Select a direction, go deep to the end 
2. Slightly change the end 
3. Slightly change the end some more… 
fan  

goal
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Depth-first search (DFS)
Use a stack (First-in Last-out) 
1. push(Initial states) 
2. While (stack not empty) 
3.     s = pop() 
4.     if (s==goal) success! 
5.     T = succs(s) 
6.     push(T) 
7. endWhile 

stack (fringe) 
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Depth-first search (DFS)
Use a stack (First-in Last-out) 
1. push(Initial states) 
2. While (stack not empty) 
3.     s = pop() 
4.     if (s==goal) success! 
5.     T = succs(s) 
6.     push(T) 
7. endWhile 

stack (fringe) 
1. A, [B, C]
2. B, [D, E, C]
3. D, [E, C]
4. E, [C]
5. C, [F, G]
6. F, [G]
7. G
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What’s in the fringe for DFS?

goal c.f. BFS O(bd) 

• m = maximum depth of graph from start
• m(b-1) ~ O(mb)
(Space complexity)

• “backtracking search” even less space
▪generate siblings (if applicable)
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What’s wrong with DFS?

• Infinite tree: may      not find goal (incomplete) 
• May not be optimal 
• Finite tree: may visit  almost all nodes, time 

complexity O(bm)

goal

goal

c.f. BFS O(bd) 
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Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first 
search

O(bC*/ε)O(bC*/ε)YYUniform-cost 
search2

O(bd)O(bd)Y, if 1YBreadth-first 
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth 
2. edge costs ≥ ε > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth
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Q2-1: You are running DFS in the state space graph below. DFS expands nodes 
left to right. G is the goal state. The state space graph is infinite (the path after D 

does not terminate). What is the behavior of DFS?

1. Get stuck in 
an infinite 
loop 

2. Return A 

3. Return G 

4. Return 
“failure”
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Q2-2: You need to search a randomly generated state space graph with one goal, 
uniform edges costs, d=2, and m=100. Considering worst case behavior, do you 

select BFS or DFS for your search?

1. BFS 

2. DFS
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Q2-2: You need to search a randomly generated state space graph with one goal, 
uniform edges costs, d=2, and m=100. Considering worst case behavior, do you 
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1. BFS 

2. DFS



47

How about this?
1. DFS, but stop if path length > 1.  
2. If goal not found, repeat DFS, stop if path length > 2. 
3. And so on… 
fan within ripple

goal

goal
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Iterative deepening

• Search proceeds like BFS, but fringe is 
like DFS 
▪ Complete, optimal like BFS 
▪ Small space complexity like DFS 
▪ Time complexity like BFS 

• Preferred uninformed search method
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Example

S

A B C

D E G

1
5 8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)
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Nodes expanded by:

• Breadth-First Search: S A B C D E G 
Solution found: S A G 

• Uniform-Cost Search: S A D B C E G 
Solution found: S B G (This is the only uninformed search that worries 

about costs.) 
• Depth-First Search: S A D E G 

Solution found: S A G 

• Iterative-Deepening Search: S A B C S A D E G 
Solution found: S A G 



51

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first 
search

O(bC*/ε)O(bC*/ε)YYUniform-cost 
search2

O(bd)O(bd)Y, if 1YBreadth-first 
search

O(bd)O(bd)Y, if 1YIterative 
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth 
2. edge costs ≥ ε > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth
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If state space graph is not a tree

• The problem: repeated states 

• Ignore the danger of repeated states: wasteful 
(BFS) or impossible (DFS).   Can you see why? 

• How to prevent it?  

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD  , CSDF



52

If state space graph is not a tree

• The problem: repeated states 

• Ignore the danger of repeated states: wasteful 
(BFS) or impossible (DFS).   Can you see why? 

• How to prevent it?  

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD  , CSDF
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If state space graph is not a tree

• We have to remember already-expanded states 

(CLOSED). 

• When we take out a state from the fringe (OPEN), 

check whether it is in CLOSED (already expanded).  

▪ If yes, throw it away. 

▪ If no, expand it (add successors to OPEN), and 

move it to CLOSED.
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Q3-1: Consider the state space graph below. Goal states have bold borders. 
Nodes are expanded left to right when there are ties. What solution path is 

returned by BFS?

1. IADFH 

2. IADFJ 

3. IAG 

4. ICEG
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Q3-1: Consider the state space graph below. Goal states have bold borders. 
Nodes are expanded left to right when there are ties. What solution path is 

returned by BFS?

1. IADFH 

2. IADFJ 

3. IAG 

4. ICEG
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Q3-2: Consider the state space graph below. Goal states have bold borders. 
Nodes are expanded left to right when there are ties. What solution path is 

returned by UCS?

1. IADFH 

2. IADFJ 

3. IAG 

4. ICEG
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Q3-2: Consider the state space graph below. Goal states have bold borders. 
Nodes are expanded left to right when there are ties. What solution path is 

returned by UCS?

1. IADFH 

2. IADFJ 

3. IAG 

4. ICEG
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Q3-3: Consider the state space graph below. Goal states have bold borders. 
Nodes are expanded left to right when there are ties. What solution path is 

returned by DFS?

1. IADFH 

2. IADFJ 

3. IAG 

4. ICEG
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Q3-3: Consider the state space graph below. Goal states have bold borders. 
Nodes are expanded left to right when there are ties. What solution path is 

returned by DFS?

1. IADFH 

2. IADFJ 

3. IAG 

4. ICEG
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Q3-4: Consider the state space graph below. Goal states have bold borders. 
Nodes are expanded left to right when there are ties. What solution path is 

returned by IDS?

1. IADFH 

2. IADFJ 

3. IAG 

4. ICEG
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Q3-4: Consider the state space graph below. Goal states have bold borders. 
Nodes are expanded left to right when there are ties. What solution path is 

returned by IDS?

1. IADFH 

2. IADFJ 

3. IAG 

4. ICEG
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What you should know

• Problem solving as search: state, successors, goal test 
• Uninformed search 

▪ Breadth-first search 
•Uniform-cost search 

▪ Depth-first search 
▪ Iterative deepening  

• Can you unify them using the same algorithm, with different priority 
functions? 

• Performance measures 
▪ Completeness, optimality, time complexity, space complexity 


