
1

CS540 Intro to AI
Uninformed Search

University of Wisconsin-Madison
Spring 2023

2

Announcements
Homeworks:

- Homework 7 due Tuesday

Class roadmap:

Thursday, April 6 Uninformed Search
Tuesday, April 11 Informed Search
Thursday, April 13 Advanced Search

Tuesday, April 18 Games I
Thursday, April 20 Games II

2

Announcements
Homeworks:

- Homework 7 due Tuesday

Class roadmap:

Thursday, April 6 Uninformed Search
Tuesday, April 11 Informed Search
Thursday, April 13 Advanced Search

Tuesday, April 18 Games I
Thursday, April 20 Games II

(Mostly) Done with neural networks — check
understanding with practice questions on Canvas.

3

Many AI problems can be
formulated as search.

3

Many AI problems can be
formulated as search.

How to make a sequence of decisions to reach a
desired goal.

3

Many AI problems can be
formulated as search.

How to make a sequence of decisions to reach a
desired goal.

Leverage computation and a known model of world
dynamics to make decisions.

3

Many AI problems can be
formulated as search.

How to make a sequence of decisions to reach a
desired goal.

Leverage computation and a known model of world
dynamics to make decisions.

“How the world changes in response to agent actions”

4

5

http://xkcd.com/1134/

6

http://xkcd.com/1134/

7

The search problem

C S D F

7

The search problem

• State space S : all valid configurations

C S D F

7

The search problem

• State space S : all valid configurations
• Initial state I = {(CSDF,)} ⊆ S C S D F

7

The search problem

• State space S : all valid configurations
• Initial state I = {(CSDF,)} ⊆ S
• Goal state G = {(,CSDF)} ⊆ S

C S D F

7

The search problem

• State space S : all valid configurations
• Initial state I = {(CSDF,)} ⊆ S
• Goal state G = {(,CSDF)} ⊆ S
• Successor function succs(s) ⊆ S : states reachable

in one step from state s
▪ succs((CSDF,)) = {(CD, SF)}
▪ succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

C S D F

7

The search problem

• State space S : all valid configurations
• Initial state I = {(CSDF,)} ⊆ S
• Goal state G = {(,CSDF)} ⊆ S
• Successor function succs(s) ⊆ S : states reachable

in one step from state s
▪ succs((CSDF,)) = {(CD, SF)}
▪ succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all steps. (weighted later)

C S D F

7

The search problem

• State space S : all valid configurations
• Initial state I = {(CSDF,)} ⊆ S
• Goal state G = {(,CSDF)} ⊆ S
• Successor function succs(s) ⊆ S : states reachable

in one step from state s
▪ succs((CSDF,)) = {(CD, SF)}
▪ succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all steps. (weighted later)
• The search problem: find a solution path from a

state in I to a state in G.
▪ Optionally minimize the cost of the solution.

C S D F

7

The search problem

• State space S : all valid configurations
• Initial state I = {(CSDF,)} ⊆ S
• Goal state G = {(,CSDF)} ⊆ S
• Successor function succs(s) ⊆ S : states reachable

in one step from state s
▪ succs((CSDF,)) = {(CD, SF)}
▪ succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all steps. (weighted later)
• The search problem: find a solution path from a

state in I to a state in G.
▪ Optionally minimize the cost of the solution.

C S D F

8

A directed graph in state space

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

C S D F

start goal

9

Search examples

• 8-puzzle

9

Search examples

• 8-puzzle

• States = 3x3 array configurations

9

Search examples

• 8-puzzle

• States = 3x3 array configurations
• Actions / Operators = up to 4 kinds of movement

9

Search examples

• 8-puzzle

• States = 3x3 array configurations
• Actions / Operators = up to 4 kinds of movement
• Cost = 1 for each move

10

Search examples

• Water jugs: how to get 1?

State = (x,y), where x = number of gallons of water in the 5-gallon jug and
y is gallons in the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

25

11

Search examples

• Water jugs: how to get 1?

State = (x,y), where x = number of gallons of water in the 5-gallon jug and
y is gallons in the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

Operators
(x,y) -> (0,y) ; empty 5-gal jug
(x,y) -> (x,0) ; empty 2-gal jug
(x,2) and x<=3 -> (x+2,0) ; pour 2-gal into 5-gal
(x,0) and x>=2 -> (x-2,2) ; pour 5-gal into 2-gal
(1,0) -> (0,1) ; empty 5-gal into 2-gal

25

12

Search examples

• Route finding (State? Successors? Cost weighted)

13

A directed graph in state space

• In general there will be many generated, but un-expanded states at any
given time

• One has to choose which one to expand next

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

C S D F

start goal

14

Different search strategies

• The generated, but not yet expanded states form the
fringe (OPEN).

• The essential difference is which one to expand first.
• Deep or shallow?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

start goal

15

Uninformed search on trees

• Uninformed means we only know:
– The goal test
– The succs() function

• But not which non-goal states are better: that would
be informed search (next topic).

• For now, we also assume succs() graph is a tree.
▪ Won’t encounter repeated states.
▪ We will relax it later.

• Many search strategies:
• We will see BFS, UCS, DFS, IDS

• Differ by what un-expanded nodes to expand

16

Breadth-first search (BFS)
Expand the shallowest node first
• Examine states one step away from the initial states
• Examine states two steps away from the initial states
• and so on…
ripple

goal

17

Breadth-first search (BFS)
Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

18

Breadth-first search (BFS)

queue (fringe, OPEN)
 [A]

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

19

Breadth-first search (BFS)

queue (fringe, OPEN)
 [CB] A

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

20

Breadth-first search (BFS)

queue (fringe, OPEN)
 [EDC] B

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

21

Breadth-first search (BFS)

queue (fringe, OPEN)
[GFED] C

If G is a goal, we've seen it, but
we don't stop!

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

22

Breadth-first search (BFS)

queue
[] G

... until much later we pop G.
 Looking foolish?

Indeed. But let’s be
consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Search tree

23

Breadth-first search (BFS)

queue
[] G

... until much later we pop G.

We need back pointers to
recover the solution path.

Looking foolish?
Indeed. But let’s be
consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Search tree

24

Performance of BFS

• Assume:
▪ the graph may be infinite.
▪ Goal(s) exists and is only finite steps away.

• Will BFS find at least one goal?
• Will BFS find the least cost goal?
• Time complexity?

▪ # states generated
▪ Goal d edges away
▪ Branching factor b

• Space complexity?
▪ # states stored

goal

25

Performance of BFS

25

Performance of BFS
Four measures of search algorithms:

25

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.

25

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.

25

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.

25

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.

25

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

25

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)

25

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)

25

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)
▪ The queue / fringe (smaller, but still O(bd))

26

What’s in the fringe (queue) for BFS?

• Convince yourself this is O(bd)

goal

27

Performance of search algorithms on trees

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth

28

Q1-1: You are running BFS on a finite tree-structured state space
graph that does not have a goal state. What is the behavior of BFS?

1. Visit all N nodes, then
return one at random

2. Visit all N nodes, then
stop and return “failure”

3. Visit all N nodes, then
return the node farthest
from the initial state

4. Get stuck in an infinite
loop

29

Q1-1: You are running BFS on a finite tree-structured state space
graph that does not have a goal state. What is the behavior of BFS?

1. Visit all N nodes, then
return one at random

2. Visit all N nodes, then
stop and return “failure”

3. Visit all N nodes, then
return the node farthest
from the initial state

4. Get stuck in an infinite
loop

30

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)
▪ The queue / fringe (smaller, but still O(bd))

30

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)
▪ The queue / fringe (smaller, but still O(bd))

Solution:
Uniform-cost

search

31

Uniform-cost search

• Find the least-cost goal

• Each node has a path cost from start (= sum of
edge costs along the path).

• Expand the least cost node first.

• Use a priority queue instead of a normal queue

▪ Always take out the least cost item

32

Uniform-cost search (UCS)

• Complete and optimal (if edge costs ≥ ε > 0)
• Time and space: can be much worse than

BFS
▪ Let C* be the cost of the least-cost goal
▪ O(bC*/ ε)

goal

33

Performance of search algorithms on trees

O(bC*/ε)O(bC*/ε)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth

34

Q1-2: You are running UCS in the state space graph below. You just called
the successor function on node D. What is the cost of node F?

1. 2

2. 7

3. 8

4. 9

I

A B C

E

10
2

3

66

D

1

F

35

Q1-2: You are running UCS in the state space graph below. You just called
the successor function on node D. What is the cost of node F?

1. 2

2. 7

3. 8

4. 9

I

A B C

E

10
2

3

66

D

1

F

36

Q1-3: You are running UCS in the state space graph below. You just
expanded (visited) node C. What node will the search expand next?

1. A

2. D

3. E

4. F

I

A B C

E

10
2

3

66

D

1

F

37

Q1-3: You are running UCS in the state space graph below. You just
expanded (visited) node C. What node will the search expand next?

1. A

2. D

3. E

4. F

I

A B C

E

10
2

3

66

D

1

F

38

General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
 # problem describes the start state, operators, goal test, and
 # operator costs
 # queueing-function is a comparator function that ranks two states
 # general-search returns either a goal node or "failure"

 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
 problem.OPERATORS))
 # succ(s)=EXPAND(s, OPERATORS)
 # Note: The goal test is NOT done when nodes are generated
 # Note: This algorithm does not detect loops
 end

39

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)
▪ The queue / fringe (smaller, but still O(bd))

Solution:
Uniform-cost

search

39

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)
▪ The queue / fringe (smaller, but still O(bd))

Solution:
Uniform-cost

search

Solution:
Depth-first

search

40

Depth-first search
Expand the deepest node first
1. Select a direction, go deep to the end
2. Slightly change the end
3. Slightly change the end some more…
fan

goal

40

Depth-first search
Expand the deepest node first
1. Select a direction, go deep to the end
2. Slightly change the end
3. Slightly change the end some more…
fan

goal

40

Depth-first search
Expand the deepest node first
1. Select a direction, go deep to the end
2. Slightly change the end
3. Slightly change the end some more…
fan

goal

40

Depth-first search
Expand the deepest node first
1. Select a direction, go deep to the end
2. Slightly change the end
3. Slightly change the end some more…
fan

goal

41

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)

41

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)
1. A, [B, C]

41

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)
1. A, [B, C]
2. B, [D, E, C]

41

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)
1. A, [B, C]
2. B, [D, E, C]
3. D, [E, C]

41

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)
1. A, [B, C]
2. B, [D, E, C]
3. D, [E, C]
4. E, [C]

41

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)
1. A, [B, C]
2. B, [D, E, C]
3. D, [E, C]
4. E, [C]
5. C, [F, G]

41

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)
1. A, [B, C]
2. B, [D, E, C]
3. D, [E, C]
4. E, [C]
5. C, [F, G]
6. F, [G]

41

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)
1. A, [B, C]
2. B, [D, E, C]
3. D, [E, C]
4. E, [C]
5. C, [F, G]
6. F, [G]
7. G

42

What’s in the fringe for DFS?

goal c.f. BFS O(bd)

42

What’s in the fringe for DFS?

goal c.f. BFS O(bd)

• m = maximum depth of graph from start

42

What’s in the fringe for DFS?

goal c.f. BFS O(bd)

• m = maximum depth of graph from start
• m(b-1) ~ O(mb)

42

What’s in the fringe for DFS?

goal c.f. BFS O(bd)

• m = maximum depth of graph from start
• m(b-1) ~ O(mb)
(Space complexity)

42

What’s in the fringe for DFS?

goal c.f. BFS O(bd)

• m = maximum depth of graph from start
• m(b-1) ~ O(mb)
(Space complexity)

• “backtracking search” even less space

42

What’s in the fringe for DFS?

goal c.f. BFS O(bd)

• m = maximum depth of graph from start
• m(b-1) ~ O(mb)
(Space complexity)

• “backtracking search” even less space
▪generate siblings (if applicable)

43

What’s wrong with DFS?

• Infinite tree: may not find goal (incomplete)
• May not be optimal
• Finite tree: may visit almost all nodes, time

complexity O(bm)

goal

goal

c.f. BFS O(bd)

44

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/ε)O(bC*/ε)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

45

Q2-1: You are running DFS in the state space graph below. DFS expands nodes
left to right. G is the goal state. The state space graph is infinite (the path after D

does not terminate). What is the behavior of DFS?

1. Get stuck in
an infinite
loop

2. Return A

3. Return G

4. Return
“failure”

45

Q2-1: You are running DFS in the state space graph below. DFS expands nodes
left to right. G is the goal state. The state space graph is infinite (the path after D

does not terminate). What is the behavior of DFS?

1. Get stuck in
an infinite
loop

2. Return A

3. Return G

4. Return
“failure”

46

Q2-2: You need to search a randomly generated state space graph with one goal,
uniform edges costs, d=2, and m=100. Considering worst case behavior, do you

select BFS or DFS for your search?

1. BFS

2. DFS

46

Q2-2: You need to search a randomly generated state space graph with one goal,
uniform edges costs, d=2, and m=100. Considering worst case behavior, do you

select BFS or DFS for your search?

1. BFS

2. DFS

47

How about this?
1. DFS, but stop if path length > 1.
2. If goal not found, repeat DFS, stop if path length > 2.
3. And so on…
fan within ripple

goal

goal

48

Iterative deepening

• Search proceeds like BFS, but fringe is
like DFS
▪ Complete, optimal like BFS
▪ Small space complexity like DFS
▪ Time complexity like BFS

• Preferred uninformed search method

49

Example

S

A B C

D E G

1
5 8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

50

Nodes expanded by:

• Breadth-First Search: S A B C D E G
Solution found: S A G

• Uniform-Cost Search: S A D B C E G
Solution found: S B G (This is the only uninformed search that worries

about costs.)
• Depth-First Search: S A D E G

Solution found: S A G

• Iterative-Deepening Search: S A B C S A D E G
Solution found: S A G

51

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/ε)O(bC*/ε)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

O(bd)O(bd)Y, if 1YIterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

52

If state space graph is not a tree

• The problem: repeated states

• Ignore the danger of repeated states: wasteful
(BFS) or impossible (DFS). Can you see why?

• How to prevent it?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

52

If state space graph is not a tree

• The problem: repeated states

• Ignore the danger of repeated states: wasteful
(BFS) or impossible (DFS). Can you see why?

• How to prevent it?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

53

If state space graph is not a tree

• We have to remember already-expanded states

(CLOSED).

• When we take out a state from the fringe (OPEN),

check whether it is in CLOSED (already expanded).

▪ If yes, throw it away.

▪ If no, expand it (add successors to OPEN), and

move it to CLOSED.

54

Q3-1: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by BFS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

54

Q3-1: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by BFS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

55

Q3-2: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by UCS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

55

Q3-2: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by UCS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

56

Q3-3: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by DFS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

56

Q3-3: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by DFS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

57

Q3-4: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by IDS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

57

Q3-4: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by IDS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

58

What you should know

• Problem solving as search: state, successors, goal test
• Uninformed search

▪ Breadth-first search
•Uniform-cost search

▪ Depth-first search
▪ Iterative deepening

• Can you unify them using the same algorithm, with different priority
functions?

• Performance measures
▪ Completeness, optimality, time complexity, space complexity

