

CS 540 Introduction to Artificial Intelligence Probability

University of Wisconsin-Madison
Fall 2023

Probability: What is it good for?

- Language to express uncertainty

In AI/ML Context

- Quantify predictions

$[p($ lion $), p($ tiger $)]=[0.98,0.02]$

$$
[p(\text { lion }), p(\text { tiger })]=[0.43,0.57]
$$

* If we know for sure the photo must contain either a lion or a tiger

Model Data Generation

- Model complex distributions

StyleGAN2 (Kerras et al '20)

Win At Poker

- Wisconsin Ph.D. student Ye Yuan 5 ${ }^{\text {th }}$ in WSOP Not unusual: probability began as study of gambling techniques

Cardano

Liber de ludo aleae
Book on Games of Chance 1564!

Outline

- Basics: definitions, axioms, RVs, joint distributions
- Independence, conditional probability, chain rule
- Bayes' Rule and Inference

Basics: Outcomes \& Events

- Outcomes: possible results of an experiment

$$
\Omega=\underbrace{\{1,2,3,4,5,6\}}_{\text {outcomes }}
$$

- Events: subsets of outcomes we're interested in

$$
\underbrace{\emptyset,\{1\},\{2\}, \ldots,\{1,2\}, \ldots, \Omega}_{\text {events }}
$$

- Always include \emptyset, Ω

Basics: Probability Distribution

- We have outcomes and events.
- Assign probabilities: for each event $E, P(E) \in[0,1]$

Back to our example:

$$
\begin{gathered}
\underbrace{\emptyset,\{1\},\{2\}, \ldots,\{1,2\}, \ldots, \Omega}_{\text {events }} \\
P(\{1,3,5\})=0.2, P(\{2,4,6\})=0.8
\end{gathered}
$$

Basics: Axioms

- Rules for probability:
- For all events $E, P(E) \geq 0$
- Always, $P(\emptyset)=0, P(\Omega)=1$
- For disjoint events, $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$
- Easy to derive other laws. Ex: non-disjoint events

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Visualizing the Axioms: I

- Axiom 1: for all events $E, P(E) \geq 0$

Visualizing the Axioms: II

- Axiom 2: $P(\emptyset)=0, P(\Omega)=1$

Visualizing the Axioms: III

- Axiom 3: disjoint $\quad P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$

$$
E_{1} \text { or } E_{2}
$$

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)
$$

Visualizing the Axioms

- Also, other laws:

Break \& Quiz

- Q 1.1: We toss a biased coin. If P (heads) $=0.7$, then P (tails) = ?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

Break \& Quiz

- Q 1.1: We toss a biased coin. If P (heads) $=0.7$, then P (tails) $=$?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

Break \& Quiz

- Q 1.2: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

Break \& Quiz

- Q 1.2: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

Break \& Quiz

- Q 1.3: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. 26/52
- B. $4 / 52$
- C. $30 / 52$
- D. $28 / 52$

Break \& Quiz

- Q 1.3: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. 26/52
- B. $4 / 52$
- C. $30 / 52$
- D. 28/52

Basics: Random Variables

- Intuitively: a number X that's random
- Mathematically: map random outcomes to real values

$$
X: \Omega \rightarrow \mathbb{R}
$$

- Why?
- Previously, everything is a set.

- Real values are easier to work with

Basics: CDF \& PDF

- Can still work with probabilities:

$$
P(X=3)
$$

- Cumulative Distribution Func. (CDF)

$$
F_{X}(x):=P(X \leq x)
$$

- Density / mass function $p_{X}(x)$

Wikipedia CDF

Basics: Expectation \& Variance

- Another advantage of RVs are "summaries"
- Expectation: $E[X]=\sum_{a} a \times P(x=a)$
- The "average"
- Variance: $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]$
- A measure of "spread"

Basics: Joint Distributions

- Move from one variable to several
- Joint distribution: $P(X=a, Y=b)$
- Why? Work with multiple types of uncertainty that correlate with each other

Basics: Marginal Probability

- Given a joint distribution $P(X=a, Y=b)$
- Get the distribution in just one variable:

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

- This is the "marginal" distribution.

Jerry's super blurry camera

- One pixel, 1-bit color sensor (green=trees, white=snow)
- Model T: comes with 1-bit temperature sensor (hot, cold)

Basics: Marginal Probability

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

	green	white
hot	$150 / 365$	$45 / 365$
cold	$50 / 365$	$120 / 365$

$$
[P(\text { hot }), P(\text { cold })]=\left[\frac{195}{365}, \frac{170}{365}\right]
$$

Probability Tables

- Write our distributions as tables
- \# of entries? 4.
- If we have n variables with k values, we get k^{n} entries
- Big! For a 1080p screen, 12 bit color, size of table: $10^{7490589}$
- No way of writing down all terms

Independence

- Independence between RVs:

$$
P(X, Y)=P(X) P(Y)
$$

- Why useful? Go from k^{n} entries in a table to $\sim k n$
- Expresses joint as product of marginals
- requires domain knowledge

Conditional Probability

- For when we know something (i.e. $Y=b$),

$$
\begin{aligned}
& P(X=a \mid Y=b)=\frac{P(X=a, Y=b)}{P(Y=b)} \\
& \qquad \begin{array}{|c|c|c|}
\hline & \text { green } & \text { white } \\
\hline \text { hot } & 150 / 365 & 45 / 365 \\
\hline \text { cold } & 50 / 365 & 120 / 365 \\
P(\text { cold } \mid \text { white }) & =\frac{P(\text { cold, white })}{P(\text { white })}=\frac{120}{45+120}=0.73
\end{array}
\end{aligned}
$$

Conditional independence

- require domain knowledge

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

Chain Rule

- Apply repeatedly,

$$
\begin{aligned}
& P\left(A_{1}, A_{2}, \ldots, A_{n}\right) \\
& =P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2}, A_{1}\right) \ldots P\left(A_{n} \mid A_{n-1}, \ldots, A_{1}\right)
\end{aligned}
$$

- Note: still big!
- If some conditional independence, can factor!
- Leads to probabilistic graphical models

Break \& Quiz

Q 2.1: Given joint distribution table:

	Sunny	Cloudy	Rainy
hot	$150 / 365$	$40 / 365$	$5 / 365$
cold	$50 / 365$	$60 / 365$	$60 / 365$

What is the probability the temperature is hot given the weather is cloudy?
A. 40/365
B. $2 / 5$
C. $3 / 5$
D. $195 / 365$

Break \& Quiz

Q 2.1: Back to our joint distribution table:

	Sunny	Cloudy	Rainy
hot	$150 / 365$	$40 / 365$	$5 / 365$
cold	$50 / 365$	$60 / 365$	$60 / 365$

What is the probability the temperature is hot given the weather is cloudy?
A. 40/365
B. $2 / 5$
C. $3 / 5$
D. $195 / 365$

Break \& Quiz

Q 2.2: Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?
A. 0.3
B. 0.06
C. 0.24
D. 0.2

Break \& Quiz

Q 2.2: Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?
A. 0.3
B. 0.06
C. 0.24
D. 0.2

Reasoning With Conditional Distributions

- Evaluating probabilities:
- Wake up with a sore throat.
- Do I have the flu?

- Logic approach: $S \rightarrow F$
- Too strong.
- Inference: compute probability given evidence $P(F \mid S)$
- Can be much more complex!

Using Bayes' Rule

- Want: $P(F \mid S)$
- Bayes' Rule: $P(F \mid S)=\frac{P(F, S)}{P(S)}=\frac{P(S \mid F) P(F)}{P(S)}$
- Parts:

$$
\begin{array}{lrl}
- & P(S) & =0.1 \\
- & & \text { Sore throat rate } \\
- & P(F) & =0.01 \\
& \text { Flu rate } \\
- & P(S \mid F) & =0.9
\end{array} \begin{aligned}
& \text { Sore throat rate among flu sufferers }
\end{aligned}
$$

So: $P(F \mid S)=0.09$

Using Bayes' Rule

- Interpretation $P(F \mid S)=0.09$
- Much higher chance of flu than normal rate (0.01).
- Very different from $P(S \mid F)=0.9$
- 90% of folks with flu have a sore throat
- But, only 9% of folks with a sore throat have flu'
- Idea: update probabilities from evidence

Bayesian Inference

- Fancy name for what we just did. Terminology:

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
$$

- H is the hypothesis
- E is the evidence

Bayesian Inference

- Terminology:

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)} \longleftarrow \text { Prior }
$$

- Prior: estimate of the probability without evidence

Bayesian Inference

- Terminology:

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
$$

- Likelihood: probability of evidence given a hypothesis

Bayesian Inference

- Terminology:

$$
\begin{gathered}
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)} \\
\uparrow \\
\text { Posterior }
\end{gathered}
$$

- Posterior: probability of hypothesis given evidence.

Two Envelopes Problem

- We have two envelopes:
- E_{1} has two black balls, E_{2} has one black, one red
- The red one is worth $\$ 100$. Others, zero
- Open an envelope, see one ball. Then, can switch (or not).
- You see a black ball. Switch?

Two Envelopes Solution

- Let's solve it. $\quad P\left(E_{1} \mid\right.$ Black ball $)=\frac{P\left(\text { Black ball } \mid E_{1}\right) P\left(E_{1}\right)}{P(\text { Black ball })}$
- Now plug in: $\quad P\left(E_{1} \mid\right.$ Black ball $)=\frac{1 \times \frac{1}{2}}{P(\text { Black ball })}$

$$
P\left(E_{2} \mid \text { Black ball }\right)=\frac{\frac{1}{2} \times \frac{1}{2}}{P(\text { Black ball })}
$$

So switch!

Naïve Bayes

- Conditional Probability \& Bayes:

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1}, \ldots, E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

- If we further make the conditional independence assumption (a.k.a. Naïve Bayes)

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \cdots P\left(E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

Naïve Bayes

- Expression

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \cdots, P\left(E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

- H: some class we'd like to infer from evidence
- We know prior $P(H)$
- Estimate $P\left(E_{i} \mid H\right)$ from data! ("training")
- Very similar to envelopes problem.

Break \& Quiz

Q 3.1: 50\% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?
A. $5 / 104$
B. $95 / 100$
C. $1 / 100$
D. $1 / 2$

Break \& Quiz

Q 3.1: 50\% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?
A. 5/104
B. $95 / 100$
C. $1 / 100$
D. $1 / 2$

Break \& Quiz

Q 3.2: A fair coin is tossed three times. Find the probability of getting 2 heads and a tail
A. $1 / 8$
B. $2 / 8$
C. $3 / 8$
D. $5 / 8$

Break \& Quiz

Q 3.2: A fair coin is tossed three times. Find the probability of getting 2 heads and a tail
A. $1 / 8$
B. $2 / 8$
C. $3 / 8$
D. $5 / 8$

Readings

- Vast literature on intro probability and statistics.
- Local classes: Math/Stat 431
- Suggested reading:

Probability and Statistics: The Science of Uncertainty,
Michael J. Evans and Jeff S. Rosenthal
http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf
(Chapters 1-3, excluding "advanced" sections)

