
CS 540 Introduction to Artificial Intelligence
Search II: Informed Search

University of Wisconsin-Madison
Spring 2023

2

Announcements
Homeworks:

- Homework 8 released today; due Tuesday April 18

Class roadmap:

Tuesday, April 11 Informed Search

Thursday, April 13 Advanced Search

Tuesday, April 18 Games I

Thursday, April 20 Games II

Tuesday, April 25 Reinforcement
Learning I

2

Announcements
Homeworks:

- Homework 8 released today; due Tuesday April 18

Class roadmap:

Tuesday, April 11 Informed Search

Thursday, April 13 Advanced Search

Tuesday, April 18 Games I

Thursday, April 20 Games II

Tuesday, April 25 Reinforcement
Learning I

Practice questions on search and neural networks on
Canvas.

Today’s Goals

Today’s Goals

• Finish and review of uninformed search strategies.

Today’s Goals

• Finish and review of uninformed search strategies.
• Understand the difference between uninformed and

informed search.

Today’s Goals

• Finish and review of uninformed search strategies.
• Understand the difference between uninformed and

informed search.
• Introduce A* Search

– Heuristic properties, stopping rules, analysis

Today’s Goals

• Finish and review of uninformed search strategies.
• Understand the difference between uninformed and

informed search.
• Introduce A* Search

– Heuristic properties, stopping rules, analysis

• Extensions: Beyond A*
– Iterative deepening, beam search

Breadth-First Search

Recall: expand shallowest node first

Breadth-First Search

Recall: expand shallowest node first

Wiki

Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue

Wiki

Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue
• Properties:

Wiki

Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue
• Properties:

– Complete

Wiki

Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue
• Properties:

– Complete
– Optimal (if edge cost 1)

Wiki

Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)

Wiki

Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)

Wiki

Depth

Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)

Wiki

Depth

Branching Factor

Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)

– Space O(bd)
Wiki

Depth

Branching Factor

Uniform Cost Search

Like BFS, but keeps track of cost

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node
• Data structure: priority queue

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node
• Data structure: priority queue
• Properties:

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node
• Data structure: priority queue
• Properties:

– Complete

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node
• Data structure: priority queue
• Properties:

– Complete
– Optimal (if weight lower bounded by ε)

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node
• Data structure: priority queue
• Properties:

– Complete
– Optimal (if weight lower bounded by ε)
– Time O(bC*/ε)

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node
• Data structure: priority queue
• Properties:

– Complete
– Optimal (if weight lower bounded by ε)
– Time O(bC*/ε)
– Space O(bC*/ε)

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node
• Data structure: priority queue
• Properties:

– Complete
– Optimal (if weight lower bounded by ε)
– Time O(bC*/ε)
– Space O(bC*/ε)

Credit: DecorumBY

C* is optimal path cost to goal.
 is cost of edge with smallest cost.𝜖

Depth-First Search

Recall: expand deepest node first

Depth-First Search

Recall: expand deepest node first

Wiki

Depth-First Search

Recall: expand deepest node first
• Data structure: stack

Wiki

Depth-First Search

Recall: expand deepest node first
• Data structure: stack
• Properties:

Wiki

Depth-First Search

Recall: expand deepest node first
• Data structure: stack
• Properties:

– Incomplete (stuck in infinite tree…)

Wiki

Depth-First Search

Recall: expand deepest node first
• Data structure: stack
• Properties:

– Incomplete (stuck in infinite tree…)
– Suboptimal

Wiki

Depth-First Search

Recall: expand deepest node first
• Data structure: stack
• Properties:

– Incomplete (stuck in infinite tree…)
– Suboptimal
– Time O(bm)

Wiki

Depth-First Search

Recall: expand deepest node first
• Data structure: stack
• Properties:

– Incomplete (stuck in infinite tree…)
– Suboptimal
– Time O(bm)

Wiki

Max Depth

Depth-First Search

Recall: expand deepest node first
• Data structure: stack
• Properties:

– Incomplete (stuck in infinite tree…)
– Suboptimal
– Time O(bm)

– Space O(bm)
Wiki

Max Depth

Iterative Deepening DFS

Repeated limited DFS

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)
– Space O(bd)

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)
– Space O(bd)

A good option!

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to state s.

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to state s.
• Successors.

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to state s.
• Successors.

start s
goal

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to state s.
• Successors.

start s
goal

g(s)

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to state s.
• Successors.

Informed search. Know:

start s
goal

g(s)

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to state s.
• Successors.

Informed search. Know:
• All uninformed search properties, plus

start s
goal

g(s)

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to state s.
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal.

start s
goal

g(s)

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to state s.
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal.

start s
goal

g(s)

start s
goal

g(s)

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to state s.
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal.

start s
goal

g(s)

start s
goal

g(s) h(s)

Informed Search

Informed search. Know:

Informed Search

Informed search. Know:
• All uninformed search properties, plus

Informed Search

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal.

Informed Search

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal.

goalstart s
g(s)

Informed Search

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal.

goalstart s
g(s)

s’’

s’c(s,s’)

c(s,s’’)

Informed Search

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal.

goalstart s
g(s)

h(s’)

h(s’’)
s’’

s’c(s,s’)

c(s,s’’)

Informed Search

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal.

• Goal: speed up search.

goalstart s
g(s)

h(s’)

h(s’’)
s’’

s’c(s,s’)

c(s,s’’)

Using the Heuristic

Recall uniform-cost search

Using the Heuristic

Recall uniform-cost search
• We store potential next states with a priority queue

Using the Heuristic

Recall uniform-cost search
• We store potential next states with a priority queue
• Expand the state with the smallest g(s)

Using the Heuristic

Recall uniform-cost search
• We store potential next states with a priority queue
• Expand the state with the smallest g(s)

– g(s) “first-half-cost”

Using the Heuristic

Recall uniform-cost search
• We store potential next states with a priority queue
• Expand the state with the smallest g(s)

– g(s) “first-half-cost”

start s
goal

g(s) h(s)

Using the Heuristic

Recall uniform-cost search
• We store potential next states with a priority queue
• Expand the state with the smallest g(s)

– g(s) “first-half-cost”

• Now let’s use the heuristic (“second-half-cost”)

start s
goal

g(s) h(s)

Using the Heuristic

Recall uniform-cost search
• We store potential next states with a priority queue
• Expand the state with the smallest g(s)

– g(s) “first-half-cost”

• Now let’s use the heuristic (“second-half-cost”)
– Several possible approaches: let’s see what works

start s
goal

g(s) h(s)

Attempt 1: Best-First Greedy
One approach: just use h(s) alone

Attempt 1: Best-First Greedy
One approach: just use h(s) alone
• Specifically, expand the state with smallest h(s)

Attempt 1: Best-First Greedy
One approach: just use h(s) alone
• Specifically, expand the state with smallest h(s)
• This isn’t a good idea. Why?

Attempt 1: Best-First Greedy
One approach: just use h(s) alone
• Specifically, expand the state with smallest h(s)
• This isn’t a good idea. Why?

BA GC

 h=3 h=2 h=1 h=0
 1 1 1

999

Attempt 1: Best-First Greedy
One approach: just use h(s) alone
• Specifically, expand the state with smallest h(s)
• This isn’t a good idea. Why?

• Not optimal! Get A → C → G. Want: A →B → C → G

BA GC

 h=3 h=2 h=1 h=0
 1 1 1

999

Attempt 2: A Search

Next approach: use both g(s) + h(s)

Attempt 2: A Search

Next approach: use both g(s) + h(s)
• Specifically, expand state with smallest g(s) + h(s)

Attempt 2: A Search

Next approach: use both g(s) + h(s)
• Specifically, expand state with smallest g(s) + h(s)
• Again, use a priority queue

Attempt 2: A Search

Next approach: use both g(s) + h(s)
• Specifically, expand state with smallest g(s) + h(s)
• Again, use a priority queue
• Called “A” search

Attempt 2: A Search

Next approach: use both g(s) + h(s)
• Specifically, expand state with smallest g(s) + h(s)
• Again, use a priority queue
• Called “A” search

BA GC

 h=3 h=1000 h=1 h=0
 1 1 1

999

Attempt 2: A Search

Next approach: use both g(s) + h(s)
• Specifically, expand state with smallest g(s) + h(s)
• Again, use a priority queue
• Called “A” search

• Still not optimal! (Does work for former example).

BA GC

 h=3 h=1000 h=1 h=0
 1 1 1

999

Attempt 3: A* Search
Same idea, use g(s) + h(s), with one
requirement

Attempt 3: A* Search
Same idea, use g(s) + h(s), with one
requirement
• Demand that h(s) ≤ h*(s) where h*(s) is true cost

from s to goal.

Attempt 3: A* Search
Same idea, use g(s) + h(s), with one
requirement
• Demand that h(s) ≤ h*(s) where h*(s) is true cost

from s to goal.
• If heuristic has this property, it is called “admissible”

Attempt 3: A* Search
Same idea, use g(s) + h(s), with one
requirement
• Demand that h(s) ≤ h*(s) where h*(s) is true cost

from s to goal.
• If heuristic has this property, it is called “admissible”

– Optimistic! Never over-estimates

Attempt 3: A* Search
Same idea, use g(s) + h(s), with one
requirement
• Demand that h(s) ≤ h*(s) where h*(s) is true cost

from s to goal.
• If heuristic has this property, it is called “admissible”

– Optimistic! Never over-estimates

• Still need h(s) ≥ 0

Attempt 3: A* Search
Same idea, use g(s) + h(s), with one
requirement
• Demand that h(s) ≤ h*(s) where h*(s) is true cost

from s to goal.
• If heuristic has this property, it is called “admissible”

– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

Attempt 3: A* Search
Same idea, use g(s) + h(s), with one
requirement
• Demand that h(s) ≤ h*(s) where h*(s) is true cost

from s to goal.
• If heuristic has this property, it is called “admissible”

– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

• This is A* search

Attempt 3: A* Search
Same idea, use g(s) + h(s), with one
requirement
• Demand that h(s) ≤ h*(s) where h*(s) is true cost

from s to goal.
• If heuristic has this property, it is called “admissible”

– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

• This is A* search
V. Batoćanin

Attempt 3: A* Search

Origins: robots and planning

Animation: finding a path
around obstacle

Credit: Wiki

Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot,
1960’s

Credit: Wiki

Animation: finding a path
around obstacle

Credit: Wiki

Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot,
1960’s

Credit: Wiki

Animation: finding a path
around obstacle

Credit: Wiki

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
• Example: 8 Game

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
• Example: 8 Game

847

362

51Example
State

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
• Example: 8 Game

847

362

51Example
State

87

654

321Goal
State

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
• Example: 8 Game

• One useful approach: relax constraints

847

362

51Example
State

87

654

321Goal
State

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
• Example: 8 Game

• One useful approach: relax constraints
– h(s) = number of tiles in wrong position

847

362

51Example
State

87

654

321Goal
State

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
• Example: 8 Game

• One useful approach: relax constraints
– h(s) = number of tiles in wrong position

• allows tiles to fly to destination in a single step

847

362

51Example
State

87

654

321Goal
State

Break & Quiz
Q 1.1: Consider finding the fastest driving route from one US city to another.
Measure cost as the number of hours driven when driving at the speed limit. Let
h(s) be the number of hours needed to ride a bike from city s to your destination.
h(s) is

• A. An admissible heuristic
• B. Not an admissible heuristic

Break & Quiz
Q 1.1: Consider finding the fastest driving route from one US city to another.
Measure cost as the number of hours driven when driving at the speed limit. Let
h(s) be the number of hours needed to ride a bike from city s to your destination.
h(s) is

• A. An admissible heuristic
• B. Not an admissible heuristic

Break & Quiz
Q 1.1: Consider finding the fastest driving route from one US city to another.
Measure cost as the number of hours driven when driving at the speed limit. Let
h(s) be the number of hours needed to ride a bike from city s to your destination.
h(s) is

• A. An admissible heuristic No: riding your bike takes longer.
• B. Not an admissible heuristic

Break & Quiz
Q 1.2: Which of the following are admissible heuristics?
(i) h(s) = h*(s)
(ii) h(s) = max(2, h*(s))
(iii) h(s) = min(2, h*(s))
(iv) h(s) = h*(s)-2
(v) h(s) = sqrt(h*(s))

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)

Break & Quiz
Q 1.2: Which of the following are admissible heuristics?
(i) h(s) = h*(s)
(ii) h(s) = max(2, h*(s))
(iii) h(s) = min(2, h*(s))
(iv) h(s) = h*(s)-2
(v) h(s) = sqrt(h*(s))

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)

Break & Quiz
Q 1.2: Which of the following are admissible heuristics?
(i) h(s) = h*(s)
(ii) h(s) = max(2, h*(s)) No: h(s) might be too big
(iii) h(s) = min(2, h*(s))
(iv) h(s) = h*(s)-2 No: h(s) might be negative
(v) h(s) = sqrt(h*(s)) No: if h*(s) < 1 then h(s) is bigger

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)

Heuristic Function Tradeoffs

Heuristic Function Tradeoffs

Dominance: h2 dominates h1 if for all states s,

Heuristic Function Tradeoffs

Dominance: h2 dominates h1 if for all states s,

h1(s) ≤ h2(s) ≤ h*(s)

Heuristic Function Tradeoffs

Dominance: h2 dominates h1 if for all states s,

h1(s) ≤ h2(s) ≤ h*(s)

• Idea: we want to be as close to h* as possible
– But not over! Must under-estimate true cost.

Heuristic Function Tradeoffs

Dominance: h2 dominates h1 if for all states s,

h1(s) ≤ h2(s) ≤ h*(s)

• Idea: we want to be as close to h* as possible
– But not over! Must under-estimate true cost.

• Tradeoff: being very close might require a very complex
heuristic, expensive computation
– Might be better off with cheaper heuristic & expand more nodes.

A* Termination

When should A* stop?

A* Termination

When should A* stop?
• One idea: as soon as we reach goal state?

A* Termination

When should A* stop?
• One idea: as soon as we reach goal state?

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1

A* Termination

When should A* stop?
• One idea: as soon as we reach goal state?

• h is admissible, but note that we get A →B → G (cost 1000)!

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1

A* Termination

When should A* stop?

A* Termination

When should A* stop?
• Rule: terminate when a goal is popped from queue.

A* Termination

When should A* stop?
• Rule: terminate when a goal is popped from queue.

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1

A* Termination

When should A* stop?
• Rule: terminate when a goal is popped from queue.

• Note: taking h =0 reduces to uniform cost search rule.

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1

A* Revisiting Expanded States

A* Revisiting Expanded States
Possible to revisit an expanded state, get a shorter path:

A* Revisiting Expanded States
Possible to revisit an expanded state, get a shorter path:

B

A D

C

999
1

1 1h=1 h=1

h=1
G

h=0

2

h=900

A* Revisiting Expanded States
Possible to revisit an expanded state, get a shorter path:

• Put D back into priority queue, smaller g+h.

B

A D

C

999
1

1 1h=1 h=1

h=1
G

h=0

2

h=900

A* Revisiting Expanded States
Possible to revisit an expanded state, get a shorter path:

• Put D back into priority queue, smaller g+h.
• Note: uninformed search methods will not revisit expanded

states.

B

A D

C

999
1

1 1h=1 h=1

h=1
G

h=0

2

h=900

A* Full Algorithm
1. Put the start state S on the priority queue. We call the priority queue OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that f(n)=g(n)

+h(n))
4. If n is a goal node, exit (recover path by tracing back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n

1. If n' is not already on OPEN or CLOSED compute h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n’), and
place it on OPEN.

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so,
then:

1. Redirect pointers backward from n' along path yielding lower g(n').
2. Put n' on OPEN.

3. If g(n') is not lower for the new version, do nothing.
6. Goto 2.

A* Full Algorithm
1. Put the start state S on the priority queue. We call the priority queue OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that f(n)=g(n)

+h(n))
4. If n is a goal node, exit (recover path by tracing back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n

1. If n' is not already on OPEN or CLOSED compute h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n’), and
place it on OPEN.

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so,
then:

1. Redirect pointers backward from n' along path yielding lower g(n').
2. Put n' on OPEN.

3. If g(n') is not lower for the new version, do nothing.
6. Goto 2.

States we have already expanded

A* Analysis

Some properties:

A* Analysis

Some properties:
• Terminates!

A* Analysis

Some properties:
• Terminates!
• A* can use lots of memory:

A* Analysis

Some properties:
• Terminates!
• A* can use lots of memory:

• O(# states).

A* Analysis

Some properties:
• Terminates!
• A* can use lots of memory:

• O(# states).
• Will run out on large problems.

A* Analysis

Some properties:
• Terminates!
• A* can use lots of memory:

• O(# states).
• Will run out on large problems.

• Next, we will consider some
alternatives to deal with this.

Break & Quiz
Q 2.1: Consider two heuristics for the 8 puzzle problem. h1 is the number of tiles
in wrong position. h2 is the l1/Manhattan distance between the tiles and the goal
location. How do h1 and h2 relate?

• A. h2 dominates h1

• B. h1 dominates h2

• C. Neither dominates the other

Break & Quiz
Q 2.1: Consider two heuristics for the 8 puzzle problem. h1 is the number of tiles
in wrong position. h2 is the l1/Manhattan distance between the tiles and the goal
location. How do h1 and h2 relate?

• A. h2 dominates h1

• B. h1 dominates h2

• C. Neither dominates the other

Break & Quiz
Q 2.1: Consider two heuristics for the 8 puzzle problem. h1 is the number of tiles
in wrong position. h2 is the l1/Manhattan distance between the tiles and the goal
location. How do h1 and h2 relate?

• A. h2 dominates h1

• B. h1 dominates h2 (No: h1 is a distance where each entry is at most 1,
h2 can be greater)

• C. Neither dominates the other

Break & Quiz
Q 2.2: Consider the state space graph below. Goal states have bold borders. h(s)
is show next to each node. What node will be expanded by A* after the initial
state I?

• A. A
• B. B
• C. C

Break & Quiz
Q 2.2: Consider the state space graph below. Goal states have bold borders. h(s)
is show next to each node. What node will be expanded by A* after the initial
state I?

• A. A
• B. B
• C. C

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
• Bound the memory in search.

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
• Bound the memory in search.
• At each phase, don’t expand any node with g(s) + h(s) > k,

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
• Bound the memory in search.
• At each phase, don’t expand any node with g(s) + h(s) > k,

– Assuming integer costs, do this for k=0, then k=1, then k=2, and so on

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
• Bound the memory in search.
• At each phase, don’t expand any node with g(s) + h(s) > k,

– Assuming integer costs, do this for k=0, then k=1, then k=2, and so on

Fractalsaco

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
• Bound the memory in search.
• At each phase, don’t expand any node with g(s) + h(s) > k,

– Assuming integer costs, do this for k=0, then k=1, then k=2, and so on

• Complete + optimal, might be costly time-wise

Fractalsaco

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
• Bound the memory in search.
• At each phase, don’t expand any node with g(s) + h(s) > k,

– Assuming integer costs, do this for k=0, then k=1, then k=2, and so on

• Complete + optimal, might be costly time-wise
– Revisit many nodes

Fractalsaco

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
• Bound the memory in search.
• At each phase, don’t expand any node with g(s) + h(s) > k,

– Assuming integer costs, do this for k=0, then k=1, then k=2, and so on

• Complete + optimal, might be costly time-wise
– Revisit many nodes

• Lower memory use than A*

Fractalsaco

IDA*: Properties

How many restarts do we expect?

IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C*, at most C*

IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C*, at most C*

What about non-integer costs?

IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C*, at most C*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion

IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C*, at most C*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion
• Set new k to be the min g(s) + h(s) for non-expanded nodes

IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C*, at most C*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion
• Set new k to be the min g(s) + h(s) for non-expanded nodes
• Worst case: restarted for each state

Beam Search

General approach (beyond A* too)

Beam Search

General approach (beyond A* too)
• Priority queue with fixed size k; beyond k nodes,

discard!

Beam Search

General approach (beyond A* too)
• Priority queue with fixed size k; beyond k nodes,

discard!

Beam Search

General approach (beyond A* too)
• Priority queue with fixed size k; beyond k nodes,

discard!
• Upside: good memory efficiency

Beam Search

General approach (beyond A* too)
• Priority queue with fixed size k; beyond k nodes,

discard!
• Upside: good memory efficiency
• Downside: not complete or optimal

Beam Search

General approach (beyond A* too)
• Priority queue with fixed size k; beyond k nodes,

discard!
• Upside: good memory efficiency
• Downside: not complete or optimal

Variation:

Beam Search

General approach (beyond A* too)
• Priority queue with fixed size k; beyond k nodes,

discard!
• Upside: good memory efficiency
• Downside: not complete or optimal

Variation:
• Priority queue with nodes that are at most ε worse

than best node.

Recap and Examples

Recap and Examples

Example for A*:

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

Recap and Examples

Recap and Examples

Example for A*:

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

OPEN
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)
C(8+3) D(4+inf) E(8+inf) G(9+0)
C(8+3) D(4+inf) E(8+inf)

CLOSED
-
S(0+8)
S(0+8) A(1+7)
S(0+8) A(1+7) B(5+4)
S(0+8) A(1+7) B(5+4) G(9+0)

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

OPEN
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)
C(8+3) D(4+inf) E(8+inf) G(9+0)
C(8+3) D(4+inf) E(8+inf)

CLOSED
-
S(0+8)
S(0+8) A(1+7)
S(0+8) A(1+7) B(5+4)
S(0+8) A(1+7) B(5+4) G(9+0)

G → B → S

Recap and Examples

Recap and Examples

Example for IDA*:

Recap and Examples

Example for IDA*:
S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=4

L

2

h=inf

K

3

h=inf
J

5

h=inf

I

7

h=inf

H

1

h=2

F4
h=1

4

Recap and Examples

Example for IDA*:
Threshold = 8

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=4

L

2

h=inf

K

3

h=inf
J

5

h=inf

I

7

h=inf

H

1

h=2

F4
h=1

4

Recap and Examples

Example for IDA*:
Threshold = 8

OPEN
S(0+8)

A(1+7)
H(2+2) D(4+4)
D(4+4) F(6+1)
D(4+4)

PATH PREFIX
-
S
S A

S A H
S A H F
S A D

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=4

L

2

h=inf

K

3

h=inf
J

5

h=inf

I

7

h=inf

H

1

h=2

F4
h=1

4

Recap and Examples

Recap and Examples

Example for IDA*:

Recap and Examples

Example for IDA*:
S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

L

2

h=inf

K

3

h=inf

J

5

h=inf

I

7

h=inf

H

1

h=2

F4
h=1

4

Recap and Examples

Example for IDA*:
Threshold = 9

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

L

2

h=inf

K

3

h=inf

J

5

h=inf

I

7

h=inf

H

1

h=2

F4
h=1

4

Recap and Examples

Example for IDA*:
Threshold = 9

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

L

2

h=inf

K

3

h=inf

J

5

h=inf

I

7

h=inf

H

1

h=2

F4
h=1

4

OPEN
S(0+8)

A(1+7) B(5+4)
B(5+4) H(2+2) D(4+4)
B(5+4) D(4+4) F(6+1)
B(5+4) D(4+4)
B(5+4)
G(9+0)

PREFIX
-
S
S A

S A H
S A H F
S A D

S B
S B G

Recap and Examples

Recap and Examples

Example for Beam Search: k=2

Recap and Examples

Example for Beam Search: k=2
S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=infh=4

L

2

h=inf

K

3

h=inf

J

5

h=inf

I

7

h=inf

H

1

h=2

F
4

h=1
4

Recap and Examples

Example for Beam Search: k=2

OPEN
S(0+8)

A(1+7) B(5+4)
H(2+2) D(4+4)
D(4+4) F(6+1)
D(4+4) G(10+0)
G(10+0)

CURRENT
-
S
A

H
F
D

G

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=infh=4

L

2

h=inf

K

3

h=inf

J

5

h=inf

I

7

h=inf

H

1

h=2

F
4

h=1
4

Recap and Examples

Example for Beam Search: k=2

OPEN
S(0+8)

A(1+7) B(5+4)
H(2+2) D(4+4)
D(4+4) F(6+1)
D(4+4) G(10+0)
G(10+0)

CURRENT
-
S
A

H
F
D

G

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=infh=4

L

2

h=inf

K

3

h=inf

J

5

h=inf

I

7

h=inf

H

1

h=2

F
4

h=1
4G → F → H → A → S

Not optimal!

Summary

• Informed search: introduce heuristics
– Not all approaches work: best-first greedy is bad

• A* algorithm
– Properties of A*, idea of admissible heuristics

• Beyond A*
– IDA*, beam search. Ways to deal with space requirements.

Acknowledgements: Adapted from materials by Jerry Zhu
(University of Wisconsin).

