

CS 540 Introduction to Artificial Intelligence Search II: Informed Search

University of Wisconsin-Madison
Spring 2023

Announcements

Homeworks:

- Homework 8 released today; due Tuesday April 18

Class roadmap:

Tuesday, April 11	Informed Search
Thursday, April 13	Advanced Search
Tuesday, April 18	Games I
Thursday, April 20	Games II
Tuesday, April 25	Reinforcement Learning I

Announcements

Homeworks:

- Homework 8 released today; due Tuesday April 18

Class roadmap:

Tuesday, April 11	Informed Search
Thursday, April 13	Advanced Search
Tuesday, April 18	Games I
Thursday, April 20	Games II
Tuesday, April 25	Reinforcement Learning I

Practice questions on search and neural networks on Canvas.

Today's Goals

Today's Goals

- Finish and review of uninformed search strategies.

Today's Goals

- Finish and review of uninformed search strategies.
- Understand the difference between uninformed and informed search.

Today's Goals

- Finish and review of uninformed search strategies.
- Understand the difference between uninformed and informed search.
- Introduce A* Search
- Heuristic properties, stopping rules, analysis

Today's Goals

- Finish and review of uninformed search strategies.
- Understand the difference between uninformed and informed search.
- Introduce A* Search
- Heuristic properties, stopping rules, analysis
- Extensions: Beyond A*
- Iterative deepening, beam search

Breadth-First Search

Recall: expand shallowest node first

Breadth-First Search

Recall: expand shallowest node first

Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue

Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue
- Properties:

Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue
- Properties:
- Complete

Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue
- Properties:
- Complete
- Optimal (if edge cost 1)

Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue
- Properties:
- Complete
- Optimal (if edge cost 1)
- Time $O\left(b^{d}\right)$

Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue
- Properties:
- Complete
- Optimal (if edge cost 1)
- Time $O\left(b^{d}\right){ }_{\text {Depth }}$

Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue
- Properties:
- Complete
- Optimal (if edge cost 1)

Branching Factor
9

Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue
- Properties:
- Complete
- Optimal (if edge cost 1)

Branching Factor

- Space $O\left(b^{d}\right)$
$9 \quad 10$

Uniform Cost Search

Like BFS, but keeps track of cost

Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node

Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue
- Properties:

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue
- Properties:
- Complete

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue
- Properties:
- Complete
- Optimal (if weight lower bounded by ε)

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue
- Properties:
- Complete
- Optimal (if weight lower bounded by ε)
- Time $O\left(b^{c^{*} / \varepsilon}\right)$

Credit: DecorumBY

Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue
- Properties:
- Complete
- Optimal (if weight lower bounded by ε)
- Time $O\left(b^{c^{*} / \varepsilon}\right)$

Credit: DecorumBY

- Space $O\left(b^{\left.c^{*} / \varepsilon\right)}\right.$

Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue
- Properties:
- Complete
- Optimal (if weight lower bounded by ε)
- Time $O\left(b^{c^{*} / \varepsilon}\right)$

Credit: DecorumBY

- Space $O\left(b^{c *} / \varepsilon\right)$
C^{*} is optimal path cost to goal.
ϵ is cost of edge with smallest cost.

Depth-First Search

Recall: expand deepest node first

Depth-First Search

Recall: expand deepest node first

Depth-First Search

Recall: expand deepest node first

- Data structure: stack

Depth-First Search

Recall: expand deepest node first

- Data structure: stack
- Properties:

Depth-First Search

Recall: expand deepest node first

- Data structure: stack
- Properties:
- Incomplete (stuck in infinite tree...)

Depth-First Search

Recall: expand deepest node first

- Data structure: stack
- Properties:
- Incomplete (stuck in infinite tree...)
- Suboptimal

Depth-First Search

Recall: expand deepest node first

- Data structure: stack
- Properties:
- Incomplete (stuck in infinite tree...)
- Suboptimal
- Time O(bm)

Depth-First Search

Recall: expand deepest node first

- Data structure: stack
- Properties:
- Incomplete (stuck in infinite tree...)
- Suboptimal
- Time O(bm)

Max Depth

Depth-First Search

Recall: expand deepest node first

- Data structure: stack
- Properties:
- Incomplete (stuck in infinite tree...)
- Suboptimal
- Time $O\left(b^{m}\right)$

Max Depth

Iterative Deepening DFS

Repeated limited DFS

Iterative Deepening DFS

Repeated limited DFS

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
- Complete

Fractalsaco

Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
- Complete
- Optimal (if edge cost 1)

Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
- Complete
- Optimal (if edge cost 1)
- Time $O\left(b^{d}\right)$

Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
- Complete
- Optimal (if edge cost 1)
- Time $O\left(b^{d}\right)$
- Space O(bd)

Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
- Complete
- Optimal (if edge cost 1)
- Time $O\left(b^{d}\right)$
- Space O(bd)

A good option!

Fractalsaco

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:

- All uninformed search properties, plus

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.

Informed Search

Informed search. Know:

Informed Search

Informed search. Know:

- All uninformed search properties, plus

Informed Search

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.

Informed Search

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.

Informed Search

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.

Informed Search

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.

Informed Search

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.

- Goal: speed up search.

Using the Heuristic

Recall uniform-cost search

Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue

Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
- Expand the state with the smallest $g(s)$

Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
- Expand the state with the smallest $g(s)$
- g(s) "first-half-cost"

Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
- Expand the state with the smallest $g(s)$
- g(s) "first-half-cost"

Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
- Expand the state with the smallest $g(s)$
$-g(s)$ "first-half-cost"

- Now let's use the heuristic ("second-half-cost")

Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
- Expand the state with the smallest $g(s)$
$-g(s)$ "first-half-cost"

- Now let's use the heuristic ("second-half-cost")
- Several possible approaches: let's see what works

Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand the state with smallest $h(s)$

Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand the state with smallest $h(s)$
- This isn't a good idea. Why?

Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand the state with smallest $h(s)$
- This isn't a good idea. Why?

Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand the state with smallest $h(s)$
- This isn't a good idea. Why?

- Not optimal! Get $A \rightarrow C \rightarrow G$. Want: $A \rightarrow B \rightarrow C \rightarrow G$

Attempt 2: A Search

Next approach: use both $g(s)+h(s)$

Attempt 2: A Search

Next approach: use both $g(s)+h(s)$

- Specifically, expand state with smallest $g(s)+h(s)$

Attempt 2: A Search

Next approach: use both $g(s)+h(s)$

- Specifically, expand state with smallest $g(s)+h(s)$
- Again, use a priority queue

Attempt 2: A Search

Next approach: use both $g(s)+h(s)$

- Specifically, expand state with smallest $g(s)+h(s)$
- Again, use a priority queue
- Called "A" search

Attempt 2: A Search

Next approach: use both $g(s)+h(s)$

- Specifically, expand state with smallest $g(s)+h(s)$
- Again, use a priority queue
- Called "A" search

Attempt 2: A Search

Next approach: use both $g(s)+h(s)$

- Specifically, expand state with smallest $g(s)+h(s)$
- Again, use a priority queue
- Called "A" search

- Still not optimal! (Does work for former example).

Attempt 3: A* Search

Same idea, use $g(s)+h(s)$, with one

 requirement
Attempt 3: A* Search

Same idea, use $g(s)+h(s)$, with one

 requirement- Demand that $h(s) \leq h^{*}(s)$ where $h^{*}(s)$ is true cost from s to goal.

Attempt 3: A* Search

Same idea, use $g(s)+h(s)$, with one

 requirement- Demand that $h(s) \leq h^{*}(s)$ where $h^{*}(s)$ is true cost from s to goal.
- If heuristic has this property, it is called "admissible"

Attempt 3: A* Search

Same idea, use $g(s)+h(s)$, with one requirement

- Demand that $h(s) \leq h^{*}(s)$ where $h^{*}(s)$ is true cost from s to goal.
- If heuristic has this property, it is called "admissible"
- Optimistic! Never over-estimates

Attempt 3: A* Search

Same idea, use $g(s)+h(s)$, with one requirement

- Demand that $h(s) \leq h^{*}(s)$ where $h^{*}(s)$ is true cost from s to goal.
- If heuristic has this property, it is called "admissible"
- Optimistic! Never over-estimates
- Still need $h(s) \geq 0$

Attempt 3: A* Search

Same idea, use $g(s)+h(s)$, with one requirement

- Demand that $h(s) \leq h^{*}(s)$ where $h^{*}(s)$ is true cost from s to goal.
- If heuristic has this property, it is called "admissible"
- Optimistic! Never over-estimates
- Still need $h(s) \geq 0$
- Negative heuristics can lead to strange behavior

Attempt 3: A* Search

Same idea, use $g(s)+h(s)$, with one requirement

- Demand that $h(s) \leq h^{*}(s)$ where $h^{*}(s)$ is true cost from s to goal.
- If heuristic has this property, it is called "admissible"
- Optimistic! Never over-estimates
- Still need $h(s) \geq 0$
- Negative heuristics can lead to strange behavior
- This is \mathbf{A}^{*} search

Attempt 3: A* Search

Same idea, use $g(s)+h(s)$, with one requirement

- Demand that $h(s) \leq h^{*}(s)$ where $h^{*}(s)$ is true cost from s to goal.
- If heuristic has this property, it is called "admis mioje"
- Optimistic! Never over-estimates
- Still need $h(s) \geq 0$
- Negative heuristics can lead to strange behavior
- This is \mathbf{A}^{*} search

V. Batoćanin

Attempt 3: A* Search

Origins: robots and planning

Animation: finding a path around obstacle

Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot, 1960's

Credit: Wiki

Animation: finding a path around obstacle

Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot, 1960's

Credit: Wiki

Animation: finding a path around obstacle

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: 8 Game

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: $\mathbf{8}$ Game

	1		5
Example			
	2	6	3
7	4	8	

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: 8 Game

Example State	1		5
	2	6	3
	7	4	8

Goal			
	1	2	3
	4	5	6
7	8		

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: $\mathbf{8}$ Game

Example State	1		5
	2	6	3
	7	4	8

| Goal |
| :--- | :--- | :--- | :--- |
| State | | 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | |

- One useful approach: relax constraints

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: $\mathbf{8}$ Game

Example State	1		5
	2	6	3
	7	4	8

| Goal |
| :--- | :--- | :--- | :--- |
| State | | 1 | 2 |
| :--- | :--- | $\mathbf{4}$

- One useful approach: relax constraints
$-h(s)=$ number of tiles in wrong position

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: $\mathbf{8}$ Game

Example State	1		5		
	2	6	3		
7	4	8		\quad	Goal
:---					
State		1	2	3	
:---	:---	:---			
4	5	6			
7	8				

- One useful approach: relax constraints
$-h(s)=$ number of tiles in wrong position
- allows tiles to fly to destination in a single step

Break \& Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic

Break \& Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic

Break \& Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic No: riding your bike takes longer.
- B. Not an admissible heuristic

Break \& Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) $h(s)=h^{*}(s)$
(ii) $\quad h(s)=\max \left(2, h^{*}(s)\right)$
(iii) $\quad h(s)=\min \left(2, h^{*}(s)\right)$
(iv) $h(s)=h^{*}(s)-2$
(v) $h(s)=\operatorname{sqrt}\left(h^{*}(s)\right)$

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)

Break \& Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) $h(s)=h^{*}(s)$
(ii) $\quad h(s)=\max \left(2, h^{*}(s)\right)$
(iii) $\quad h(s)=\min \left(2, h^{*}(s)\right)$
(iv) $h(s)=h^{*}(s)-2$
(v) $h(s)=\operatorname{sqrt}\left(h^{*}(s)\right)$

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)

Break \& Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) $h(s)=h^{*}(s)$
(ii) $\quad h(s)=\max (2, h *(s)) \quad$ No: $h(s)$ might be too big
(iii) $\quad h(s)=\min \left(2, h^{*}(s)\right)$
(iv) $h(s)=h^{*}(s)-2$
(v) $h(s)=\operatorname{sqrt}\left(h^{*}(s)\right)$

No: $\boldsymbol{h}(\boldsymbol{s})$ might be negative
No: if $h^{*}(s)<1$ then $h(s)$ is bigger

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)

Heuristic Function Tradeoffs

Heuristic Function Tradeoffs

Dominance: $\boldsymbol{h}_{\mathbf{2}}$ dominates $\boldsymbol{h}_{\mathbf{1}}$ if for all states s,

Heuristic Function Tradeoffs

Dominance: $\boldsymbol{h}_{\mathbf{2}}$ dominates \boldsymbol{h}_{1} if for all states s,

$$
h_{1}(s) \leq h_{2}(s) \leq h^{*}(s)
$$

Heuristic Function Tradeoffs

Dominance: $\boldsymbol{h}_{\mathbf{2}}$ dominates \boldsymbol{h}_{1} if for all states s,

$$
h_{1}(s) \leq h_{2}(s) \leq h^{*}(s)
$$

- Idea: we want to be as close to h^{*} as possible
- But not over! Must under-estimate true cost.

Heuristic Function Tradeoffs

Dominance: h_{2} dominates h_{1} if for all states s,

$$
h_{1}(s) \leq h_{2}(s) \leq h^{*}(s)
$$

- Idea: we want to be as close to h^{*} as possible
- But not over! Must under-estimate true cost.
- Tradeoff: being very close might require a very complex heuristic, expensive computation
- Might be better off with cheaper heuristic \& expand more nodes.

A* Termination

When should A* stop?

A* Termination

When should A* stop?

- One idea: as soon as we reach goal state?

A* Termination

When should A* stop?

- One idea: as soon as we reach goal state?

A* Termination

When should A* stop?

- One idea: as soon as we reach goal state?

- h is admissible, but note that we get $A \rightarrow B \rightarrow G$ (cost 1000)!

A* Termination

When should A* stop?

A* Termination

When should A^{*} stop?

- Rule: terminate when a goal is popped from queue.

A* Termination

When should A^{*} stop?

- Rule: terminate when a goal is popped from queue.

A* Termination

When should A* stop?

- Rule: terminate when a goal is popped from queue.

- Note: taking $h=0$ reduces to uniform cost search rule.

A* Revisiting Expanded States

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

- Put D back into priority queue, smaller g+h.

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

- Put D back into priority queue, smaller g+h.
- Note: uninformed search methods will not revisit expanded states.

A* Full Algorithm

1. Put the start state S on the priority queue. We call the priority queue OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which $f(n)$ is minimum (note that $f(n)=g(n)$ $+h(n))$
4. If n is a goal node, exit (recover path by tracing back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n ' of n
6. If n^{\prime} is not already on OPEN or CLOSED compute $\mathrm{h}\left(\mathrm{n}^{\prime}\right), \mathrm{g}\left(\mathrm{n}^{\prime}\right)=\mathrm{g}(\mathrm{n})+\mathrm{c}\left(\mathrm{n}, \mathrm{n}^{\prime}\right), \mathrm{f}\left(\mathrm{n}^{\prime}\right)=\mathrm{g}\left(\mathrm{n}^{\prime}\right)+\mathrm{h}\left(\mathrm{n}^{\prime}\right)$, and place it on OPEN.
7. If n ' is already on OPEN or CLOSED, then check if $\mathrm{g}(\mathrm{n}$ ') is lower for the new version of n '. If so, then:
8. Redirect pointers backward from n ' along path yielding lower $g(n ')$.
9. Put n' on OPEN.
10. If $\mathrm{g}\left(\mathrm{n}^{\prime}\right)$ is not lower for the new version, do nothing.
11. Goto 2.

A* Full Algorithm

1. Put the start state S on the priority queue. We call the priority queue OPEN
2. If OPEN is empty, exit with failure States we have already expanded
3. Remove from OPEN and place on CLOSED a node n for which $f(n)$ is minimum (note that $f(n)=g(n)$ +h(n))
4. If n is a goal node, exit (recover path by tracing back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n^{\prime} of n
6. If n^{\prime} is not already on OPEN or CLOSED compute $h\left(n^{\prime}\right), g\left(n^{\prime}\right)=g(n)+c\left(n, n^{\prime}\right), f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)$, and place it on OPEN.
7. If n^{\prime} is already on OPEN or CLOSED, then check if $\mathrm{g}\left(\mathrm{n}^{\prime}\right)$ is lower for the new version of n '. If so, then:
8. Redirect pointers backward from n^{\prime} along path yielding lower $g\left(n^{\prime}\right)$.
9. Put n ' on OPEN.
10. If $g\left(n^{\prime}\right)$ is not lower for the new version, do nothing.
11. Goto 2 .

A* Analysis

Some properties:

A* Analysis

Some properties:

- Terminates!

A* Analysis

Some properties:

- Terminates!
- A* can use lots of memory:

A* Analysis

Some properties:

- Terminates!
- A* can use lots of memory:
- O(\# states).

A* Analysis

Some properties:

- Terminates!
- A* can use lots of memory:
- O(\# states).
- Will run out on large problems.

A* Analysis

Some properties:

- Terminates!
- A* can use lots of memory:
- O(\# states).
- Will run out on large problems.
- Next, we will consider some alternatives to deal with this.

Break \& Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h_{1} is the number of tiles in wrong position. h_{2} is the $l_{1} /$ Manhattan distance between the tiles and the goal location. How do h_{1} and h_{2} relate?

- A. h_{2} dominates h_{1}
- B. h_{1} dominates h_{2}
- C. Neither dominates the other

Break \& Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h_{1} is the number of tiles in wrong position. h_{2} is the $l_{1} /$ Manhattan distance between the tiles and the goal location. How do h_{1} and h_{2} relate?

- A. h_{2} dominates h_{1}
- B. h_{1} dominates h_{2}
- C. Neither dominates the other

Break \& Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h_{1} is the number of tiles in wrong position. h_{2} is the $I_{1} /$ Manhattan distance between the tiles and the goal location. How do h_{1} and h_{2} relate?

- A. h_{2} dominates h_{1}
- B. h_{1} dominates h_{2} (No: h_{1} is a distance where each entry is at most 1, h_{2} can be greater)
- C. Neither dominates the other

Break \& Quiz

Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A^{*} after the initial state I?

- A. A
- B.B
- C.C

Break \& Quiz

Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A^{*} after the initial state I?

- A.A
- B.B
- C.C

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don't expand any node with $g(s)+h(s)>k$,

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don't expand any node with $g(s)+h(s)>k$,
- Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don't expand any node with $g(s)+h(s)>k$,
- Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don't expand any node with $g(s)+h(s)>k$,
- Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on
- Complete + optimal, might be costly time-wise

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don't expand any node with $g(s)+h(s)>k$,
- Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on
- Complete + optimal, might be costly time-wise
- Revisit many nodes

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don't expand any node with $g(s)+h(s)>k$,
- Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on
- Complete + optimal, might be costly time-wise
- Revisit many nodes
- Lower memory use than A^{*}

IDA*: Properties

How many restarts do we expect?

IDA*: Properties

How many restarts do we expect?

- With integer costs, optimal solution C^{*}, at most C^{*}

IDA*: Properties

How many restarts do we expect?

- With integer costs, optimal solution C^{*}, at most C^{*}

What about non-integer costs?

IDA*: Properties

How many restarts do we expect?

- With integer costs, optimal solution C^{*}, at most C^{*}

What about non-integer costs?

- Initial threshold k. Use the same rule for non-expansion

IDA*: Properties

How many restarts do we expect?

- With integer costs, optimal solution C^{*}, at most C^{*}

What about non-integer costs?

- Initial threshold k. Use the same rule for non-expansion
- Set new k to be the $\min g(s)+h(s)$ for non-expanded nodes

IDA*: Properties

How many restarts do we expect?

- With integer costs, optimal solution C^{*}, at most C^{*}

What about non-integer costs?

- Initial threshold k. Use the same rule for non-expansion
- Set new k to be the $\min g(s)+h(s)$ for non-expanded nodes
- Worst case: restarted for each state

Beam Search

General approach (beyond A* too)

Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, discard!

Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, discard!

Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, discard!
- Upside: good memory efficiency

Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, discard!
- Upside: good memory efficiency
- Downside: not complete or optimal

Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, discard!
- Upside: good memory efficiency
- Downside: not complete or optimal Variation:

Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, discard!
- Upside: good memory efficiency
- Downside: not complete or optimal Variation:
- Priority queue with nodes that are at most ε worse than best node.

Recap and Examples

Recap and Examples

Example for A^{*} :

Recap and Examples

Example for A^{*} :

Recap and Examples

Recap and Examples

Example for A^{*} :

Recap and Examples

Example for A^{*} :

Recap and Examples

Example for A^{*} :

OPEN
CLOSED
$\mathrm{S}(0+8)$
$A(1+7) B(5+4) C(8+3)$
$\mathrm{S}(0+8)$
$B(5+4) C(8+3) D(4+$ inf) $E(8+$ inf $) G(10+0) S(0+8) A(1+7)$
$C(8+3) D(4+i n f) E(8+i n f) G(9+0)$
$C(8+3) D(4+i n f) E(8+i n f)$

$$
\begin{aligned}
& S(0+8) A(1+7) B(5+4) \\
& S(0+8) A(1+7) B(5+4) G(9+0)^{3}
\end{aligned}
$$

Recap and Examples

Example for A^{*} :

Recap and Examples

Recap and Examples

Example for IDA*:

Recap and Examples

Example for IDA*:

Recap and Examples

Example for IDA*:

Threshold = 8

Recap and Examples

Example for IDA*:

Threshold = 8

PATH PREFIX	OPEN
-	S(0+8)
S	A(1+7)
S A	$H(2+2) D(4+4)$
S A H	$D(4+4) F(6+1)$
S A H F	$D(4+4)$
S A D	

Recap and Examples

Recap and Examples

Example for IDA*:

Recap and Examples

Example for IDA*:

Recap and Examples

Example for IDA*:

Threshold = 9

Recap and Examples

Example for IDA*:

Threshold = 9

PREFIX	OPEN
-	$S(0+8)$
S	$A(1+7) B(5+4)$
S A	$B(5+4) H(2+2) D(4+4)$
S A H	$B(5+4) D(4+4) F(6+1)$
S A H F	$B(5+4) D(4+4)$
S A D	$B(5+4)$
S B	$G(9+0)$

S B G

Recap and Examples

Recap and Examples

Example for Beam Search: k=2

Recap and Examples

Example for Beam Search: k=2

Recap and Examples

Example for Beam Search: k=2

Recap and Examples

Example for Beam Search: k=2

Summary

- Informed search: introduce heuristics
- Not all approaches work: best-first greedy is bad
- A^{*} algorithm
- Properties of A*, idea of admissible heuristics
- Beyond A*
- IDA*, beam search. Ways to deal with space requirements.

Acknowledgements: Adapted from materials by Jerry Zhu (University of Wisconsin).

