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Announcements
Homeworks:  

- Homework 8 released today; due Tuesday April 18 

Class roadmap:

Tuesday, April 11 Informed Search

Thursday, April 13 Advanced Search

Tuesday, April 18 Games I

Thursday, April 20 Games II

Tuesday, April 25 Reinforcement 
Learning I
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Announcements
Homeworks:  

- Homework 8 released today; due Tuesday April 18 

Class roadmap:

Tuesday, April 11 Informed Search

Thursday, April 13 Advanced Search

Tuesday, April 18 Games I

Thursday, April 20 Games II

Tuesday, April 25 Reinforcement 
Learning I

Practice questions on search and neural networks on 
Canvas.
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Today’s Goals

• Finish and review of uninformed search strategies.
• Understand the difference between uninformed and 

informed search.
• Introduce A* Search 

– Heuristic properties, stopping rules, analysis 

• Extensions: Beyond A* 
– Iterative deepening, beam search
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Breadth-First Search

Recall: expand shallowest node first
• Data structure: queue
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)

– Space O(bd)
Wiki

Depth

Branching Factor
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Uniform Cost Search

Like BFS, but keeps track of cost
• Expand least cost node
• Data structure: priority queue
• Properties:

– Complete
– Optimal (if weight lower bounded by ε)
– Time O(bC*/ε)
– Space O(bC*/ε)

Credit: DecorumBY

C* is optimal path cost to goal. 
 is cost of edge with smallest cost.𝜖
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Depth-First Search

Recall: expand deepest node first
• Data structure: stack
• Properties:

– Incomplete (stuck in infinite tree…)
– Suboptimal
– Time O(bm)

– Space O(bm)
Wiki

Max Depth



Iterative Deepening DFS

Repeated limited DFS



Fractalsaco

Iterative Deepening DFS

Repeated limited DFS



Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS



Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:



Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete



Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)



Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)



Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)
– Space O(bd)



Fractalsaco

Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)
– Space O(bd)

A good option!
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• Heuristic h(s) from s to goal.
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Informed Search

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal.

• Goal: speed up search.

goalstart s
g(s)

h(s’)

h(s’’)
s’’

s’c(s,s’)

c(s,s’’)
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Using the Heuristic

Recall uniform-cost search
• We store potential next states with a priority queue
• Expand the state with the smallest g(s) 

– g(s) “first-half-cost” 

• Now let’s use the heuristic (“second-half-cost”)
– Several possible approaches: let’s see what works

start s
goal

g(s) h(s)
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Attempt 1: Best-First Greedy
One approach: just use h(s) alone
• Specifically, expand the state with smallest h(s) 
• This isn’t a good idea. Why?

• Not optimal! Get A → C → G. Want: A →B → C → G

BA GC

   h=3        h=2        h=1        h=0
 1             1            1

999
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Next approach: use both g(s) + h(s)
• Specifically, expand state with smallest g(s) + h(s) 
• Again, use a priority queue
• Called “A” search
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Attempt 2: A Search

Next approach: use both g(s) + h(s)
• Specifically, expand state with smallest g(s) + h(s) 
• Again, use a priority queue
• Called “A” search

• Still not optimal! (Does work for former example).

BA GC

   h=3      h=1000    h=1        h=0
 1             1            1

999
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Attempt 3: A* Search
Same idea, use g(s) + h(s), with one 
requirement 
• Demand that h(s) ≤ h*(s) where h*(s) is true cost 

from s to goal.
• If heuristic has this property, it is called “admissible”

– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

• This is A* search
V. Batoćanin
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Shakey the Robot,  
1960’s 

Credit: Wiki

Animation: finding a path 
around obstacle  

Credit: Wiki 
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Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
• Example: 8 Game

• One useful approach: relax constraints
– h(s) = number of tiles in wrong position 

• allows tiles to fly to destination in a single step

847

362

51Example 
State

87

654

321Goal 
State
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Q 1.1: Consider finding the fastest driving route from one US city to another. 
Measure cost as the number of hours driven when driving at the speed limit. Let 
h(s) be the number of hours needed to ride a bike from city s to your destination. 
h(s) is 

• A. An admissible heuristic No: riding your bike takes longer. 
• B. Not an admissible heuristic
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Break & Quiz
Q 1.2: Which of the following are admissible heuristics? 
(i)  h(s) = h*(s)  
(ii)  h(s) = max(2, h*(s))  No: h(s) might be too big 
(iii)  h(s) = min(2, h*(s)) 
(iv)  h(s) = h*(s)-2  No: h(s) might be negative 
(v)  h(s) = sqrt(h*(s)) No: if h*(s) < 1 then h(s) is bigger 

• A. All of the above 
• B. (i), (iii), (iv) 
• C. (i), (iii) 
• D. (i), (iii), (v)
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Heuristic Function Tradeoffs

Dominance: h2 dominates h1 if for all states s,

h1(s) ≤ h2(s) ≤ h*(s)

• Idea: we want to be as close to h* as possible 
– But not over! Must under-estimate true cost.

• Tradeoff: being very close might require a very complex 
heuristic, expensive computation 
– Might be better off with cheaper heuristic & expand more nodes.
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A* Termination

When should A* stop?
• One idea: as soon as we reach goal state?

•  h is admissible, but note that we get A →B → G (cost 1000)!

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1
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• Rule: terminate when a goal is popped from queue.
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A* Termination

When should A* stop?
• Rule: terminate when a goal is popped from queue.

• Note: taking h =0 reduces to uniform cost search rule.

B

A G

C

9991

1 1
h=2 h=0

h=0

h=1
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•  Put D back into priority queue, smaller g+h.
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A* Revisiting Expanded States
Possible to revisit an expanded state, get a shorter path:

•  Put D back into priority queue, smaller g+h.
• Note: uninformed search methods will not revisit expanded 

states.

B

A D

C

999
1

1 1h=1 h=1

h=1
G

h=0

2

h=900



A* Full Algorithm
1.  Put the start state S on the priority queue. We call the priority queue OPEN 
2.  If OPEN is empty, exit with failure 
3.  Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that f(n)=g(n)

+h(n))
4.  If n is a goal node, exit (recover path by tracing back pointers from n to S)
5.  Expand n, generating all successors and attach to pointers back to n. For each successor n' of n 

1. If n' is not already on OPEN or CLOSED compute h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n’), and 
place it on OPEN. 

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so, 
then: 

1. Redirect pointers backward from n' along path yielding lower g(n'). 
2. Put n' on OPEN. 

3. If g(n') is not lower for the new version, do nothing.  
6.  Goto 2.



A* Full Algorithm
1.  Put the start state S on the priority queue. We call the priority queue OPEN 
2.  If OPEN is empty, exit with failure 
3.  Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that f(n)=g(n)

+h(n))
4.  If n is a goal node, exit (recover path by tracing back pointers from n to S)
5.  Expand n, generating all successors and attach to pointers back to n. For each successor n' of n 

1. If n' is not already on OPEN or CLOSED compute h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n’), and 
place it on OPEN. 

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so, 
then: 

1. Redirect pointers backward from n' along path yielding lower g(n'). 
2. Put n' on OPEN. 

3. If g(n') is not lower for the new version, do nothing.  
6.  Goto 2.

States we have already expanded
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A* Analysis

Some properties:
• Terminates!
• A* can use lots of memory: 

• O(# states).
• Will run out on large problems.

• Next, we will consider some 
alternatives to deal with this.



Break & Quiz
Q 2.1: Consider two heuristics for the 8 puzzle problem. h1 is the number of tiles 
in wrong position. h2 is the l1/Manhattan distance between the tiles and the goal 
location. How do h1 and h2 relate? 

• A. h2 dominates h1 

• B. h1 dominates h2 

• C. Neither dominates the other
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Break & Quiz
Q 2.1: Consider two heuristics for the 8 puzzle problem. h1 is the number of tiles 
in wrong position. h2 is the l1/Manhattan distance between the tiles and the goal 
location. How do h1 and h2 relate? 

• A. h2 dominates h1 

• B. h1 dominates h2 (No: h1 is a distance where each entry is at most 1, 
h2 can be greater) 

• C. Neither dominates the other
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Q 2.2: Consider the state  space graph below. Goal states  have bold borders. h(s) 
is show next to each node. What node will  be expanded  by A* after the initial 
state I? 

• A. A 
• B. B 
• C. C
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IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
• Bound the memory in search.
• At each phase, don’t expand any node with g(s) + h(s) > k,

– Assuming integer costs, do this for k=0, then k=1, then k=2, and so on  

• Complete + optimal, might be costly time-wise
– Revisit many nodes

• Lower memory use than A*

Fractalsaco
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IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C*, at most C*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion
• Set new k to be the min g(s) + h(s) for non-expanded nodes 
• Worst case: restarted for each state
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Beam Search

General approach (beyond A* too)
• Priority queue with fixed size k; beyond k nodes, 

discard!
• Upside: good memory efficiency
• Downside: not complete or optimal

Variation:
• Priority queue with nodes that are at most ε worse 

than best node.  
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Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=inf 

OPEN 
S(0+8) 
A(1+7) B(5+4) C(8+3) 
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C(8+3) D(4+inf) E(8+inf) G(9+0) 
C(8+3) D(4+inf) E(8+inf)

CLOSED 
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S(0+8) A(1+7) 
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Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=inf 

OPEN 
S(0+8) 
A(1+7) B(5+4) C(8+3) 
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0) 
C(8+3) D(4+inf) E(8+inf) G(9+0) 
C(8+3) D(4+inf) E(8+inf)

CLOSED 
- 
S(0+8) 
S(0+8) A(1+7) 
S(0+8) A(1+7) B(5+4) 
S(0+8) A(1+7) B(5+4) G(9+0)

G → B → S
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Example for IDA*:
S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=4 

L

2

h=inf 

K

3

h=inf 
J

5

h=inf 

I

7

h=inf 

H

1

h=2 

F4
h=1 

4
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Example for IDA*:
Threshold = 8

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=4 

L

2

h=inf 

K

3

h=inf 
J

5

h=inf 

I

7

h=inf 

H

1

h=2 

F4
h=1 

4



Recap and Examples

Example for IDA*:
Threshold = 8

OPEN 
S(0+8) 

A(1+7) 
H(2+2) D(4+4) 
D(4+4) F(6+1) 
D(4+4)

PATH PREFIX  
- 
S 
S A 

S A H 
S A H F 
S A D

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=4 

L

2

h=inf 

K

3

h=inf 
J

5

h=inf 

I

7

h=inf 

H

1

h=2 

F4
h=1 

4
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Example for IDA*:
S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=inf 

L

2

h=inf 

K

3

h=inf 

J

5

h=inf 

I

7

h=inf 

H

1

h=2 

F4
h=1 

4
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Example for IDA*:
Threshold = 9

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=inf 

L

2

h=inf 

K

3

h=inf 

J

5

h=inf 

I

7

h=inf 

H

1

h=2 

F4
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4
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Example for IDA*:
Threshold = 9

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=inf 

L

2

h=inf 

K

3

h=inf 

J

5

h=inf 

I

7

h=inf 

H

1

h=2 

F4
h=1 

4

OPEN 
S(0+8) 

A(1+7) B(5+4) 
B(5+4) H(2+2) D(4+4) 
B(5+4) D(4+4) F(6+1) 
B(5+4) D(4+4) 
B(5+4) 
G(9+0)

PREFIX 
- 
S 
S A 

S A H 
S A H F 
S A D 

S B 
S B G
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Example for Beam Search: k=2
S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=infh=4 

L

2

h=inf 

K

3

h=inf 

J

5

h=inf 

I

7

h=inf 

H

1

h=2 

F
4

h=1 
4



Recap and Examples

Example for Beam Search: k=2

OPEN 
S(0+8) 

A(1+7) B(5+4) 
H(2+2) D(4+4) 
D(4+4) F(6+1) 
D(4+4) G(10+0) 
G(10+0)

CURRENT 
- 
S 
A 

H 
F 
D 

G

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=infh=4 

L

2

h=inf 

K

3

h=inf 

J

5

h=inf 

I

7

h=inf 

H

1

h=2 

F
4

h=1 
4



Recap and Examples

Example for Beam Search: k=2

OPEN 
S(0+8) 

A(1+7) B(5+4) 
H(2+2) D(4+4) 
D(4+4) F(6+1) 
D(4+4) G(10+0) 
G(10+0)

CURRENT 
- 
S 
A 

H 
F 
D 

G

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=infh=4 

L

2

h=inf 

K

3

h=inf 

J

5

h=inf 

I

7

h=inf 

H

1

h=2 

F
4

h=1 
4G → F → H → A → S

Not optimal!



Summary

• Informed search: introduce heuristics 
– Not all approaches work: best-first greedy is bad 

• A* algorithm 
– Properties of A*, idea of admissible heuristics 

• Beyond A* 
– IDA*, beam search. Ways to deal with space requirements.
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