

CS 540 Introduction to Artificial Intelligence Games I

University of Wisconsin-Madison Spring 2023

Outline

Homeworks:

- Homework 9 due Thursday April 27
- Homework 10 due Thursday May 4

Class roadmap:

Tuesday, April 18	Games I
Thursday, April 20	Games II
Tuesday, April 25	Reinforcement Learning I
Thursday, April 27	Reinforcement Learning I
Tuesday, May 2	Review of RL + Games
Thursday, May 4	Ethics and Trust in Al

Outline

- Introduction to game theory
 - Properties of games, mathematical formulation
- Simultaneous-Move Games
 - Normal form, strategies, dominance, Nash equilibrium

We looked at techniques:

We looked at techniques:

• **Unsupervised:** See data, do something with it. Unstructured.

We looked at techniques:

• **Unsupervised:** See data, do something with it. Unstructured.

Victor Powell

We looked at techniques:

- **Unsupervised:** See data, do something with it. Unstructured.
- **Supervised:** Train a model to make predictions. More structure (labels).

Victor Powell

We looked at techniques:

- **Unsupervised:** See data, do something with it. Unstructured.
- **Supervised:** Train a model to make predictions. More structure (labels).

Victor Powell

indoor

outdoor

We looked at techniques:

- **Unsupervised:** See data, do something with it. Unstructured.
- **Supervised:** Train a model to make predictions. More structure (labels).
- Planning and Games: Much more structure.

indoor

outdoor

We looked at techniques:

- **Unsupervised:** See data, do something with it. Unstructured.
- **Supervised:** Train a model to make predictions. More structure (labels).
- **Planning and Games**: Much more structure.

indoor

Suppose we have an agent interacting with the world

Suppose we have an **agent interacting** with the **world**

Suppose we have an **agent interacting** with the **world**

Agent

Suppose we have an **agent interacting** with the **world**

Suppose we have an **agent interacting** with the **world**

Suppose we have an **agent interacting** with the **world**

• Agent receives a reward based on state of the world

Suppose we have an **agent interacting** with the **world**

• Agent receives a reward based on state of the world

– **Goal**: maximize reward / utility

Suppose we have an **agent interacting** with the **world**

• Agent receives a reward based on state of the world

– Goal: maximize reward / utility (\$\$\$)

Suppose we have an **agent interacting** with the **world**

- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: now **data** consists of actions, observations, and rewards

Suppose we have an **agent interacting** with the **world**

- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: now data consists of actions, observations, and rewards
 - Setup for decision theory, reinforcement learning, planning

Player 3

Games setup: multiple agents

Games setup: multiple agents

– Requires **strategic** decision making.

Let's work through **properties** of games

- Let's work through **properties** of games
- Number of agents/players

- Let's work through **properties** of games
- Number of agents/players
- Action space: finite or infinite

Let's work through **properties** of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random

Let's work through **properties** of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
Modeling Games: Properties

Let's work through **properties** of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
- Sequential or simultaneous moves

Modeling Games: Properties

Let's work through **properties** of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
- Sequential or simultaneous moves

Pretty clear idea: 1 or more players

• Usually interested in \geq 2 players

- Usually interested in \geq 2 players
- Typically a finite number of players

- Usually interested in \geq 2 players
- Typically a finite number of players

- Usually interested in \geq 2 players
- Typically a finite number of players

Property 2: Action Space

Property 2: Action Space

Action space: set of possible actions an agent can choose from.

Can be finite or infinite.

Examples:

- Rock-paper-scissors
- Tennis

Property 3: Deterministic or Random

Property 3: Deterministic or Random

- Is there **chance** in the game?
 - Poker
 - Scrabble
 - Chess

Property 3: Deterministic or Random

- Is there **chance** in the game?
 - Poker
 - Scrabble
 - Chess

- Zero sum: one player's win is the other's loss
 - Pure competition.
 - Example: rock-paper-scissors

- Zero sum: one player's win is the other's loss
 - Pure competition.
 - Example: rock-paper-scissors

- Zero sum: one player's win is the other's loss
 - Pure competition.
 - Example: rock-paper-scissors

- General sum
 - Example: driving to work, prisoner's dilemma

Property 5: Sequential or Simultaneous Moves

Property 5: Sequential or Simultaneous Moves

• Simultaneous: all players take action at the same time

Property 5: Sequential or Simultaneous Moves

- Simultaneous: all players take action at the same time
- Sequential: take turns (but payoff only revealed at end of game)

Give the properties of the game shown on the right:

- Number of players?

- Number of players?
- Deterministic or stochastic?

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
- Finite or infinite action-space?

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
- Finite or infinite action-space?
- Sequential or simultaneous?

Mathematical description of simultaneous games.

• *n* players {1,2,...,*n*}

- *n* players {1,2,...,*n*}
- Player *i* chooses strategy *a_i* from *A_i*.

- *n* players {1,2,...,*n*}
- Player *i* chooses strategy *a_i* from *A_i*.

• Strategy profile:
$$a = (a_1, a_2, ..., a_n)$$

- *n* players {1,2,...,*n*}
- Player *i* chooses strategy a_i from A_i .
- Strategy profile: $a = (a_1, a_2, ..., a_n)$
- Player *i* gets rewards $u_i(a)$

Mathematical description of simultaneous games.

- *n* players {1,2,...,*n*}
- Player *i* chooses strategy a_i from A_i .
- Strategy profile: $a = (a_1, a_2, ..., a_n)$
- Player *i* gets rewards $u_i(a)$

- **Note**: reward depends on other players!

Mathematical description of simultaneous games.

- *n* players {1,2,...,*n*}
- Player *i* chooses strategy a_i from A_i .
- Strategy profile: $a = (a_1, a_2, ..., a_n)$
- Player *i* gets rewards $u_i(a)$

– **Note**: reward depends on other players!

• We consider the simple case where all reward functions are common knowledge.

Example of Normal Form Game

Ex: Prisoner's Dilemma
Ex: Prisoner's Dilemma

Player 2		
	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

Ex: Prisoner's Dilemma

Player 2		
	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

• 2 players, 2 actions: yields 2x2 payoff matrix

Ex: Prisoner's Dilemma

Player 2		
	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

- 2 players, 2 actions: yields 2x2 payoff matrix
- Strategy set: {Stay silent, betray}

Ex: Prisoner's Dilemma

Player 2		
	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

- 2 players, 2 actions: yields 2x2 payoff matrix
- Strategy set: {Stay silent, betray}

Let's analyze such games. Some strategies are better than others!

Let's analyze such games. Some strategies are better than others!

Strictly dominant strategy: if a_i strictly better than a_i'
 regardless of what other players do, a_i is strictly dominant

Let's analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if a_i strictly better than a_i'
 regardless of what other players do, a_i is **strictly dominant**
- I.e., $u_i(a_i, a_{-i}) > u_i(b, a_{-i}), \forall b \neq a_i, \forall a_{-i}$

Let's analyze such games. Some strategies are better than others!

Strictly dominant strategy: if a_i strictly better than a_i'
 regardless of what other players do, a_i is **strictly dominant**

• I.e.,
$$u_i(a_i, a_{-i}) > u_i(b, a_{-i}), \forall b \neq a_i, \forall a_{-i}$$

All of the other entries of *a* excluding *i*

Let's analyze such games. Some strategies are better than others!

Strictly dominant strategy: if a_i strictly better than a_i'
 regardless of what other players do, a_i is strictly dominant

• I.e.,
$$u_i(a_i, a_{-i}) > u_i(b, a_{-i}), \forall b \neq a_i, \forall a_{-i}$$

All of the other entries of *a* excluding *i*

• Sometimes a dominant strategy does not exist!

Back to Prisoner's Dilemma

Back to Prisoner's Dilemma

• Examine all the entries: betray strictly dominates

Back to Prisoner's Dilemma

- Examine all the entries: betray strictly dominates
- Check:

Back to Prisoner's Dilemma

- Examine all the entries: betray strictly dominates
- Check:

Player 2 Player 1	Stay silent	Betray
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

 a^* is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_i^*

 a^* is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_i^*

• Rational players will play at DSE, if one exists.

 a^* is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_i^*

• Rational players will play at DSE, if one exists.

Player 2	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

 a^* is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_i^*

• Rational players will play at DSE, if one exists.

Player 2	Stay silont	Potrav
Player 1	Stuy Sherit	вениу
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

Dominant Strategy: Absolute Best Responses

$$a_{-i}$$
: $BR(a_{-i}) = \underset{a}{\operatorname{argmax}} u_i(a, a_{-i})$

$$a_{-i}: BR(a_{-i}) = \operatorname{argmax}_{a} u_i(a, a_{-i})$$

Player 2		
	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

$$a_{-i}: BR(a_{-i}) = \operatorname{argmax}_{a} u_i(a, a_{-i})$$

BR(player2=silent) = betray

Player 2		
	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

$$a_{-i}: BR(a_{-i}) = \operatorname{argmax}_{a} u_i(a, a_{-i})$$

BR(player2=silent) = betray
BR(player2=betray) = betray

Player 2	Stav silent	Retray
Player 1	Stuy Sherit	Delluy
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

$$a_{-i}: BR(a_{-i}) = \operatorname{argmax}_{a} u_i(a, a_{-i})$$

BR(player2=silent) = betray BR(player2=betray) = betray

Player 2	Stav silent	Betrav
Player 1	Stay Sherre	Detruy
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

$$a_i^*$$
 is the dominant strategy for player i, if $a_i^* = BR(a_{-i}), \ \forall \ a_{-i}$

Dominant Strategy Equilibrium does not always exist.

Dominant Strategy Equilibrium does not always exist.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

Player 2	L	R
Player 1		
Т	2, 1	0, 0
В	0, 0	1, 2

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

Player 2	L	R
Player 1		
т 🤇	2,1	0, 0
В	0, 0	1, 2

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

*a** is a Nash equilibrium:

*a** is a Nash equilibrium:

$$\forall i, \ \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

*a** is a Nash equilibrium:

 $\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$

(no player has an incentive to **unilaterally deviate**)
*a** is a Nash equilibrium:

$$\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

(no player has an incentive to **unilaterally deviate**)

• Equivalently, for each player i:

$$a_i^* \in BR(a_{-i}^*) = argmax_b u_i(b, a_{-i}^*)$$

*a** is a Nash equilibrium:

$$\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

(no player has an incentive to **unilaterally deviate**)

• Equivalently, for each player i:

$$a_i^* \in BR(a_{-i}^*) = argmax_b u_i(b, a_{-i}^*)$$

• Compared to DSE (a DSE is a NE, the other way is generally not true):

*a** is a Nash equilibrium:

$$\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

(no player has an incentive to **unilaterally deviate**)

• Equivalently, for each player i:

$$a_i^* \in BR(a_{-i}^*) = argmax_b u_i(b, a_{-i}^*)$$

• Compared to DSE (a DSE is a NE, the other way is generally not true):

$$a_i^* = BR(a_{-i}), \ \forall \ a_{-i}$$

*a** is a Nash equilibrium:

*a** is a Nash equilibrium:

$$\forall i, \ \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

*a** is a Nash equilibrium:

 $\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$

*a** is a Nash equilibrium:

$$\forall i, \ \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

(no player has an incentive to **unilaterally deviate**)

• Pure Nash equilibrium:

*a** is a Nash equilibrium:

$$\forall i, \ \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

- Pure Nash equilibrium:
 - A **pure strategy** is a deterministic choice (no randomness).

*a** is a Nash equilibrium:

$$\forall i, \ \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

- Pure Nash equilibrium:
 - A **pure strategy** is a deterministic choice (no randomness).
 - Later: we will consider **mixed** strategies

*a** is a Nash equilibrium:

$$\forall i, \ \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

- Pure Nash equilibrium:
 - A **pure strategy** is a deterministic choice (no randomness).
 - Later: we will consider **mixed** strategies
 - In pure Nash equilibrium, players can only play pure strategies.

Player 2	L	R
Player 1		
Т	2, 1	0, 0
В	0, 0	1, 2

Player 2	L	R
Player 1		
Т	2, 1	0, 0
В	0, 0	1, 2

Player 2	L	R
Player 1		
Т	2, 1	0, 0
В	0, 0	1, 2

• As player 2: for each row, find the best response, upper-score it.

Player 2	L	R
Player 1		
Т	2, 1	0, 0
В	0, 0	1, 2

• As player 2: for each row, find the best response, upper-score it.

Player 2	L	R
Player 1		
Т	2, 1	0, 0
В	0, 0	1, 2

• As player 2: for each row, find the best response, upper-score it.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

• Entries with both lower and upper bars are pure NEs.

Player 2	L	R
Player 1		
Т	2, 1	0, 0
В	0, 0	1, 2

Pure Nash Equilibrium may not exist

So far, pure strategy: each player picks a deterministic strategy. But:

Pure Nash Equilibrium may not exist

So far, pure strategy: each player picks a deterministic strategy. But:

Player 2	rock	naper	scissors
Player 1	rock	paper	30,000,0
rock	0, 0	-1, 1	1, -1
paper	1, -1	0, 0	-1, 1
scissors	-1, 1	1, -1	0, 0

Can also randomize actions: "mixed"

- Can also randomize actions: "mixed"
- Player i assigns probabilities x_i to each action

- Can also randomize actions: "mixed"
- Player i assigns probabilities x_i to each action

$$x_i(a_i)$$
, where $\sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \ge 0$

Can also randomize actions: "mixed"

• Player i assigns probabilities x_i to each action

$$x_i(a_i)$$
, where $\sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \ge 0$

• Now consider **expected rewards**

Can also randomize actions: "mixed"

• Player i assigns probabilities x_i to each action

$$x_i(a_i)$$
, where $\sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \ge 0$

• Now consider **expected rewards**

Can also randomize actions: "mixed"

• Player i assigns probabilities x_i to each action

$$x_i(a_i)$$
, where $\sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \ge 0$

• Now consider **expected rewards**

$$u_i(x_i, x_{-i}) = E_{a_i \sim x_i, a_{-i} \sim x_{-i}} u_i(a_i, a_{-i}) = \sum_{a_i} \sum_{a_{-i}} x_i(a_i) x_{-i}(a_{-i}) u_i(a_i, a_{-i})$$

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

$$u_i(x_i^*, x_{-1}^*) \ge u_i(x_i, x_{-i}^*) \quad \forall x_i \in \Delta_{A_i}, \forall i \in \{1, \dots, n\}$$

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

$$u_i(x_i^*, x_{-1}^*) \ge u_i(x_i, x_{-i}^*) \quad \forall x_i \in \Delta_{A_i}, \forall i \in \{1, \dots, n\}$$

Better than doing
anything else,
"best response"

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

• This is a Nash equilibrium if

• Intuition: nobody can **increase expected reward** by changing only their own strategy.

Mixed Strategy Nash Equilibrium Example: $x_1(.) = x_{2(.)} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
Mixed Strategy Nash Equilibrium Example: $x_1(.) = x_{2(.)} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

Player 2	rock	paper	scissors
Player 1			
rock	0, 0	-1, 1	1, -1
paper	1, -1	0, 0	-1, 1
scissors	-1, 1	1, -1	0, 0

Example: Two Finger Morra. Show 1 or 2 fingers. The "even player" wins the sum if the sum is even, and vice versa.

Example: Two Finger Morra. Show 1 or 2 fingers. The "even player" wins the sum if the sum is even, and vice versa.

odd	f1	f2
even		
f1	2, -2	-3, 3
f2	-3, 3	4, -4

Two Finger Morra. Two-player zero-sum game. No pure NE:

odd	f1	f2
even		
f1	2, -2	-3, 3
f2	-3, 3	4, -4

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p)

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p) By definition n is best response to q_{1} (n_{1} , q_{2}) $\ge u_{1}$ (n_{2} , q_{2}) $\forall n_{2}$

By definition, p is best response to q:
$$u_1(p,q) \ge u_1(p', q) \forall p'$$
.

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p) By definition n is best response to q_{1} (n_{1} , q_{2}) $\ge u_{1}$ (n_{2} , q_{2}) $\forall n_{2}$

By definition, p is best response to q:
$$u_1(p,q) \ge u_1(p', q) \forall p'$$
.

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p) By definition, p is best response to q: $u_1(p,q) \ge u_1(p', q) \forall p'$.

But
$$u_1(p,q) = pu_1(f_1,q) + (1-p)u_1(f_2,q)$$
 q 1-q

$$\begin{bmatrix} odd \\ even \end{bmatrix} f_1 \qquad f_2 \\ f_1 \qquad f_2 \\ f_1 \qquad f_2 \\ f_2 \qquad f_1 \qquad f_2 \\ f_2 \qquad f_2 \qquad f_2 \end{bmatrix}$$

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p) By definition, p is best response to q: $u_1(p,q) \ge u_1(p', q) \forall p'$.

But
$$u_1(p,q) = pu_1(f_1,q) + (1-p)u_1(f_2,q)$$
 q 1-q
Average is no greater than components
$$\begin{bmatrix} odd \\ f1 \\ even \end{bmatrix} \begin{bmatrix} f2 \\ f2 \end{bmatrix}$$

$$p \\ f1 \\ f2 \end{bmatrix} \begin{bmatrix} f2 \\ f2 \end{bmatrix}$$

$$f2 \\ f2 \end{bmatrix}$$

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p) By definition, p is best response to q: $u_1(p,q) \ge u_1(p',q) \forall p'$.

But
$$u_1(p,q) = pu_1(f_1,q) + (1-p)u_1(f_2,q)$$
 q 1-q
Average is no greater than components
 $\rightarrow u_1(p,q) = u_1(f_1,q) = u_1(f_2,q)$

$$p \qquad f1 \qquad 2,-2 \qquad -3,3$$

$$1-p \qquad f2 \qquad -3,3 \qquad 4,-4$$

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p) By definition, p is best response to q: $u_1(p,q) \ge u_1(p', q) \forall p'$.

But
$$u_1(p,q) = pu_1(f_1,q) + (1-p)u_1(f_2,q)$$
 q 1-q
Average is no greater than components
 $\rightarrow u_1(p,q) = u_1(f_1,q) = u_1(f_2,q)$
We want to find q such that equality holds. p
Then even has no incentive to change strategy. 1-p
 $f_1 = \frac{2, -2}{-3, 3} = \frac{-3, 3}{4, -4}$

$$u_1(f_1, q) = u_1(f_2, q)$$

$$u_1(f_1, q) = u_1(f_2, q)$$

2q + (-3)(1 - q) = (-3)q + 4(1 - q)

$$u_1(f_1, q) = u_1(f_2, q)$$

$$2q + (-3)(1 - q) = (-3)q + 4(1 - q)$$

$$q = \frac{7}{12}$$

$$u_1(f_1, q) = u_1(f_2, q)$$

$$2q + (-3)(1 - q) = (-3)q + 4(1 - q)$$

$$q = \frac{7}{12}$$

Similarly, $u_2(p, f_1) = u_2(p, f_2)$

$$u_{1}(f_{1}, q) = u_{1}(f_{2}, q)$$

$$2q + (-3)(1 - q) = (-3)q + 4(1 - q)$$

$$q = \frac{7}{12}$$
Similarly, $u_{2}(p, f_{1}) = u_{2}(p, f_{2})$

$$p = \frac{7}{12}$$

		q	1-q
	odd	f1	f2
	even	J	
р	f1	2, -2	-3, 3
1-p	f2	-3, 3	4, -4

$$u_{1}(f_{1}, q) = u_{1}(f_{2}, q)$$

$$2q + (-3)(1 - q) = (-3)q + 4(1 - q)$$

$$q = \frac{7}{12}$$
Similarly, $u_{2}(p, f_{1}) = u_{2}(p, f_{2})$

$$p = \frac{7}{12}$$
At this NE, even gets -1/12, odd gets 1/12.

		q	1-q
	odd		
		f1	f2
	even		
р	f1	2, -2	-3, 3
1-p	f2	-3, 3	4, -4

Major result: (John Nash '51)

• Every finite (players, actions) game has at least one Nash equilibrium

- Every finite (players, actions) game has at least one Nash equilibrium
 - But not necessarily pure (i.e., deterministic strategy)

- Every finite (players, actions) game has at least one Nash equilibrium
 - But not necessarily pure (i.e., deterministic strategy)
- Could be more than one

- Every finite (players, actions) game has at least one Nash equilibrium
 - But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally hard.

- Every finite (players, actions) game has at least one Nash equilibrium
 - But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally **hard**.
 - Exception: two-player zero-sum games (can be found with linear programming).

- **Q 2.1**: Which of the following is false?
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is a Nash equilibrium for rock/paper/scissors

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.1**: Which of the following is **false**?
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is a Nash equilibrium for rock/paper/scissors

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.1**: Which of the following is **false**?
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is a Nash equilibrium for rock/paper/scissors
- A. Neither (i is false: easy to check that there's no deterministic dominant strategy)
- B. (i) but not (ii)
- C. (ii) but not (i) (i is false: easy to check that there's no deterministic dominant strategy)
- D. Both (There is a mixed strategy Nash Eq.)

- **Q 2.2**: Which of the following is true
- (i) Nash equilibria require each player to know other players' strategies
- (ii) Nash equilibria require rational play

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.2**: Which of the following is **true**
- (i) Nash equilibria require each player to know other players' strategies
- (ii) Nash equilibria require rational play

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.2**: Which of the following is true
- (i) Nash equilibria require each player to know other players' strategies
- (ii) Nash equilibria require rational play
- A. Neither (See below)
- B. (i) but not (ii) (Rational play required: i.e., what if prisoners desire longer jail sentences?)
- C. (ii) but not (i) (The basic assumption of Nash equilibria is knowing all of the strategies involved)
- D. Both

Summary

- Intro to game theory
 - Characterize games by various properties
- Mathematical formulation for simultaneous games
 - Normal form, dominance, Nash equilibria, mixed vs pure