

CS 540 Introduction to Artificial Intelligence Games I

University of Wisconsin-Madison

Spring 2023

Outline

Homeworks:

- Homework 9 due Thursday April 27
- Homework 10 due Thursday May 4

Class roadmap:

Tuesday, April 18	Games I
Thursday, April 20	Games II
Tuesday, April 25	Reinforcement Learning I
Thursday, April 27	Reinforcement Learning I
Tuesday, May 2	Review of RL + Games
Thursday, May 4	Ethics and Trust in AI

Outline

- Introduction to game theory
- Properties of games, mathematical formulation
- Simultaneous-Move Games
- Normal form, strategies, dominance, Nash equilibrium

So Far in The Course

We looked at techniques:

So Far in The Course

We looked at techniques:

- Unsupervised: See data, do something with it. Unstructured.

So Far in The Course

We looked at techniques:

- Unsupervised: See data, do something with it. Unstructured.

So Far in The Course

We looked at techniques:

- Unsupervised: See data, do something with it. Unstructured.
- Supervised: Train a model to make predictions. More structure (labels).

So Far in The Course

We looked at techniques:

- Unsupervised: See data, do something with it. Unstructured.
- Supervised: Train a model to make predictions. More structure (labels).

So Far in The Course

We looked at techniques:

- Unsupervised: See data, do something with it. Unstructured.
- Supervised: Train a model to make predictions. More structure (labels).
- Planning and Games: Much more structure.

Victor Powell

So Far in The Course

We looked at techniques:

- Unsupervised: See data, do something with it. Unstructured.
- Supervised: Train a model to make predictions. More structure (labels).
- Planning and Games: Much more structure.

Victor Powell

More General Model

Suppose we have an agent interacting with the world

More General Model

Suppose we have an agent interacting with the world

Agent

More General Model

Suppose we have an agent interacting with the world

More General Model

Suppose we have an agent interacting with the world

More General Model

Suppose we have an agent interacting with the world

Agent

More General Model

Suppose we have an agent interacting with the world

Observations

- Agent receives a reward based on state of the world

More General Model

Suppose we have an agent interacting with the world

Observations

- Agent receives a reward based on state of the world
- Goal: maximize reward / utility

More General Model

Suppose we have an agent interacting with the world

Observations

- Agent receives a reward based on state of the world
- Goal: maximize reward / utility (\$\$)

More General Model

Suppose we have an agent interacting with the world

Observations

- Agent receives a reward based on state of the world
- Goal: maximize reward / utility (\$\$\$)
- Note: now data consists of actions, observations, and rewards

More General Model

Suppose we have an agent interacting with the world

Observations

- Agent receives a reward based on state of the world
- Goal: maximize reward / utility (\$\$\$)
- Note: now data consists of actions, observations, and rewards
- Setup for decision theory, reinforcement learning, planning

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Games: Multiple Agents

Games setup: multiple agents

Modeling Games: Properties

Let's work through properties of games

Modeling Games: Properties

Let's work through properties of games

- Number of agents/players

Modeling Games: Properties

Let's work through properties of games

- Number of agents/players
- Action space: finite or infinite

Modeling Games: Properties

Let's work through properties of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random

Modeling Games: Properties

Let's work through properties of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum

Modeling Games: Properties

Let's work through properties of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
- Sequential or simultaneous moves

Modeling Games: Properties

Let's work through properties of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
- Sequential or simultaneous moves

Property 1: Number of players

Pretty clear idea: 1 or more players

Property 1: Number of players

Pretty clear idea: 1 or more players

- Usually interested in ≥ 2 players

Property 1: Number of players

Pretty clear idea: 1 or more players

- Usually interested in ≥ 2 players
- Typically a finite number of players

Property 1: Number of players

Pretty clear idea: 1 or more players

- Usually interested in ≥ 2 players
- Typically a finite number of players

Property 1: Number of players

Pretty clear idea: 1 or more players

- Usually interested in ≥ 2 players
- Typically a finite number of players

Property 2: Action Space

Property 2: Action Space

Action space: set of possible actions an agent can choose from.

Can be finite or infinite.
Examples:

- Rock-paper-scissors
- Tennis

Property 3: Deterministic or Random

Property 3: Deterministic or Random

- Is there chance in the game?
- Poker
- Scrabble
- Chess

Property 3: Deterministic or Random

- Is there chance in the game?
- Poker
- Scrabble
- Chess

Property 4: Sum of payoffs

Property 4: Sum of payoffs

- Two basic types: zero sum vs. general sum.

Property 4: Sum of payoffs

- Two basic types: zero sum vs. general sum.

Property 4: Sum of payoffs

- Two basic types: zero sum vs. general sum.
- Zero sum: one player's win is the other's loss
- Pure competition.
- Example: rock-paper-scissors

Property 4: Sum of payoffs

- Two basic types: zero sum vs. general sum.
- Zero sum: one player's win is the other's loss
- Pure competition.
- Example: rock-paper-scissors

Property 4: Sum of payoffs

- Two basic types: zero sum vs. general sum.
- Zero sum: one player's win is the other's loss
- Pure competition.
- Example: rock-paper-scissors
- General sum
- Example: driving to work, prisoner's dilemma

Property 5: Sequential or Simultaneous Moves

Property 5: Sequential or Simultaneous Moves

- Simultaneous: all players take action at the
same time

Property 5: Sequential or Simultaneous Moves

- Simultaneous: all players take action at the same time
- Sequential: take turns (but payoff only revealed at end of game)

Quiz break:

Quiz break:

Give the properties of the game shown on the right:

Quiz break:

Give the properties of the game shown on the right:

- Number of players?

Quiz break:

Give the properties of the game shown on the right:

- Number of players?
- Deterministic or stochastic?

Quiz break:

Give the properties of the game shown on the right:

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?

Quiz break:

Give the properties of the game shown on the right:

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
- Finite or infinite action-space?

Quiz break:

Give the properties of the game shown on the right:

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
- Finite or infinite action-space?
- Sequential or simultaneous?

Normal Form Game

Mathematical description of simultaneous games.

Normal Form Game

Mathematical description of simultaneous games.

- n players $\{1,2, \ldots, n\}$

Normal Form Game

Mathematical description of simultaneous games.

- n players $\{1,2, \ldots, n\}$
- Player i chooses strategy a_{i} from A_{i}.

Normal Form Game

Mathematical description of simultaneous games.

- n players $\{1,2, \ldots, n\}$
- Player i chooses strategy a_{i} from A_{i}.
- Strategy profile: $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$

Normal Form Game

Mathematical description of simultaneous games.

- n players $\{1,2, \ldots, n\}$
- Player i chooses strategy a_{i} from A_{i}.
- Strategy profile: $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- Player i gets rewards $u_{i}(a)$

Normal Form Game

Mathematical description of simultaneous games.

- n players $\{1,2, \ldots, n\}$
- Player i chooses strategy a_{i} from A_{i}.
- Strategy profile: $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- Player i gets rewards $u_{i}(a)$
- Note: reward depends on other players!

Normal Form Game

Mathematical description of simultaneous games.

- n players $\{1,2, . . ., n\}$
- Player i chooses strategy a_{i} from A_{i}.
- Strategy profile: $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- Player i gets rewards $u_{i}(a)$
- Note: reward depends on other players!
- We consider the simple case where all reward functions are common knowledge.

Example of Normal Form Game

Ex: Prisoner's Dilemma

Example of Normal Form Game

Ex: Prisoner's Dilemma

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

Example of Normal Form Game

Ex: Prisoner's Dilemma

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

- 2 players, 2 actions: yields 2×2 payoff matrix

Example of Normal Form Game

Ex: Prisoner's Dilemma

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

- 2 players, 2 actions: yields 2×2 payoff matrix
-Strategy set: \{Stay silent, betray\}

Example of Normal Form Game

Ex: Prisoner's Dilemma

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

- 2 players, 2 actions: yields 2×2 payoff matrix
-Strategy set: \{Stay silent, betray\}

Strictly Dominant Strategies

Strictly Dominant Strategies

Let's analyze such games. Some strategies are better than others!

Strictly Dominant Strategies

Let's analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if a_{i} strictly better than a_{i}^{\prime} regardless of what other players do, a_{i} is strictly dominant

Strictly Dominant Strategies

Let's analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if a_{i} strictly better than a_{i}^{\prime}
regardless of what other players do, a_{i} is strictly dominant
- I.e., $u_{i}\left(a_{i}, a_{-i}\right)>u_{i}\left(b, a_{-i}\right), \forall b \neq a_{i}, \forall a_{-i}$

Strictly Dominant Strategies

Let's analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if a_{i} strictly better than a_{i}^{\prime} regardless of what other players do, a_{i} is strictly dominant
- I.e., $u_{i}\left(a_{i}, a_{-i}\right)>u_{i}\left(b, a_{-i}\right), \forall b \neq a_{i}, \forall a_{-i}$

All of the other entries
of a excluding i

Strictly Dominant Strategies

Let's analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if a_{i} strictly better than a_{i}^{\prime}
regardless of what other players do, a_{i} is strictly dominant
- I.e., $u_{i}\left(a_{i}, a_{-i}\right)>u_{i}\left(b, a_{-i}\right), \forall b \neq a_{i}, \forall a_{-i}$

All of the other entries

$$
\text { of } a \text { excluding } i
$$

- Sometimes a dominant strategy does not exist!

Strictly Dominant Strategies Example

Back to Prisoner's Dilemma

Strictly Dominant Strategies Example

Back to Prisoner's Dilemma

- Examine all the entries: betray strictly dominates

Strictly Dominant Strategies Example

Back to Prisoner's Dilemma

- Examine all the entries: betray strictly dominates
- Check:

Strictly Dominant Strategies Example

Back to Prisoner's Dilemma

- Examine all the entries: betray strictly dominates
- Check:

Player 2	Stay silent	Betray
Player 1		
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

Dominant Strategy Equilibrium

Dominant Strategy Equilibrium

 a^{*} is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_{i}^{*}
Dominant Strategy Equilibrium

 a^{*} is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_{i}^{*}- Rational players will play at DSE, if one exists.

Dominant Strategy Equilibrium

a^{*} is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_{i}^{*}

- Rational players will play at DSE, if one exists.

Player 2		
Player 1		Stay silent

Dominant Strategy Equilibrium

a^{*} is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_{i}^{*}

- Rational players will play at DSE, if one exists.

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

Dominant Strategy: Absolute Best Responses

Dominant Strategy: Absolute Best Responses

Player i's best response to strategy
$a_{-i}: B R\left(a_{-i}\right)=\underset{a}{\operatorname{argmax}} u_{i}\left(a, a_{-i}\right)$

Dominant Strategy: Absolute Best Responses

Player i's best response to strategy
$a_{-i}: B R\left(a_{-i}\right)=\underset{a}{\operatorname{argmax}} u_{i}\left(a, a_{-i}\right)$

Player 2		Betray
	Stay silent	
Player 1		
Stay silent	-1, -1	-3, 0
Betray	$0,-3$	-2, -2

Dominant Strategy: Absolute Best Responses

Player i's best response to strategy
$a_{-i}: B R\left(a_{-i}\right)=\underset{a}{\operatorname{argmax}} u_{i}\left(a, a_{-i}\right)$

BR(player2=silent) = betray

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

Dominant Strategy: Absolute Best Responses

Player i's best response to strategy
$a_{-i}: B R\left(a_{-i}\right)=\underset{a}{\operatorname{argmax}} u_{i}\left(a, a_{-i}\right)$
$B R($ player2=silent $)=$ betray
$B R($ player2 $=$ betray $)=$ betray

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

Dominant Strategy: Absolute Best Responses

Player i's best response to strategy
$a_{-i}: B R\left(a_{-i}\right)=\operatorname{argmax} u_{i}\left(a, a_{-i}\right)$

BR(player2=silent) = betray
BR(player2=betray) = betray

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

a_{i}^{*} is the dominant strategy for player i , if
$a_{i}^{*}=B R\left(a_{-i}\right), \quad \forall a_{-i}$

Dominant Strategy Equilibrium

Dominant Strategy Equilibrium does not always exist.

Dominant Strategy Equilibrium

Dominant Strategy Equilibrium does not always exist.

Player 2		
Player 1		
L		R
T	2,1	0,0
B	0,0	1,2

Nash Equilibrium

a^{*} is a Nash equilibrium if no player has an incentive to unilaterally deviate

Nash Equilibrium

a^{*} is a Nash equilibrium if no player has an incentive to unilaterally deviate

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right) \quad \forall a_{i} \in A_{i}
$$

Nash Equilibrium

a^{*} is a Nash equilibrium if no player has an incentive to unilaterally deviate

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right) \quad \forall a_{i} \in A_{i}
$$

Player 2		
Player 1		R
T	2,1	0,0
B	0,0	1,2

Nash Equilibrium

a^{*} is a Nash equilibrium if no player has an incentive to unilaterally deviate

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right) \quad \forall a_{i} \in A_{i}
$$

Player 2		
Player 1		
T	2,1	R
B	0,0	1,2

Nash Equilibrium

a^{*} is a Nash equilibrium if no player has an incentive to unilaterally deviate

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right) \quad \forall a_{i} \in A_{i}
$$

Player 2		
Player 1		
T	2,1	R
B	0,0	1,2

Nash Equilibrium: Best Response to Each Other

Nash Equilibrium: Best Response to Each Other a^{*} is a Nash equilibrium:

Nash Equilibrium: Best Response to Each Other a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$

Nash Equilibrium: Best Response to Each Other a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$
(no player has an incentive to unilaterally deviate)

Nash Equilibrium: Best Response to Each Other

a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$
(no player has an incentive to unilaterally deviate)

- Equivalently, for each player i:

$$
a_{i}^{*} \in B R\left(a_{-i}^{*}\right)=\operatorname{argmax}_{b} u_{i}\left(b, a_{-i}^{*}\right)
$$

Nash Equilibrium: Best Response to Each Other

a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$
(no player has an incentive to unilaterally deviate)

- Equivalently, for each player i:

$$
a_{i}^{*} \in B R\left(a_{-i}^{*}\right)=\operatorname{argmax}_{b} u_{i}\left(b, a_{-i}^{*}\right)
$$

- Compared to DSE (a DSE is a NE, the other way is generally not true):

Nash Equilibrium: Best Response to Each Other

a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$
(no player has an incentive to unilaterally deviate)

- Equivalently, for each player i:

$$
a_{i}^{*} \in B R\left(a_{-i}^{*}\right)=\operatorname{argmax}_{b} u_{i}\left(b, a_{-i}^{*}\right)
$$

- Compared to DSE (a DSE is a NE, the other way is generally not true):

$$
a_{i}^{*}=B R\left(a_{-i}\right), \forall a_{-i}
$$

Nash Equilibrium: Best Response to Each Other

Nash Equilibrium: Best Response to Each Other a^{*} is a Nash equilibrium:

Nash Equilibrium: Best Response to Each Other a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$

Nash Equilibrium: Best Response to Each Other a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$
(no player has an incentive to unilaterally deviate)

Nash Equilibrium: Best Response to Each Other

a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$
(no player has an incentive to unilaterally deviate)

- Pure Nash equilibrium:

Nash Equilibrium: Best Response to Each Other

a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$
(no player has an incentive to unilaterally deviate)

- Pure Nash equilibrium:
- A pure strategy is a deterministic choice (no randomness).

Nash Equilibrium: Best Response to Each Other

a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$
(no player has an incentive to unilaterally deviate)

- Pure Nash equilibrium:
- A pure strategy is a deterministic choice (no randomness).
- Later: we will consider mixed strategies

Nash Equilibrium: Best Response to Each Other

a^{*} is a Nash equilibrium:
$\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)$
(no player has an incentive to unilaterally deviate)

- Pure Nash equilibrium:
- A pure strategy is a deterministic choice (no randomness).
- Later: we will consider mixed strategies
- In pure Nash equilibrium, players can only play pure strategies.

Finding (pure) Nash Equilibria by hand

- As player 1: For each column, find the best response, underscore it.

Finding (pure) Nash Equilibria by hand

- As player 1: For each column, find the best response, underscore it.

Player 2		
Player 1		R
T	2,1	0,0
B	0,0	1,2

Finding (pure) Nash Equilibria by hand

- As player 1: For each column, find the best response, underscore it.

Player 2		
Player 1		
T	$\underline{2,1}$	0,0
B	0,0	1,2

Finding (pure) Nash Equilibria by hand

- As player 1: For each column, find the best response, underscore it.

Player 2		
Player 1		
T	$\underline{2,1}$	0,0
B	0,0	1,2

Finding (pure) Nash Equilibria by hand

- As player 2: for each row, find the best response, upper-score it.

Player 2		
Player 1		R
T	$\underline{2,1}$	0,0
B	0,0	1,2

Finding (pure) Nash Equilibria by hand

- As player 2: for each row, find the best response, upper-score it.

Player 2		
Player 1		R
T	$\overline{2,1}$	0,0
B	0,0	1,2

Finding (pure) Nash Equilibria by hand

- As player 2: for each row, find the best response, upper-score it.

Player 2		
Player 1	L	R
T	$\overline{2,1}$	0,0
B	0,0	$\overline{1,2}$

Finding (pure) Nash Equilibria by hand

- Entries with both lower and upper bars are pure NEs.

Player 2		
Player 1		R
T	$\overline{2,1}$	0,0
B	0,0	$\overline{1,2}$

Pure Nash Equilibrium may not exist

So far, pure strategy: each player picks a deterministic strategy. But:

Pure Nash Equilibrium may not exist

So far, pure strategy: each player picks a deterministic strategy. But:

Player 2	rock	paper	scissors
Player 1			
rock	0,0	$-\overline{-1,1}$	$\underline{\underline{1,-1}}$
paper	$\underline{1,-1}$	0,0	$\overline{-1,1}$
scissors	$\overline{-1,1}$	$\underline{1,-1}$	0,0

Mixed Strategies

Mixed Strategies

Can also randomize actions: "mixed"

Mixed Strategies

Can also randomize actions: "mixed"

- Player i assigns probabilities x_{i} to each action

Mixed Strategies

Can also randomize actions: "mixed"

- Player i assigns probabilities x_{i} to each action

$$
x_{i}\left(a_{i}\right), \text { where } \sum_{a_{i} \in A_{i}} x_{i}\left(a_{i}\right)=1, x_{i}\left(a_{i}\right) \geq 0
$$

Mixed Strategies

Can also randomize actions: "mixed"

- Player i assigns probabilities x_{i} to each action

$$
x_{i}\left(a_{i}\right), \text { where } \sum_{a_{i} \in A_{i}} x_{i}\left(a_{i}\right)=1, x_{i}\left(a_{i}\right) \geq 0
$$

- Now consider expected rewards

Mixed Strategies

Can also randomize actions: "mixed"

- Player i assigns probabilities x_{i} to each action

$$
x_{i}\left(a_{i}\right), \text { where } \sum_{a_{i} \in A_{i}} x_{i}\left(a_{i}\right)=1, x_{i}\left(a_{i}\right) \geq 0
$$

- Now consider expected rewards

Mixed Strategies

Can also randomize actions: "mixed"

- Player i assigns probabilities x_{i} to each action

$$
x_{i}\left(a_{i}\right), \text { where } \sum_{a_{i} \in A_{i}} x_{i}\left(a_{i}\right)=1, x_{i}\left(a_{i}\right) \geq 0
$$

- Now consider expected rewards

$$
u_{i}\left(x_{i}, x_{-i}\right)=E_{a_{i} \sim x_{i}, a_{-i} \sim x_{-i}} u_{i}\left(a_{i}, a_{-i}\right)=\sum_{a_{i}} \sum_{a_{-i}} x_{i}\left(a_{i}\right) x_{-i}\left(a_{-i}\right) u_{i}\left(a_{i}, a_{-i}\right)
$$

Mixed Strategy Nash Equilibrium

Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^{*}=\left(x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}\right)$

Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^{*}=\left(x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}\right)$

- This is a Nash equilibrium if

Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^{*}=\left(x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}\right)$

- This is a Nash equilibrium if

$$
u_{i}\left(x_{i}^{*}, x_{-1}^{*}\right) \geq u_{i}\left(x_{i}, x_{-i}^{*}\right) \quad \forall x_{i} \in \Delta_{A_{i}}, \forall i \in\{1, \ldots, n\}
$$

Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^{*}=\left(x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}\right)$

- This is a Nash equilibrium if

$$
u_{i}\left(x_{i}^{*}, x_{-1}^{*}\right) \geq u_{i}\left(x_{i}, x_{-i}^{*}\right) \quad \forall x_{i} \in \Delta_{A_{i}}, \forall i \in\{1, \ldots, n\}
$$

Better than doing
anything else,
"best response"

Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^{*}=\left(x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}\right)$

- This is a Nash equilibrium if

$$
u_{i}\left(x_{i}^{*}, x_{-1}^{*}\right) \geq u_{i}\left(x_{i}, x_{-i}^{*}\right) \quad \forall x_{i} \in \Delta_{A_{i}}, \forall i \in\{1, \ldots, n\}
$$

Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^{*}=\left(x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}\right)$

- This is a Nash equilibrium if

$$
u_{i}\left(x_{i}^{*}, x_{-1}^{*}\right) \geq u_{i}\left(x_{i}, x_{-i}^{*}\right) \quad \forall x_{i} \in \Delta_{A_{i}}, \forall i \in\{1, \ldots, n\}
$$

- Intuition: nobody can increase expected reward by changing only their own strategy.

Mixed Strategy Nash Equilibrium

Example: $\quad x_{1}()=.x_{2(.)}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Mixed Strategy Nash Equilibrium

Example: $\quad x_{1}()=.x_{2(.)}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Player 2			
Player 1	rock	paper	scissors
rock	0,0	$-1,1$	$1,-1$
paper	$1,-1$	0,0	$-1,1$
scissors	$-1,1$	$1,-1$	0,0

Finding Mixed NE in 2-Player Zero-Sum Game

Example: Two Finger Morra. Show 1 or 2 fingers. The "even player" wins the sum if the sum is even, and vice versa.

Finding Mixed NE in 2-Player Zero-Sum Game

Example: Two Finger Morra. Show 1 or 2 fingers. The "even player" wins the sum if the sum is even, and vice versa.

odd		
even	$f 1$	f2
$f 1$	$2,-2$	$-3,3$
f2	$-3,3$	$4,-4$

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Two Finger Morra. Two-player zero-sum game. No pure NE:

odd		
even		

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p)

p		q	1-q
	odd even	$f 1$	f2
	$f 1$	2,-2	$-3,3$
1-p	f2	-3, 3	4, -4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is ($q, 1-q$), and even's ($p, 1-p$) By definition, p is best response to $\mathrm{q}: u_{1}(p, q) \geq u_{1}\left(p^{\prime}, q\right) \forall p^{\prime}$.

p		q	1-q
	odd even	$f 1$	f2
	$f 1$	$2,-2$	-3, 3
1-p	f2	-3, 3	4, -4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is ($q, 1-q$), and even's ($p, 1-p$) By definition, p is best response to $\mathrm{q}: u_{1}(p, q) \geq u_{1}\left(p^{\prime}, q\right) \forall p^{\prime}$.

p		q	1-q
	odd even	$f 1$	f2
	$f 1$	$2,-2$	-3, 3
1-p	f2	-3, 3	4, -4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is ($q, 1-q$), and even's ($p, 1-p$) By definition, p is best response to $\mathrm{q}: u_{1}(p, q) \geq u_{1}\left(p^{\prime}, q\right) \forall p^{\prime}$.

But $u_{1}(p, q)=p u_{1}\left(f_{1}, q\right)+(1-p) u_{1}\left(f_{2}, q\right)$

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is ($q, 1-q$), and even's ($p, 1-p$) By definition, p is best response to $\mathrm{q}: u_{1}(p, q) \geq u_{1}\left(p^{\prime}, q\right) \forall p^{\prime}$.

But $u_{1}(p, q)=p u_{1}\left(f_{1}, q\right)+(1-p) u_{1}\left(f_{2}, q\right)$
q $\quad 1-q$
Average is no greater than components

	odd		
	even	$f 1$	f2
p	$f 1$	$\underline{2,-2}$	$\overline{-3,3}$
$1-\mathrm{p}$	f 2	$\overline{\overline{-3,3}}$	$\underline{4,-4}$

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is ($q, 1-q$), and even's ($p, 1-p$) By definition, p is best response to $\mathrm{q}: u_{1}(p, q) \geq u_{1}\left(p^{\prime}, q\right) \forall p^{\prime}$.

But $u_{1}(p, q)=p u_{1}\left(f_{1}, q\right)+(1-p) u_{1}\left(f_{2}, q\right)$
$q \quad 1-q$
Average is no greater than components
$\rightarrow \quad u_{1}(p, q)=u_{1}\left(f_{1}, q\right)=u_{1}\left(f_{2}, q\right)$

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is ($q, 1-q$), and even's ($p, 1-p$) By definition, p is best response to $\mathrm{q}: u_{1}(p, q) \geq u_{1}\left(p^{\prime}, q\right) \forall p^{\prime}$.

But $u_{1}(p, q)=p u_{1}\left(f_{1}, q\right)+(1-p) u_{1}\left(f_{2}, q\right)$
$q \quad 1-q$
Average is no greater than components
$\rightarrow \quad u_{1}(p, q)=u_{1}\left(f_{1}, q\right)=u_{1}\left(f_{2}, q\right)$
We want to find q such that equality holds.
Then even has no incentive to change strategy.

		$f 1$	f2
p	$f 1$	2,-2	-3, 3
1-p	f2	-3, 3	4,-4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

		q	1-q
	odd even	$f 1$	f2
p	$f 1$	$2,-2$	-3, 3
1-p	f2	-3, 3	4, -4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

$$
u_{1}\left(f_{1}, q\right)=u_{1}\left(f_{2}, q\right)
$$

		q	1-q
	odd even	$f 1$	f2
p	$f 1$	$2,-2$	-3, 3
1-p	f2	-3, 3	4, -4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

$$
\begin{aligned}
& u_{1}\left(f_{1}, q\right)=u_{1}\left(f_{2}, q\right) \\
& 2 q+(-3)(1-q)=(-3) q+4(1-q)
\end{aligned}
$$

		q	1-q
	odd even	$f 1$	f2
p	$f 1$	$2,-2$	-3, 3
1-p	f2	-3, 3	4, -4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

$$
\begin{aligned}
& u_{1}\left(f_{1}, q\right)=u_{1}\left(f_{2}, q\right) \\
& 2 q+(-3)(1-q)=(-3) q+4(1-q) \\
& q=\frac{7}{12}
\end{aligned}
$$

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

$$
\begin{aligned}
& u_{1}\left(f_{1}, q\right)=u_{1}\left(f_{2}, q\right) \\
& 2 q+(-3)(1-q)=(-3) q+4(1-q) \\
& q=\frac{7}{12}
\end{aligned}
$$

Similarly, $u_{2}\left(p, f_{1}\right)=u_{2}\left(p, f_{2}\right)$

		q	1-q
	odd even	$f 1$	f2
p	$f 1$	$2,-2$	-3, 3
1-p	f2	-3, 3	4, -4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

$$
\begin{aligned}
& u_{1}\left(f_{1}, q\right)=u_{1}\left(f_{2}, q\right) \\
& 2 q+(-3)(1-q)=(-3) q+4(1-q) \\
& q=\frac{7}{12}
\end{aligned}
$$

Similarly, $u_{2}\left(p, f_{1}\right)=u_{2}\left(p, f_{2}\right)$

$$
p=\frac{7}{12}
$$

	q		1-q
	odd even	$f 1$	f2
p	$f 1$	$2,-2$	-3, 3
1-p	f2	-3, 3	4, -4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

$u_{1}\left(f_{1}, q\right)=u_{1}\left(f_{2}, q\right)$
$2 q+(-3)(1-q)=(-3) q+4(1-q)$
$q=\frac{7}{12}$
Similarly, $u_{2}\left(p, f_{1}\right)=u_{2}\left(p, f_{2}\right)$

$$
p=\frac{7}{12}
$$

At this NE , even gets $-1 / 12$, odd gets $1 / 12$.

	q		1-q
	odd even	$f 1$	f2
p	$f 1$	$2,-2$	$-3,3$
1-p	f2	-3, 3	4, -4

Properties of Nash Equilibrium

Major result: (John Nash '51)

Properties of Nash Equilibrium

Major result: (John Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium

Properties of Nash Equilibrium

Major result: (John Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium
- But not necessarily pure (i.e., deterministic strategy)

Properties of Nash Equilibrium

Major result: (John Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium
- But not necessarily pure (i.e., deterministic strategy)
- Could be more than one

Properties of Nash Equilibrium

Major result: (John Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium
- But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally hard.

Properties of Nash Equilibrium

Major result: (John Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium
- But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally hard.
- Exception: two-player zero-sum games (can be found with linear programming).

Break \& Quiz

Q 2.1: Which of the following is false?
(i) Rock/paper/scissors has a dominant pure strategy
(ii) There is a Nash equilibrium for rock/paper/scissors

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

Break \& Quiz

Q 2.1: Which of the following is false?
(i) Rock/paper/scissors has a dominant pure strategy
(ii) There is a Nash equilibrium for rock/paper/scissors

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

Break \& Quiz

Q 2.1: Which of the following is false?
(i) Rock/paper/scissors has a dominant pure strategy
(ii) There is a Nash equilibrium for rock/paper/scissors

- A. Neither (i is false: easy to check that there's no deterministic dominant strategy)
- B. (i) but not (ii)
- C. (ii) but not (i) (i is false: easy to check that there's no deterministic dominant strategy)
- D. Both (There is a mixed strategy Nash Eq.)

Break \& Quiz

Q 2.2: Which of the following is true
(i) Nash equilibria require each player to know other players' strategies
(ii) Nash equilibria require rational play

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

Break \& Quiz

Q 2.2: Which of the following is true
(i) Nash equilibria require each player to know other players' strategies
(ii) Nash equilibria require rational play

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

Break \& Quiz

Q 2.2: Which of the following is true
(i) Nash equilibria require each player to know other players' strategies
(ii) Nash equilibria require rational play

- A. Neither (See below)
- B. (i) but not (ii) (Rational play required: i.e., what if prisoners desire longer jail sentences?)
- C. (ii) but not (i) (The basic assumption of Nash equilibria is knowing all of the strategies involved)
- D. Both

Summary

- Intro to game theory
- Characterize games by various properties
- Mathematical formulation for simultaneous games
- Normal form, dominance, Nash equilibria, mixed vs pure

