Outline

Homeworks:
- Homework 9 due Thursday April 27
- Homework 10 due Thursday May 4

Class roadmap:

<table>
<thead>
<tr>
<th>Tuesday, April 18</th>
<th>Games I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, April 20</td>
<td>Games II</td>
</tr>
<tr>
<td>Tuesday, April 25</td>
<td>Reinforcement Learning I</td>
</tr>
<tr>
<td>Thursday, April 27</td>
<td>Reinforcement Learning I</td>
</tr>
<tr>
<td>Tuesday, May 2</td>
<td>Review of RL + Games</td>
</tr>
<tr>
<td>Thursday, May 4</td>
<td>Ethics and Trust in AI</td>
</tr>
</tbody>
</table>
Outline

• Introduction to game theory
 – Properties of games, mathematical formulation

• Simultaneous-Move Games
 – Normal form, strategies, dominance, Nash equilibrium
So Far in The Course

We looked at techniques:
So Far in The Course

We looked at techniques:

- **Unsupervised**: See data, do something with it. Unstructured.
So Far in The Course

We looked at techniques:

- **Unsupervised**: See data, do something with it. Unstructured.
So Far in The Course

We looked at techniques:

- **Unsupervised**: See data, do something with it. Unstructured.

- **Supervised**: Train a model to make predictions. More structure (labels).
So Far in The Course

We looked at techniques:

- **Unsupervised**: See data, do something with it. Unstructured.
- **Supervised**: Train a model to make predictions. More structure (labels).
So Far in The Course

We looked at techniques:

- **Unsupervised**: See data, do something with it. Unstructured.
- **Supervised**: Train a model to make predictions. More structure (labels).
- **Planning and Games**: Much more structure.
So Far in The Course

We looked at techniques:

- **Unsupervised**: See data, do something with it. Unstructured.
- **Supervised**: Train a model to make predictions. More structure (labels).
- **Planning and Games**: Much more structure.
More General Model

Suppose we have an agent interacting with the world
More General Model

Suppose we have an agent interacting with the world
More General Model

Suppose we have an agent interacting with the world
More General Model

Suppose we have an agent interacting with the world
More General Model

Suppose we have an agent interacting with the world
More General Model

Suppose we have an agent interacting with the world.

- Agent receives a reward based on state of the world.
More General Model

Suppose we have an agent interacting with the world

- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility
More General Model

Suppose we have an agent interacting with the world

• Agent receives a reward based on state of the world
 – **Goal**: maximize reward / utility ($$$)
More General Model

Suppose we have an **agent interacting** with the **world**

- Agent receives a reward based on state of the world
 - **Goal**: maximize reward / utility ($$$)
 - Note: now **data** consists of actions, observations, and rewards
More General Model

Suppose we have an agent interacting with the world

- Agent receives a reward based on state of the world
 - **Goal**: maximize reward / utility ($$$)
 - Note: now data consists of actions, observations, and rewards
 - Setup for decision theory, reinforcement learning, planning
Games: Multiple Agents

Games setup: *multiple* agents
Games: Multiple Agents

Games setup: **multiple** agents

Player 1
Games: Multiple Agents

Games setup: multiple agents
Games: Multiple Agents

Games setup: **multiple** agents

- Player 1
- World
- Player 3
Games: Multiple Agents

Games setup: multiple agents

Player 1

World

Player 2

Player 3
Games: Multiple Agents

Games setup: *multiple* agents

Player 1 <-> World <-> Player 2
Player 3
Games: Multiple Agents

Games setup: **multiple** agents

Player 1 — World — Player 2

Player 2 — World — Player 3
Games: Multiple Agents

Games setup: multiple agents
Games: Multiple Agents

Games setup: *multiple* agents

- Now: interactions between agents

![Diagram showing multiple agents connected to the world](image-url)
Games: Multiple Agents

Games setup: **multiple** agents

- Now: interactions between agents
- Still want to maximize utility
Games: Multiple Agents

Games setup: **multiple** agents

- Now: interactions between agents
- Still want to maximize utility
- Requires **strategic** decision making.
Modeling Games: Properties

Let’s work through properties of games
Modeling Games: Properties

Let’s work through properties of games

• Number of agents/players
Modeling Games: Properties

Let’s work through properties of games

- **Number** of agents/players
- Action space: finite or infinite
Modeling Games: Properties

Let’s work through properties of games

- **Number** of agents/players
- Action space: finite or infinite
- **Deterministic** or random
Modeling Games: Properties

Let’s work through properties of games

- **Number** of agents/players
- Action space: finite or infinite
- **Deterministic** or random
- Zero-sum or general-sum
Modeling Games: Properties

Let’s work through properties of games

- **Number** of agents/players
- Action space: finite or infinite
- **Deterministic** or random
- Zero-sum or general-sum
- **Sequential** or simultaneous moves
Modeling Games: Properties

Let’s work through properties of games

- **Number** of agents/players
- Action space: finite or infinite
- **Deterministic** or random
- Zero-sum or general-sum
- **Sequential** or simultaneous moves
Property 1: **Number** of players

Pretty clear idea: 1 or more players
Property 1: **Number** of players

Pretty clear idea: 1 or more players

- Usually interested in ≥ 2 players
Property 1: **Number** of players

Pretty clear idea: 1 or more players

- Usually interested in ≥ 2 players
- Typically a finite number of players
Property 1: **Number** of players

Pretty clear idea: 1 or more players

- Usually interested in ≥ 2 players
- Typically a finite number of players
Property 1: **Number** of players

Pretty clear idea: 1 or more players

- Usually interested in \(\geq 2 \) players
- Typically a finite number of players
Property 2: Action Space
Property 2: Action Space

Action space: set of possible actions an agent can choose from.

Can be finite or infinite.

Examples:
- Rock-paper-scissors
- Tennis
Property 3: Deterministic or Random
Property 3: **Deterministic or Random**

• Is there *chance* in the game?
 – Poker
 – Scrabble
 – Chess
Property 3: **Deterministic or Random**

- Is there *chance* in the game?
 - Poker
 - Scrabble
 - Chess
Property 4: **Sum of payoffs**
Property 4: **Sum of payoffs**

- Two basic types: zero sum vs. general sum.
Property 4: **Sum of payoffs**

- Two basic types: zero sum vs. general sum.
Property 4: **Sum of payoffs**

- Two basic types: zero sum vs. general sum.

- Zero sum: one player’s win is the other’s loss
 - Pure competition.
 - Example: rock-paper-scissors
Property 4: **Sum of payoffs**

- Two basic types: zero sum vs. general sum.

- Zero sum: one player’s win is the other’s loss
 - Pure competition.
 - Example: rock-paper-scissors
Property 4: **Sum of payoffs**

- Two basic types: zero sum vs. general sum.

- Zero sum: one player’s win is the other’s loss
 - Pure competition.
 - Example: rock-paper-scissors

- General sum
 - Example: driving to work, prisoner’s dilemma
Property 5: **Sequential** or **Simultaneous Moves**
Property 5: **Sequential** or **Simultaneous Moves**

- Simultaneous: all players take action at the same time
Property 5: **Sequential** or **Simultaneous Moves**

- **Simultaneous**: all players take action at the same time
- **Sequential**: take turns (but payoff only revealed at end of game)
Quiz break:
Quiz break:

Give the properties of the game shown on the right:
Quiz break:

Give the properties of the game shown on the right:

- Number of players?
Quiz break:

Give the properties of the game shown on the right:

- Number of players?
- Deterministic or stochastic?
Quiz break:

Give the properties of the game shown on the right:

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
Quiz break:

Give the properties of the game shown on the right:
- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
- Finite or infinite action-space?
Quiz break:

Give the properties of the game shown on the right:

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
- Finite or infinite action-space?
- Sequential or simultaneous?
Normal Form Game

Mathematical description of simultaneous games.
Normal Form Game

Mathematical description of simultaneous games.

- n players $\{1, 2, \ldots, n\}$
Normal Form Game

Mathematical description of simultaneous games.

- \(n \) players \(\{1,2,...,n\} \)
- Player \(i \) chooses strategy \(a_i \) from \(A_i \).
Normal Form Game

Mathematical description of simultaneous games.

- n players \{1,2,...,n\}
- Player i chooses strategy a_i from A_i.
- Strategy profile: $a = (a_1, a_2, ..., a_n)$
Normal Form Game

Mathematical description of simultaneous games.

- n players \{1,2,...,n\}
- Player i chooses strategy a_i from A_i.
- Strategy profile: $a = (a_1, a_2, ..., a_n)$
- Player i gets rewards $u_i(a)$
Normal Form Game

Mathematical description of simultaneous games.

- n players $\{1,2,\ldots,n\}$
- Player i chooses strategy a_i from A_i.
- Strategy profile: $a = (a_1, a_2, \ldots, a_n)$
- Player i gets rewards $u_i(a)$
 - **Note**: reward depends on other players!
Normal Form Game

Mathematical description of simultaneous games.

• n players \{1,2,...,n\}

• Player i chooses strategy a_i from A_i.

• Strategy profile: $a = (a_1, a_2, ..., a_n)$

• Player i gets rewards $u_i(a)$

 – **Note**: reward depends on other players!

• We consider the simple case where all reward functions are common knowledge.
Example of Normal Form Game

Ex: Prisoner’s Dilemma
Ex: Prisoner’s Dilemma

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Stay silent</th>
<th>Betray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay silent</td>
<td>−1, −1</td>
<td>−3, 0</td>
</tr>
<tr>
<td>Betray</td>
<td>0, −3</td>
<td>−2, −2</td>
</tr>
</tbody>
</table>
Example of Normal Form Game

Ex: Prisoner’s Dilemma

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay silent</td>
<td>Stay silent</td>
<td>−1, −1</td>
<td>−3, 0</td>
</tr>
<tr>
<td>Betray</td>
<td>Stay silent</td>
<td>0, −3</td>
<td>−2, −2</td>
</tr>
</tbody>
</table>

- 2 players, 2 actions: yields 2x2 payoff matrix
Example of Normal Form Game

Ex: Prisoner’s Dilemma

- 2 players, 2 actions: yields 2x2 payoff matrix
- Strategy set: {Stay silent, betray}

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td>Stay silent</td>
</tr>
<tr>
<td>Stay silent</td>
<td>-1, -1</td>
</tr>
<tr>
<td>Betray</td>
<td>0, -3</td>
</tr>
</tbody>
</table>
Example of Normal Form Game

Ex: Prisoner’s Dilemma

- 2 players, 2 actions: yields 2x2 payoff matrix
- Strategy set: \{Stay silent, betray\}
Strictly Dominant Strategies
Strictly Dominant Strategies

Let’s analyze such games. Some strategies are better than others!
Strictly Dominant Strategies

Let’s analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if \(a_i \) strictly better than \(a_i' \) regardless of what other players do, \(a_i \) is strictly dominant
Strictly Dominant Strategies

Let’s analyze such games. Some strategies are better than others!

- **Strictly dominant strategy**: if a_i strictly better than a'_i regardless of what other players do, a_i is **strictly dominant**

 - I.e., $u_i(a_i, a_{-i}) > u_i(b, a_{-i}), \forall b \neq a_i, \forall a_{-i}$
Strictly Dominant Strategies

Let’s analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if a_i strictly better than a_i' regardless of what other players do, a_i is strictly dominant

- I.e., $u_i(a_i, a_{-i}) > u_i(b, a_{-i})$, $\forall b \neq a_i$, $\forall a_{-i}$

All of the other entries of a excluding i
Strictly Dominant Strategies

Let’s analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if a_i strictly better than a_i' regardless of what other players do, a_i is strictly dominant

 \[u_i(a_i, a_{-i}) > u_i(b, a_{-i}), \forall b \neq a_i, \forall a_{-i} \]

- Sometimes a dominant strategy does not exist!
Strictly Dominant Strategies Example

Back to Prisoner’s Dilemma
Strictly Dominant Strategies Example

Back to Prisoner’s Dilemma

• Examine all the entries: betray strictly dominates
Strictly Dominant Strategies Example

Back to Prisoner’s Dilemma

• Examine all the entries: betray strictly dominates
• Check:
Strictly Dominant Strategies Example

Back to Prisoner’s Dilemma

- Examine all the entries: betray strictly dominates
- Check:

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td>Stay silent</td>
<td>−1, −1</td>
<td>−3, 0</td>
</tr>
<tr>
<td></td>
<td>Betray</td>
<td>0, −3</td>
<td>−2, −2</td>
</tr>
</tbody>
</table>
Dominant Strategy Equilibrium
Dominant Strategy Equilibrium

\(a^* \) is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy \(a_i^* \).
Dominant Strategy Equilibrium

\(a^* \) is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy \(a_i^* \)

- Rational players will play at DSE, if one exists.
Dominant Strategy Equilibrium

a^* is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_i^*

• Rational players will play at DSE, if one exists.

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stay silent</td>
<td>−1, −1</td>
<td>−3, 0</td>
</tr>
<tr>
<td>Betray</td>
<td>0, −3</td>
<td>−2, −2</td>
</tr>
</tbody>
</table>
Dominant Strategy Equilibrium

a^* is a (strictly) dominant strategy equilibrium (DSE), if all players have a strictly dominant strategy a_i^*

- Rational players will play at DSE, if one exists.

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td>Stay silent</td>
<td>Betray</td>
</tr>
<tr>
<td>Stay silent</td>
<td>$-1, -1$</td>
<td>$-3, 0$</td>
</tr>
<tr>
<td>Betray</td>
<td>$0, -3$</td>
<td>$-2, -2$</td>
</tr>
</tbody>
</table>
Dominant Strategy: Absolute Best Responses
Dominant Strategy: Absolute Best Responses

Player i’s best response to strategy

\(a_{-i}: BR(a_{-i}) = \arg \max_{a} u_i(a, a_{-i}) \)
Dominant Strategy: Absolute Best Responses

Player i’s best response to strategy

\[a_{-i}: BR(a_{-i}) = \arg\max_{a} u_i(a, a_{-i}) \]

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
<th>Stay silent</th>
<th>Betray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay silent</td>
<td>−1, −1</td>
<td>−3, 0</td>
<td></td>
</tr>
<tr>
<td>Betray</td>
<td>0, −3</td>
<td>−2, −2</td>
<td></td>
</tr>
</tbody>
</table>
Dominant Strategy: Absolute Best Responses

Player i’s best response to strategy

\[a_{-i}: \quad BR(a_{-i}) = \arg\max_a u_i(a, a_{-i}) \]

\[BR(\text{player 2 = silent}) = \text{betray} \]

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Stay silent</th>
<th>Betray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay silent</td>
<td>−1, −1</td>
<td>−3, 0</td>
</tr>
<tr>
<td>Betray</td>
<td>0, −3</td>
<td>−2, −2</td>
</tr>
</tbody>
</table>
Dominant Strategy: Absolute Best Responses

Player i’s best response to strategy a_{-i}: $BR(a_{-i}) = \arg \max_{a} u_i(a, a_{-i})$

$BR(\text{player2}=\text{silent}) = \text{betray}$

$BR(\text{player2}=\text{betray}) = \text{betray}$

<table>
<thead>
<tr>
<th>Player 1</th>
<th>$Stay\ silent$</th>
<th>$Betray$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Stay\ silent$</td>
<td>$-1, -1$</td>
<td>$-3, 0$</td>
</tr>
<tr>
<td>$Betray$</td>
<td>$0, -3$</td>
<td>$-2, -2$</td>
</tr>
</tbody>
</table>
Dominant Strategy: Absolute Best Responses

Player i’s best response to strategy

\[a_{-i}: \quad BR(a_{-i}) = \arg \max_a u_i(a, a_{-i}) \]

\[
\begin{align*}
BR(\text{player2=silent}) &= \text{betray} \\
BR(\text{player2=betray}) &= \text{betray}
\end{align*}
\]

\[a^*_i \] is the dominant strategy for player i, if

\[a^*_i = BR(a_{-i}), \quad \forall \ a_{-i} \]
Dominant Strategy Equilibrium

Dominant Strategy Equilibrium does not always exist.
Dominant Strategy Equilibrium

Dominant Strategy Equilibrium does not always exist.

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>T</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>B</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
Nash Equilibrium

\(a^* \) is a Nash equilibrium if no player has an incentive to unilaterally deviate
Nash Equilibrium

\(a^* \) is a Nash equilibrium if no player has an incentive to unilaterally deviate

\[
u_i(a_i^*, a_{-i}^*) \geq u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i
\]
Nash Equilibrium

a^* is a Nash equilibrium if no player has an incentive to unilaterally deviate

\[u_i(a^*_i, a^*_{-i}) \geq u_i(a_i, a^*_{-i}) \quad \forall a_i \in A_i \]

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(L)</td>
</tr>
<tr>
<td>(T)</td>
<td>2, 1</td>
</tr>
<tr>
<td>(B)</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
\(a^* \) is a Nash equilibrium if no player has an incentive to unilaterally deviate

\[
u_i(a^*_i, a^*_{-i}) \geq u_i(a_i, a^*_{-i}) \quad \forall a_i \in A_i
\]
Nash Equilibrium

a^* is a Nash equilibrium if no player has an incentive to unilaterally deviate

$$u_i(a_i^*, a_{-i}^*) \geq u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>T</td>
<td>2, 1</td>
<td>0, 0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0, 0</td>
<td>1, 2</td>
<td></td>
</tr>
</tbody>
</table>
Nash Equilibrium: Best Response to Each Other
Nash Equilibrium: Best Response to Each Other

\(a^* \) is a Nash equilibrium:
Nash Equilibrium: Best Response to Each Other

\(a^* \) is a Nash equilibrium:

\[\forall i, \forall b \in A_i : u_i(a^*_i, a^*_{-i}) \geq u_i(b, a^*_{-i}) \]
Nash Equilibrium: Best Response to Each Other

\(\ast \) is a Nash equilibrium:

\[\forall i, \forall b \in A_i : u_i(a_i^*, a_{-i}^*) \geq u_i(b, a_{-i}^*) \]

(no player has an incentive to unilaterally deviate)
Nash Equilibrium: Best Response to Each Other

a^* is a Nash equilibrium:

$\forall i, \forall b \in A_i : u_i(a^*_i, a^*_{-i}) \geq u_i(b, a^*_{-i})$

(no player has an incentive to unilaterally deviate)

• Equivalently, for each player i:

$$a^*_i \in BR(a^*_{-i}) = \arg\max_b u_i(b, a^*_{-i})$$
Nash Equilibrium: Best Response to Each Other

\(a^* \) is a Nash equilibrium:

\[
\forall i, \forall b \in A_i : u_i(a_i^*, a_{-i}^*) \geq u_i(b, a_{-i}^*)
\]

(no player has an incentive to unilaterally deviate)

- Equivalently, for each player \(i \):
 \[
 a_i^* \in BR(a_{-i}^*) = \arg\max_b u_i(b, a_{-i}^*)
 \]

- Compared to DSE (a DSE is a NE, the other way is generally not true):
Nash Equilibrium: Best Response to Each Other

\(a^* \) is a Nash equilibrium:

\[
\forall i, \forall b \in A_i : u_i(a^*_i, a^*_{-i}) \geq u_i(b, a^*_{-i})
\]

(no player has an incentive to \textcolor{red}{unilaterally deviate})

• Equivalently, for each player \(i \):

\[
a_i^* \in BR(a^*_{-i}) = \text{argmax}_b u_i(b, a^*_{-i})
\]

• Compared to DSE (a DSE is a NE, the other way is generally not true):

\[
a_i^* = BR(a_{-i}), \ \forall \ a_{-i}
\]
Nash Equilibrium: Best Response to Each Other
Nash Equilibrium: Best Response to Each Other

\(a^* \) is a Nash equilibrium:
Nash Equilibrium: Best Response to Each Other

\(a^* \) is a Nash equilibrium:

\[\forall i, \forall b \in A_i : u_i(a_i^*, a_{-i}^*) \geq u_i(b, a_{-i}^*) \]
Nash Equilibrium: Best Response to Each Other

\(a^* \) is a Nash equilibrium:

\[\forall i, \forall b \in A_i : u_i(a^*_i, a^*_{-i}) \geq u_i(b, a^*_{-i}) \]

(no player has an incentive to unilaterally deviate)
Nash Equilibrium: Best Response to Each Other

a^* is a Nash equilibrium:

\[\forall i, \forall b \in A_i : u_i(a_i^*, a_{-i}^*) \geq u_i(b, a_{-i}^*) \]

(no player has an incentive to unilaterally deviate)

• Pure Nash equilibrium:
Nash Equilibrium: Best Response to Each Other

a^* is a Nash equilibrium:

$$\forall i, \forall b \in A_i : u_i(a_i^*, a_{-i}^*) \geq u_i(b, a_{-i}^*)$$

(no player has an incentive to unilaterally deviate)

- Pure Nash equilibrium:
 - A **pure strategy** is a deterministic choice (no randomness).
Nash Equilibrium: Best Response to Each Other

\[a^* \text{ is a Nash equilibrium:} \]

\[\forall i, \forall b \in A_i : u_i(a_i^*, a_{-i}^*) \geq u_i(b, a_{-i}^*) \]

(no player has an incentive to unilaterally deviate)

- Pure Nash equilibrium:
 - A \textbf{pure strategy} is a deterministic choice (no randomness).
 - Later: we will consider \textbf{mixed} strategies
Nash Equilibrium: Best Response to Each Other

\(a^* \) is a Nash equilibrium:

\[\forall i, \forall b \in A_i : u_i(a^*_i, a^*_{-i}) \geq u_i(b, a^*_{-i}) \]

(no player has an incentive to unilaterally deviate)

- Pure Nash equilibrium:
 - A pure strategy is a deterministic choice (no randomness).
 - Later: we will consider mixed strategies
 - In pure Nash equilibrium, players can only play pure strategies.
Finding (pure) Nash Equilibria by hand

- As player 1: For each column, find the best response, underscore it.
Finding (pure) Nash Equilibria by hand

- As player 1: For each column, find the best response, underscore it.

<table>
<thead>
<tr>
<th>Player 2</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>B</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
Finding (pure) Nash Equilibria by hand

- As player 1: For each column, find the best response, underscore it.

<table>
<thead>
<tr>
<th>Player 2</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>B</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
Finding (pure) Nash Equilibria by hand

- As player 1: For each column, find the best response, underscore it.

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
<th>(L)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T)</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>(T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>0, 0</td>
<td></td>
<td>1, 2</td>
</tr>
</tbody>
</table>
Finding (pure) Nash Equilibria by hand

- As player 2: for each row, find the best response, upper-score it.

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
Finding (pure) Nash Equilibria by hand

- As player 2: for each row, find the best response, upper-score it.

<table>
<thead>
<tr>
<th>Player 2</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>B</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
Finding (pure) Nash Equilibria by hand

- As player 2: for each row, find the best response, upper-score it.

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2, 1</td>
</tr>
<tr>
<td>B</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Finding (pure) Nash Equilibria by hand

- Entries with both lower and upper bars are pure NEs.

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>B</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
Pure Nash Equilibrium may not exist

So far, pure strategy: each player picks a deterministic strategy. But:
Pure Nash Equilibrium may not exist

So far, pure strategy: each player picks a deterministic strategy. But:

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th>rock</th>
<th>paper</th>
<th>scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td>rock</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>paper</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
<td></td>
</tr>
<tr>
<td>scissors</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
<td></td>
</tr>
</tbody>
</table>
Mixed Strategies
Mixed Strategies

Can also randomize actions: “mixed”
Mixed Strategies

Can also randomize actions: “mixed”

• Player i assigns probabilities x_i to each action
Mixed Strategies

Can also randomize actions: “mixed”

- Player i assigns probabilities x_i to each action

$$x_i(a_i), \text{ where } \sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \geq 0$$
Mixed Strategies

Can also randomize actions: “mixed”

- Player i assigns probabilities x_i to each action

 $$x_i(a_i), \text{ where } \sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \geq 0$$

- Now consider expected rewards
Mixed Strategies

Can also randomize actions: “mixed”

- Player i assigns probabilities x_i to each action

\[x_i(a_i), \text{ where } \sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \geq 0 \]

- Now consider \textbf{expected rewards}
Mixed Strategies

Can also randomize actions: “mixed”

- Player i assigns probabilities x_i to each action

\[x_i(a_i), \text{ where } \sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \geq 0 \]

- Now consider expected rewards

\[u_i(x_i, x_{-i}) = E_{a_i \sim x_i, a_{-i} \sim x_{-i}} u_i(a_i, a_{-i}) = \sum_{a_i} \sum_{a_{-i}} x_i(a_i)x_{-i}(a_{-i})u_i(a_i, a_{-i}) \]
Mixed Strategy Nash Equilibrium
Mixed Strategy Nash Equilibrium

Consider the mixed strategy \(x^* = (x_1^*, ..., x_n^*) \)
Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

- This is a **Nash equilibrium** if
Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

- This is a **Nash equilibrium** if

$$u_i(x_i^*, x_{-i}^*) \geq u_i(x_i, x_{-i}^*) \quad \forall x_i \in \Delta_{A_i}, \forall i \in \{1, \ldots, n\}$$
Consider the mixed strategy $x^* = (x_1^*, \ldots, x_n^*)$

- This is a **Nash equilibrium** if

$$u_i(x_i^*, x_{-i}^*) \geq u_i(x_i, x_{-i}^*) \quad \forall x_i \in \Delta_{A_i}, \forall i \in \{1, \ldots, n\}$$

Better than doing anything else, "best response"
Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

- This is a **Nash equilibrium** if

$$u_i(x_{i}^{*}, x_{-i}^{*}) \geq u_i(x_{i}, x_{-i}^{*}) \quad \forall x_{i} \in \Delta_{A_i}, \forall i \in \{1, \ldots, n\}$$

Better than doing anything else, "best response"

Space of probability distributions over strategies.
Mixed Strategy Nash Equilibrium

Consider the mixed strategy \(x^* = (x_1^*, \ldots, x_n^*) \)

- This is a **Nash equilibrium** if

\[
 u_i(x_i^*, x_{-i}^*) \geq u_i(x_i, x_{-i}^*) \quad \forall x_i \in \Delta_{A_i}, \forall i \in \{1, \ldots, n\}
\]

Better than doing anything else, “best response”

Space of probability distributions over strategies.

- Intuition: nobody can **increase expected reward** by changing only their own strategy.
Mixed Strategy Nash Equilibrium

Example: \(x_1(.) = x_2(.) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \)
Mixed Strategy Nash Equilibrium

Example: \(x_1(.) = x_2(.) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \)

<table>
<thead>
<tr>
<th>Player 2</th>
<th>rock</th>
<th>paper</th>
<th>scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rock</td>
<td>0, 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>paper</td>
<td>1, -1</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>scissors</td>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Finding Mixed NE in 2-Player Zero-Sum Game

Example: Two Finger Morra. Show 1 or 2 fingers. The “even player” wins the sum if the sum is even, and vice versa.
Finding Mixed NE in 2-Player Zero-Sum Game

Example: Two Finger Morra. Show 1 or 2 fingers. The “even player” wins the sum if the sum is even, and vice versa.

<table>
<thead>
<tr>
<th></th>
<th>odd</th>
<th>f1</th>
<th>f2</th>
</tr>
</thead>
<tbody>
<tr>
<td>even</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>2, -2</td>
<td></td>
<td>-3, 3</td>
</tr>
<tr>
<td>f2</td>
<td>-3, 3</td>
<td>4, -4</td>
<td></td>
</tr>
</tbody>
</table>
Two Finger Morra. Two-player zero-sum game. No pure NE:

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

<table>
<thead>
<tr>
<th>even</th>
<th>odd</th>
<th>$f1$</th>
<th>$f2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2, -2</td>
<td>-3, 3</td>
</tr>
<tr>
<td>$f1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f2$</td>
<td>-3, 3</td>
<td></td>
<td>4, -4</td>
</tr>
</tbody>
</table>
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

<table>
<thead>
<tr>
<th></th>
<th>odd</th>
<th>1-q</th>
</tr>
</thead>
<tbody>
<tr>
<td>even</td>
<td>q</td>
<td>1-q</td>
</tr>
<tr>
<td></td>
<td>f1</td>
<td>f2</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, -2</td>
<td>-3, 3</td>
</tr>
<tr>
<td>1-p</td>
<td>-3, 3</td>
<td>4, -4</td>
</tr>
</tbody>
</table>
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd’s mixed strategy at NE is (q, 1-q), and even’s (p, 1-p)

\[
\begin{array}{c|cc}
\text{odd} & f_1 & f_2 \\
\hline
f_1 & 2, -2 & -3, 3 \\
f_2 & -3, 3 & 4, -4 \\
\end{array}
\]
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd’s mixed strategy at NE is \((q, 1-q)\), and even’s \((p, 1-p)\).

By definition, \(p\) is best response to \(q\):
\[
u_1(p, q) \geq u_1(p', q) \forall p'.
\]
Suppose odd’s mixed strategy at NE is \((q, 1-q)\), and even’s \((p, 1-p)\). By definition, \(p\) is best response to \(q\):
\[
u_1(p, q) \geq u_1(p', q) \quad \forall p'.
\]

Table of Game Payoffs

<table>
<thead>
<tr>
<th></th>
<th>(q)</th>
<th>(1-q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>odd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>even</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f1)</td>
<td>(2, -2)</td>
<td>(-3, 3)</td>
</tr>
<tr>
<td>(f2)</td>
<td>(-3, 3)</td>
<td>(4, -4)</td>
</tr>
</tbody>
</table>
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd’s mixed strategy at NE is \((q, 1-q)\), and even’s \((p, 1-p)\)

By definition, \(p\) is best response to \(q\):

\[
u_1(p, q) \geq u_1(p', q) \quad \forall p'.
\]

But \(u_1(p, q) = pu_1(f_1, q) + (1 - p)u_1(f_2, q)\)

\[
\begin{array}{c|cc}
\hline
& f_1 & f_2 \\
\hline
f_1 & 2, -2 & -3, 3 \\
\hline
f_2 & -3, 3 & 4, -4 \\
\hline
\end{array}
\]

odd

even

\(q \quad 1-q\)

\(p \quad 1-p\)
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd’s mixed strategy at NE is \((q, 1-q)\), and even’s \((p, 1-p)\).

By definition, \(p\) is best response to \(q\):

\[
u_1(p, q) \geq u_1(p', q) \quad \forall p'.
\]

But

\[
u_1(p, q) = pu_1(f_1, q) + (1 - p)u_1(f_2, q)
\]

Average is no greater than components

<table>
<thead>
<tr>
<th></th>
<th>odd</th>
<th>even</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>2, -2</td>
<td>-3, 3</td>
</tr>
<tr>
<td>f2</td>
<td>-3, 3</td>
<td>4, -4</td>
</tr>
</tbody>
</table>
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd’s mixed strategy at NE is \((q, 1-q)\), and even’s \((p, 1-p)\).
By definition, \(p\) is best response to \(q\):
\[
u_1(p, q) \geq u_1(p', q) \quad \forall p'.
\]

But \(u_1(p, q) = pu_1(f_1, q) + (1 - p)u_1(f_2, q)\)

Average is no greater than components
\[
u_1(p, q) = u_1(f_1, q) = u_1(f_2, q)
\]
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd’s mixed strategy at NE is \((q, 1-q)\), and even’s \((p, 1-p)\).

By definition, \(p\) is best response to \(q\):

\[
u_1(p, q) \geq u_1(p', q) \quad \forall p'.
\]

But \(u_1(p, q) = pu_1(f_1, q) + (1 - p)u_1(f_2, q)\)

Average is no greater than components

\[
u_1(p, q) = u_1(f_1, q) = u_1(f_2, q)
\]

We want to find \(q\) such that equality holds.

Then even has no incentive to change strategy.
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

<table>
<thead>
<tr>
<th></th>
<th>odd</th>
<th>1-q</th>
</tr>
</thead>
<tbody>
<tr>
<td>even</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>2, -2</td>
<td>-3, 3</td>
</tr>
<tr>
<td>f2</td>
<td>-3, 3</td>
<td>4, -4</td>
</tr>
</tbody>
</table>
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

\[u_1(f_1, q) = u_1(f_2, q) \]
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

\[u_1(f_1, q) = u_1(f_2, q) \]

\[2q + (-3)(1 - q) = (-3)q + 4(1 - q) \]
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

\[u_1(f_1, q) = u_1(f_2, q) \]
\[2q + (-3)(1 - q) = (-3)q + 4(1 - q) \]
\[q = \frac{7}{12} \]
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

\[u_1(f_1, q) = u_1(f_2, q) \]
\[2q + (-3)(1 - q) = (-3)q + 4(1 - q) \]
\[q = \frac{7}{12} \]

Similarly, \(u_2(p, f_1) = u_2(p, f_2) \)

<table>
<thead>
<tr>
<th></th>
<th>q</th>
<th>1-q</th>
</tr>
</thead>
<tbody>
<tr>
<td>odd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>even</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>f1</th>
<th>f2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2, -2</td>
<td>-3, 3</td>
</tr>
<tr>
<td>1-p</td>
<td>-3, 3</td>
<td>4, -4</td>
</tr>
</tbody>
</table>
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

\[u_1(f_1, q) = u_1(f_2, q) \]
\[2q + (-3)(1 - q) = (-3)q + 4(1 - q) \]
\[q = \frac{7}{12} \]

Similarly, \[u_2(p, f_1) = u_2(p, f_2) \]
\[p = \frac{7}{12} \]
Finding Mixed NE in 2-Player 2-action Zero-Sum Game

\[u_1(f_1, q) = u_1(f_2, q) \]
\[2q + (-3)(1 - q) = (-3)q + 4(1 - q) \]
\[q = \frac{7}{12} \]

Similarly, \(u_2(p, f_1) = u_2(p, f_2) \)

\[p = \frac{7}{12} \]

At this NE, even gets -1/12, odd gets 1/12.

<table>
<thead>
<tr>
<th>(f_1)</th>
<th>(f_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>odd</td>
<td>q</td>
</tr>
<tr>
<td>even</td>
<td>p</td>
</tr>
<tr>
<td>f1</td>
<td>2, -2</td>
</tr>
<tr>
<td>f2</td>
<td>-3, 3</td>
</tr>
</tbody>
</table>
Properties of Nash Equilibrium

Major result: (John Nash ‘51)
Properties of Nash Equilibrium

Major result: (John Nash ’51)

- Every **finite** (players, actions) game has at least one Nash equilibrium
Properties of Nash Equilibrium

Major result: (John Nash ’51)

• Every finite (players, actions) game has at least one Nash equilibrium
 – But not necessarily pure (i.e., deterministic strategy)
Properties of Nash Equilibrium

Major result: (John Nash ’51)

- Every finite (players, actions) game has at least one Nash equilibrium
 - But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
Properties of Nash Equilibrium

Major result: (John Nash ’51)

- Every **finite** (players, actions) game has at least one Nash equilibrium
 - But not necessarily **pure** (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally **hard**.
Properties of Nash Equilibrium

Major result: (John Nash ’51)

• Every finite (players, actions) game has at least one Nash equilibrium
 — But not necessarily pure (i.e., deterministic strategy)
• Could be more than one
• Searching for Nash equilibria: computationally hard.
 — Exception: two-player zero-sum games (can be found with linear programming).
Q 2.1: Which of the following is false?

(i) Rock/paper/scissors has a dominant pure strategy
(ii) There is a Nash equilibrium for rock/paper/scissors

• A. Neither
• B. (i) but not (ii)
• C. (ii) but not (i)
• D. Both
Break & Quiz

Q 2.1: Which of the following is false?
(i) Rock/paper/scissors has a dominant pure strategy
(ii) There is a Nash equilibrium for rock/paper/scissors

• A. Neither
• **B. (i) but not (ii)**
• C. (ii) but not (i)
• D. Both
Q 2.1: Which of the following is **false**?

(i) Rock/paper/scissors has a dominant pure strategy
(ii) There is a Nash equilibrium for rock/paper/scissors

- A. Neither (i is false: easy to check that there’s no deterministic dominant strategy)
- **B. (i) but not (ii)**
- C. (ii) but not (i) (i is false: easy to check that there’s no deterministic dominant strategy)
- D. Both (There is a mixed strategy Nash Eq.)
Break & Quiz

Q 2.2: Which of the following is true

(i) Nash equilibria require each player to know other players’ strategies
(ii) Nash equilibria require rational play

• A. Neither
• B. (i) but not (ii)
• C. (ii) but not (i)
• D. Both
Q 2.2: Which of the following is true

(i) Nash equilibria require each player to know other players’ strategies

(ii) Nash equilibria require rational play

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- **D. Both**
Q 2.2: Which of the following is true

(i) Nash equilibria require each player to know other players’ strategies
(ii) Nash equilibria require rational play

- A. Neither (See below)
- B. (i) but not (ii) (Rational play required: i.e., what if prisoners desire longer jail sentences?)
- C. (ii) but not (i) (The basic assumption of Nash equilibria is knowing all of the strategies involved)
- D. Both
Summary

• Intro to game theory
 – Characterize games by various properties

• Mathematical formulation for simultaneous games
 – Normal form, dominance, Nash equilibria, mixed vs pure