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Homeworks:  
- Homework 9 due Thursday April 27 
- Homework 10 due Thursday May 4 

Class roadmap:
Tuesday, April 18 Games I

Thursday, April 20 Games II

Tuesday, April 25 Reinforcement Learning I

Thursday, April 27 Reinforcement Learning I

Tuesday, May 2 Review of RL + Games

Thursday, May 4 Ethics and Trust in AI

Outline



Outline

• Introduction to game theory 
– Properties of games, mathematical formulation 

• Simultaneous-Move Games 
– Normal form, strategies, dominance, Nash equilibrium
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More General Model

Suppose we have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility
– Note: now data consists of actions, observations, and rewards
– Setup for decision theory, reinforcement learning, planning

World

Agent

Actions

Observations

($$$)
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Games: Multiple Agents

Games setup: multiple agents

– Now: interactions between agents
– Still want to maximize utility
– Requires strategic decision making.

World

Player 1

Player 2

Player 3
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Let’s work through properties of games
• Number of agents/players
• Action space: finite or infinite
• Deterministic or random
• Zero-sum or general-sum
• Sequential or simultaneous moves

Wiki
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Property 2: Action Space
Action space: set of possible actions an agent can 
choose from. 

Can be finite or infinite. 
Examples: 
• Rock-paper-scissors 
• Tennis
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Property 4: Sum of payoffs 

• Two basic types: zero sum vs. general sum.

• Zero sum: one player’s win is the other’s loss 
– Pure competition. 
– Example: rock-paper-scissors

• General sum 
– Example: driving to work, prisoner’s dilemma 
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Property 5: Sequential or Simultaneous Moves

• Simultaneous: all players take action at the 
same time

• Sequential: take turns (but payoff only 
revealed at end of game)
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Give the properties of the game shown on the 
right:
- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
- Finite or infinite action-space?
- Sequential or simultaneous?
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Mathematical description of simultaneous games. 
• n players {1,2,…,n}
• Player i chooses strategy ai from Ai. 

• Strategy profile: a = (a1, a2, …, an)

• Player i gets rewards ui (a)
– Note: reward depends on other players!

• We consider the simple case where all reward functions 
are common knowledge.

Normal Form Game
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Let’s analyze such games. Some strategies are better 
than others!
• Strictly dominant strategy: if ai strictly better than ai’ 

regardless of what other players do, ai is strictly dominant

• I.e., , 𝑢𝑖(𝑎𝑖,  𝑎−𝑖) > 𝑢𝑖(𝑏,  𝑎−𝑖) ∀𝑏 ≠ 𝑎𝑖,  ∀𝑎−𝑖

• Sometimes a dominant strategy does not exist!

Strictly Dominant Strategies

All of the other entries 
of a excluding i
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Player i’s best response to strategy
𝑎−𝑖:   𝐵𝑅(𝑎−𝑖) = argmax

𝑎
𝑢𝑖(𝑎,  𝑎−𝑖)

BR(player2=silent) = betray
BR(player2=betray) = betray

 is the dominant strategy for player i, if𝑎∗
𝑖

 𝑎∗
𝑖 = 𝐵𝑅(𝑎−𝑖),  ∀ 𝑎−𝑖
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a* is a Nash equilibrium: 

∀𝑖,  ∀𝑏 ∈ 𝐴𝑖:𝑢𝑖(𝑎∗
𝑖 , 𝑎∗

−𝑖) ≥ 𝑢𝑖(𝑏, 𝑎∗
−𝑖)

 (no player has an incentive to unilaterally deviate)

• Pure Nash equilibrium:

• A pure strategy is a deterministic choice (no 
randomness).

• Later: we will consider mixed strategies

• In pure Nash equilibrium, players can only play pure 
strategies.
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• As player 2: for each row, find the best 
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Finding (pure) Nash Equilibria by hand

• Entries with both lower and upper bars are 
pure NEs.
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So far, pure strategy: each player picks a deterministic 
strategy.  But: 

Pure Nash Equilibrium may not exist

Player 2 
 
Player 1

rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0
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Can also randomize actions: “mixed”
• Player i assigns probabilities xi to each action

• Now consider expected rewards

Mixed Strategies

𝑢𝑖(𝑥𝑖,  𝑥−𝑖) = 𝐸𝑎𝑖~𝑥𝑖, 𝑎−𝑖~𝑥−𝑖
𝑢𝑖(𝑎𝑖,  𝑎−𝑖) = ∑

𝑎𝑖

∑
𝑎−𝑖

𝑥𝑖(𝑎𝑖)𝑥−𝑖(𝑎−𝑖)𝑢𝑖(𝑎𝑖,  𝑎−𝑖)
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Consider the mixed strategy x* = (x1*, …, xn*) 

• This is a Nash equilibrium if 

• Intuition: nobody can increase expected reward by 
changing only their own strategy. 

Mixed Strategy Nash Equilibrium

Better than doing 
anything else, 
“best response”

Space of probability 
distributions over 
strategies.



Example: 
Mixed Strategy Nash Equilibrium

𝑥1( . ) = 𝑥2( . ) =  (
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Example: 
Mixed Strategy Nash Equilibrium

Player 2 
 
Player 1

rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0

𝑥1( . ) = 𝑥2( . ) =  (
1
3

,
1
3

,
1
3

)



Example: Two Finger Morra.  Show 1 or 2 fingers.  The “even 
player” wins the sum if the sum is even, and vice versa.   
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Two Finger Morra.  Two-player zero-sum game.  No pure 
NE: 
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Suppose odd’s mixed strategy at NE is (q, 1-q), and even’s (p, 1-p)
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Suppose odd’s mixed strategy at NE is (q, 1-q), and even’s (p, 1-p)
By definition, p is best response to q: 𝑢1(𝑝, 𝑞) ≥ 𝑢1(𝑝′ ,  𝑞)∀𝑝′ .
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Suppose odd’s mixed strategy at NE is (q, 1-q), and even’s (p, 1-p)
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We want to find  such that equality holds. 

Then even has no incentive to change strategy.

q
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𝑢1(𝑓1,  𝑞) = 𝑢1(𝑓2, 𝑞)
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𝑢1(𝑓1,  𝑞) = 𝑢1(𝑓2, 𝑞)
2𝑞 + (−3)(1 − 𝑞) = (−3)𝑞 + 4(1 − 𝑞)
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𝑞 =

7
12
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Similarly, 𝑢2(𝑝, 𝑓1) = 𝑢2(𝑝, 𝑓2)
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𝑢1(𝑓1,  𝑞) = 𝑢1(𝑓2, 𝑞)
2𝑞 + (−3)(1 − 𝑞) = (−3)𝑞 + 4(1 − 𝑞)
𝑞 =

7
12

Similarly, 𝑢2(𝑝, 𝑓1) = 𝑢2(𝑝, 𝑓2)
𝑝 =

7
12

At this NE, even gets -1/12, odd gets 1/12.
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f2 -3, 3 4, -4

q 1-q

Finding Mixed NE in 2-Player 2-action Zero-Sum Game
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Major result: (John Nash ’51)
• Every finite (players, actions) game has at least one Nash 

equilibrium
– But not necessarily pure (i.e., deterministic strategy)

• Could be more than one
• Searching for Nash equilibria: computationally hard.

– Exception: two-player zero-sum games (can be found with linear 
programming).

Properties of Nash Equilibrium



Break & Quiz
Q 2.1: Which of the following is false? 
(i) Rock/paper/scissors has a dominant pure strategy 
(ii) There is a Nash equilibrium for rock/paper/scissors 

• A. Neither 
• B. (i) but not (ii) 
• C. (ii) but not (i) 
• D. Both
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Break & Quiz
Q 2.1: Which of the following is false? 
(i) Rock/paper/scissors has a dominant pure strategy 
(ii) There is a Nash equilibrium for rock/paper/scissors 

• A. Neither (i is false: easy to check that there’s no deterministic dominant strategy) 
• B. (i) but not (ii)  
• C. (ii) but not (i) (i is false: easy to check that there’s no deterministic dominant 

strategy) 
• D. Both (There is a mixed strategy Nash Eq.)



Break & Quiz
Q 2.2: Which of the following is true 
(i) Nash equilibria require each player to know other players’ strategies 
(ii) Nash equilibria require rational play 

• A. Neither 
• B. (i) but not (ii) 
• C. (ii) but not (i) 
• D. Both
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Break & Quiz
Q 2.2: Which of the following is true 
(i) Nash equilibria require each player to know other players’ strategies 
(ii) Nash equilibria require rational play 

• A. Neither (See below) 
• B. (i) but not (ii) (Rational play required: i.e., what if prisoners desire longer jail 

sentences?) 
• C. (ii) but not (i) (The basic assumption of Nash equilibria is knowing all of the 

strategies involved) 
• D. Both



Summary

• Intro to game theory 
– Characterize games by various properties 

• Mathematical formulation for simultaneous games 
– Normal form, dominance, Nash equilibria, mixed vs pure


