

CS 540 Introduction to Artificial Intelligence Reinforcement Learning II

University of Wisconsin-Madison

Spring 2023

Announcements

Assignments:

- Homework 10 due Thursday May 4
- Complete course evaluations by Friday May 5

Class roadmap:

Thursday, April 27	Reinforcement Learning I
Tuesday, May 2	Advanced Search
Thursday, May 4	Ethics and Trust in AI

Final Exam: May 12 5:05 - 7:05 pm

• Review of reinforcement learning setting.

• Review of reinforcement learning setting.

– MDPs, value functions, Q-learning

• Review of reinforcement learning setting.

– MDPs, value functions, Q-learning

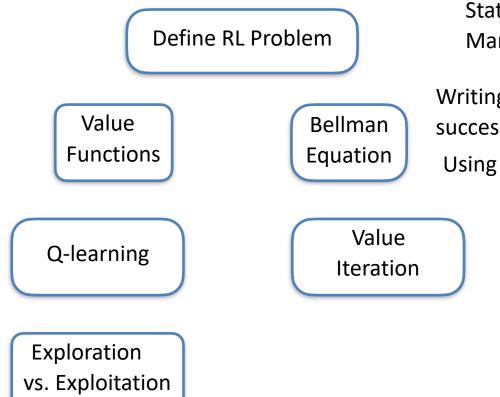
• Bellman equations and dynamic programming

Review of reinforcement learning setting.

– MDPs, value functions, Q-learning

- Bellman equations and dynamic programming
- From dynamic programming to Q-learning

Key Ideas in Reinforcement Learning



States, Actions, Transitions, Rewards, Markov property, discounting

Writing the value of one state in terms of successor states.

Using values to choose optimal actions.

We have an agent interacting with the world

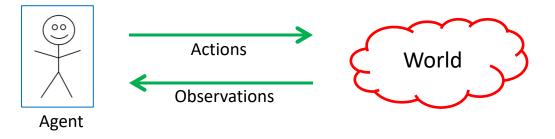
We have an agent interacting with the world

We have an **agent interacting** with the **world**

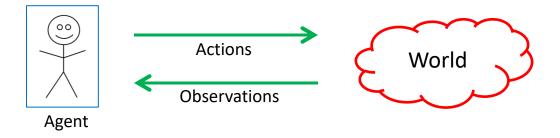
Agent

We have an **agent interacting** with the **world**

We have an **agent interacting** with the **world**



We have an **agent interacting** with the **world**



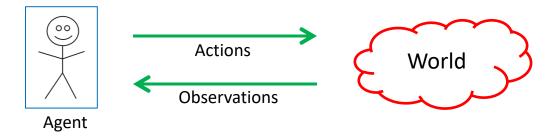
• Agent receives a reward based on state of the world

We have an **agent interacting** with the **world**



- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility

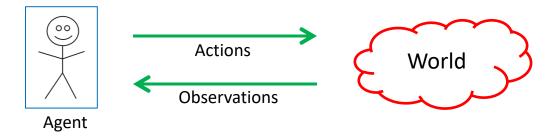
We have an **agent interacting** with the **world**



• Agent receives a reward based on state of the world

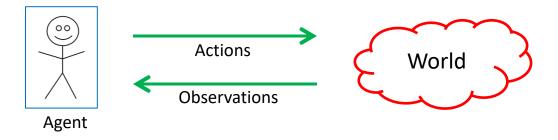
– Goal: maximize reward / utility (\$\$\$)

We have an **agent interacting** with the **world**



- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: **data** consists of actions & observations

We have an **agent interacting** with the **world**



- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: **data** consists of actions & observations
 - Compare to unsupervised learning and supervised learning

The formal mathematical model:

• State set S. Initial state s_{0.} Action set A

- State set S. Initial state s₀. Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$

- State set S. Initial state s_{0.} Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.

- State set S. Initial state s_{0.} Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: $r(s_t)$

- State set S. Initial state s_{0.} Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: $r(s_t)$
- **Policy**: $\pi(s) : S \to A$, action to take at a particular state.

- State set S. Initial state s_{0.} Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: $r(s_t)$
- Policy: $\pi(s): S \to A$, action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Defining the Optimal Policy

For policy π , **expected utility** over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) = \sum P(\text{sequence})U(\text{sequence})$$

sequences starting from s₀

Called the value function (for π , s_0)

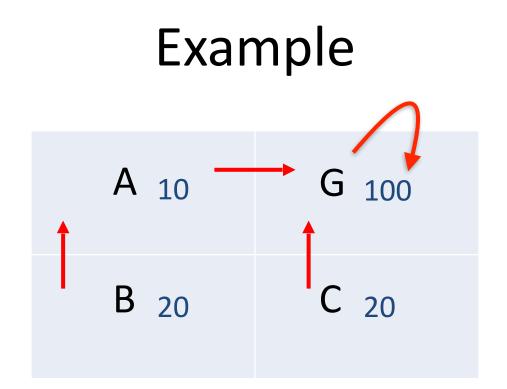
Discounting Rewards

One issue: these are infinite series. **Convergence**?

• Solution

$$U(s_0, s_1...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + ... = \sum_{t \ge 0} \gamma^t r(s_t)$$

- Discount factor γ between 0 and 1
 - Set according to how important present is VS future
 - Note: has to be less than 1 for convergence



Deterministic transitions; $\gamma = 0.8$; policy shown with red arrows.

- Now that $V^{\pi}(s_0)$ is defined what *a* should we take?
 - First, set V*(s) to be expected utility for **optimal** policy from s
 - What's the expected utility of an action?
 - Specifically, action a in state s?

- Now that $V^{\pi}(s_0)$ is defined what *a* should we take?
 - First, set V*(s) to be expected utility for **optimal** policy from s
 - What's the expected utility of an action?
 - Specifically, action a in state s?

$$\sum_{\mathbf{s}'} P(\mathbf{s}'|\mathbf{s}, \mathbf{a}) V^*(\mathbf{s}')$$

• Now that $V^{\pi}(s_0)$ is defined what *a* should we take?

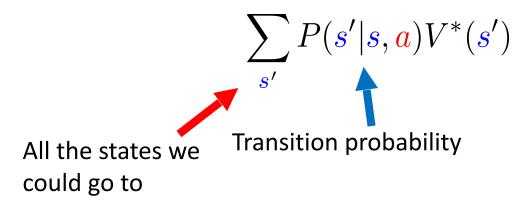
 $\sum P(s'|s, a)V^*(s')$

- First, set V*(s) to be expected utility for **optimal** policy from s
- What's the expected utility of an action?
 - Specifically, action a in state s?

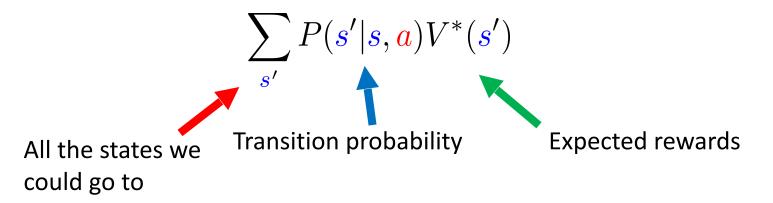
s'

All the states we could go to

- Now that $V^{\pi}(s_0)$ is defined what *a* should we take?
 - First, set V*(s) to be expected utility for **optimal** policy from s
 - What's the expected utility of an action?
 - Specifically, action a in state s?



- Now that $V^{\pi}(s_0)$ is defined what *a* should we take?
 - First, set V*(s) to be expected utility for **optimal** policy from s
 - What's the expected utility of an action?
 - Specifically, action a in state s?



Obtaining the Optimal Policy

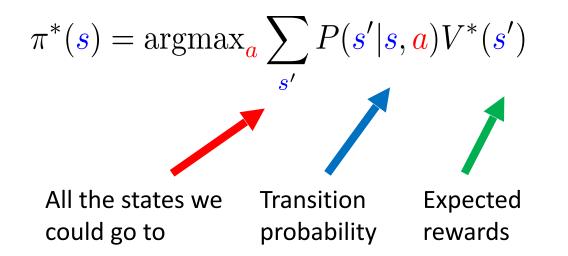
Assume, we know the expected utility of an action.

• So, to get the optimal policy, compute

Obtaining the Optimal Policy

Assume, we know the expected utility of an action.

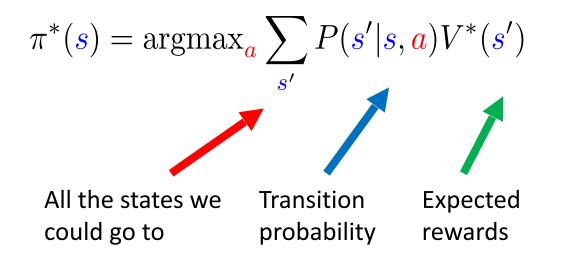
• So, to get the optimal policy, compute

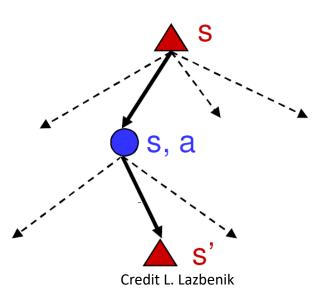


Obtaining the Optimal Policy

Assume, we know the expected utility of an action.

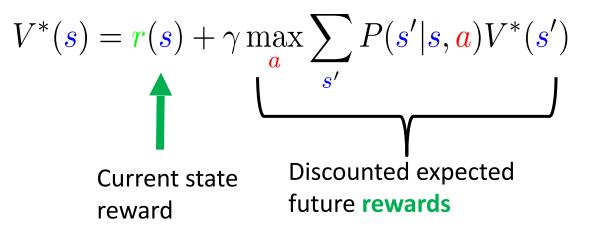
• So, to get the optimal policy, compute

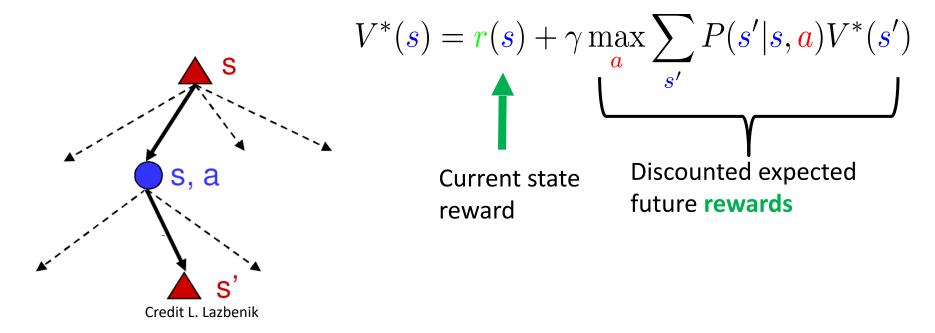


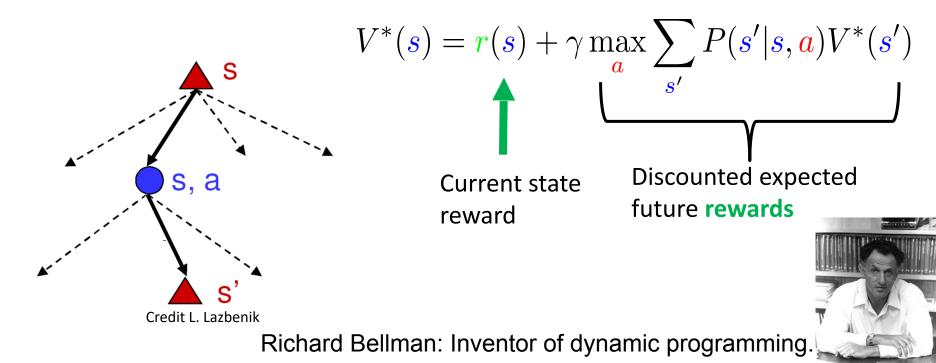


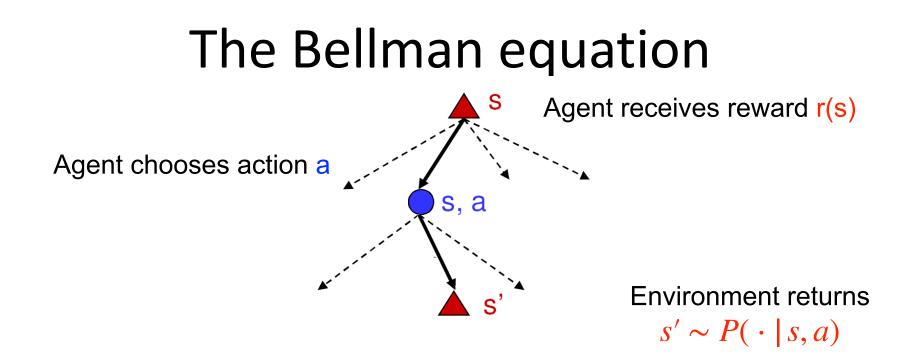
$$V^*(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^*(s')$$

$$V^{*}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^{*}(s')$$
Current state
reward

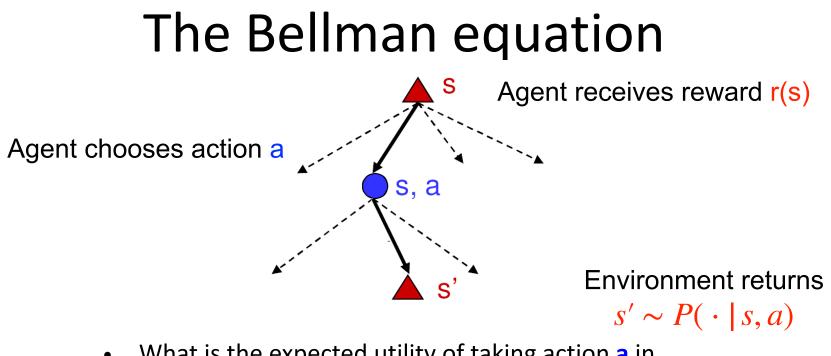






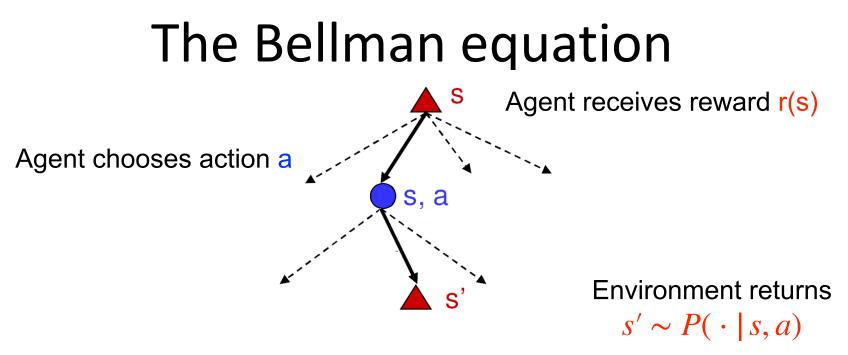


Define state value $V^*(s)$ as the expected sum of discounted rewards if the agent follows an *optimal* policy starting in state s.



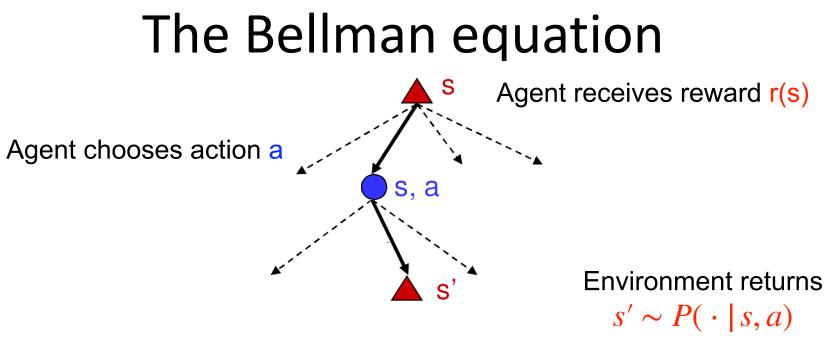
 What is the expected utility of taking action a in state s?

 $\sum_{s'} P(s'|s,a) V^*(s')$



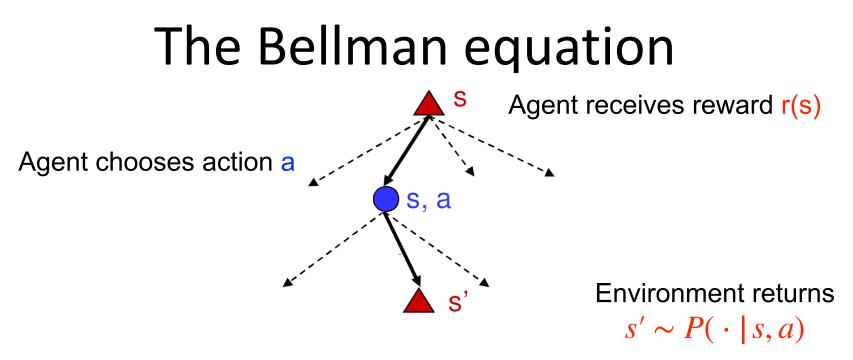
 What is the recursive expression for V*(s) in terms of V*(s') - the utilities of its successors?

$$V^{*}(s) = r(s) + \gamma \sum_{s'} P(s'|s, \pi^{*}(s)) V^{*}(s')$$



How do we choose the action?

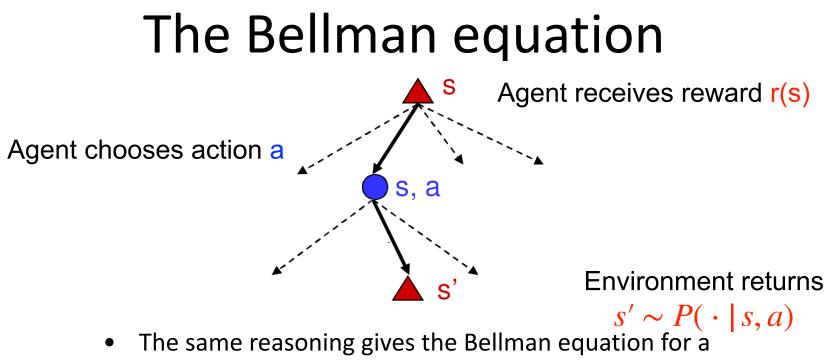
$$\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s, a) V^*(s')$$



 What is the recursive expression for V*(s) in terms of V*(s') - the utilities of its successors?

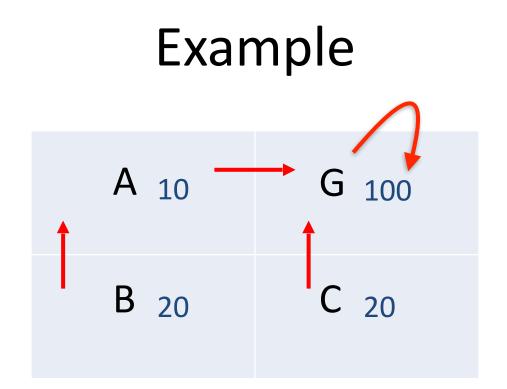
$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s')$$

Image source: L. Lazbenik



general policy:

$$V^{\pi}(s) = r(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$



Deterministic transitions; $\gamma = 0.8$; policy shown with red arrows.

Q: how do we find $V^*(s)$?

- **Q**: how do we find $V^*(s)$?
- Why do we want it? Can use it to get the best policy

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward r(s), transition probability P(s'|s,α)

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- Also know V*(s) satisfies Bellman equation:

$$V^*(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^*(s')$$

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- Also know V*(s) satisfies Bellman equation:

$$V^*(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^*(s')$$

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

Value Iteration Algorithm

Input: Transition function P, reward function r, precision $\delta>0$

- 1. For all states s, set V(s) = 0.
- 2. $\Delta \leftarrow \infty$
- 3. While $\Delta > \delta$:
- 4. Loop for each state s:

5.
$$V(s) \leftarrow r(s) + \max_{a} \gamma \sum_{s'} P(s' | s, a) V(s')$$

- 6. $\Delta \leftarrow$ maximum change in V(s) for any state s
- 7. End Loop
- 8. End While

Value Iteration Algorithm

Input: Transition function P, reward function r, precision $\delta>0$

- 1. For all states s, set V(s) = 0.
- 2. $\Delta \leftarrow \infty$
- 3. While $\Delta > \delta$:
- 4. Loop for each state s:

5.
$$V(s) \leftarrow r(s) + \max_{a} \gamma \sum_{s'} P(s' | s, a) V(s')$$

- 6. $\Delta \leftarrow$ maximum change in V(s) for any state s
- 7. End Loop

8. End While

Here, P and r are known so no need for exploration or interaction with real world.

Value Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/ gridworld_dp.html

Break & Quiz

Q 2.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let $\pi: \pi(A) = \pi(B) = \text{move}$ (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1 / (1 -γ)
- C. 1 / (1 -γ²)
- D. 1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let $\pi: \pi(A) = \pi(B) = \text{move}$ (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1/(1-γ)
- C. 1/(1-γ²)
- D. 1

Break & Quiz

Q 2.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) = \text{move}$ (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1/(1-γ)
- C. 1/(1-γ²) (States: A,B,A,B,... rewards 1,0, γ²,0, γ⁴,0, ...)
- D. 1

• Reinforcement learning without knowledge of r or P

- Reinforcement learning without knowledge of r or P
- Learn from data of the form: $\{(s_t, a_t, r_t, s_{t+1})\}$.

- Reinforcement learning without knowledge of r or P
- Learn from data of the form: $\{(s_t, a_t, r_t, s_{t+1})\}$.
- Learns an action-value function Q*(s,a) that tells us the expected value of taking a in state s.

- Reinforcement learning without knowledge of r or P
- Learn from data of the form: $\{(s_t, a_t, r_t, s_{t+1})\}$.
- Learns an action-value function Q*(s,a) that tells us the expected value of taking a in state s.

• Note:
$$V^*(s) = \max_a Q^*(s, a)$$
.

- Reinforcement learning without knowledge of r or P
- Learn from data of the form: $\{(s_t, a_t, r_t, s_{t+1})\}$.
- Learns an action-value function Q*(s,a) that tells us the expected value of taking a in state s.

Note:
$$V^*(s) = \max_a Q^*(s, a)$$
.

• Optimal policy is formed as $\pi^*(s) = \arg \max_a Q^*(s, a)$

Estimate $Q^{*}(s,a)$ from data {(s_t, a_t, r_t, s_{t+1})}:

- 1. Initialize Q(.,.) arbitrarily (eg all zeros)
 - 1. Except terminal states Q(s_{terminal},.)=0
- 2. Iterate over data until Q(.,.) converges:

 $Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$

Estimate $Q^{*}(s,a)$ from data { (s_t, a_t, r_t, s_{t+1}) }:

- 1. Initialize Q(.,.) arbitrarily (eg all zeros)
 - 1. Except terminal states Q(s_{terminal},.)=0
- 2. Iterate over data until Q(.,.) converges:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$$

Learning rate

Estimate $Q^{*}(s,a)$ from data {(s_t, a_t, r_t, s_{t+1})}:

- 1. Initialize Q(.,.) arbitrarily (eg all zeros)
 - 1. Except terminal states Q(s_{terminal},.)=0
- 2. Iterate over data until Q(.,.) converges:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$$

Learning rate

Equivalent update: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r(s_t) + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$

Input: step size α , exploration probability ϵ

- 1. set Q(s,a) = 0 for all s, a.
- 2. For each episode:
- 3. Get initial state s.
- 4. While (s not a terminal state):
- 5. Perform $a = \epsilon$ -greedy(Q, s), receive r, s'

6.
$$Q(s, a) = (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$$

7.
$$s \leftarrow s'$$

- 8. End While
- 9. End For

Input: step size α , exploration probability ϵ

- 1. set Q(s,a) = 0 for all s, a.
- 2. For each episode:
- 3. Get initial state s.
- 4. While (s not a terminal state):

5. Perform $a = \epsilon$ -greedy(Q, s), receive r, s'

6.
$$Q(s, a) = (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$$

7.
$$s \leftarrow s'$$

8. End While

9. End For

Explore: take action to see what happens.

Input: step size α , exploration probability ϵ

- 1. set Q(s,a) = 0 for all s, a.
- 2. For each episode:
- 3. Get initial state s.
- 4. While (s not a terminal state):
- 5. Perform $a = \epsilon$ -greedy(Q, s), receive r, s'

6.
$$Q(s, a) = (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$$

Update action-value based on result.

- 7. $s \leftarrow s'$ 8. End While
- 9. End For

Explore: take action to see what happens.

Input: step size α , exploration probability ϵ

- 1. set Q(s,a) = 0 for all s, a.
- 2. For each episode:
- 3. Get initial state s.
- 4. While (s not a terminal state):

5. Perform $a = \epsilon$ -greedy(Q, s), receive r, s'

6.
$$Q(s, a) = (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$$

Update action-value based on result.

8. End While

7. $s \leftarrow s'$

9. End For

Converges to Q*(s,a) in limit if all states and actions visited infinitely often.

Explore: take action to see what happens.