
CS 540 Introduction to Artificial Intelligence
Reinforcement Learning II

University of Wisconsin-Madison

Spring 2023

2

Assignments:
• Homework 10 due Thursday May 4
• Complete course evaluations by

Friday May 5

Class roadmap: Thursday, April 27 Reinforcement Learning I

Tuesday, May 2 Advanced Search

Thursday, May 4 Ethics and Trust in AI

Announcements

Final Exam: May 12 5:05 - 7:05 pm

Outline

Outline

• Review of reinforcement learning setting.

Outline

• Review of reinforcement learning setting.
– MDPs, value functions, Q-learning

Outline

• Review of reinforcement learning setting.
– MDPs, value functions, Q-learning

• Bellman equations and dynamic programming

Outline

• Review of reinforcement learning setting.
– MDPs, value functions, Q-learning

• Bellman equations and dynamic programming
• From dynamic programming to Q-learning

4

Key Ideas in Reinforcement Learning
Define RL Problem

Value
IterationQ-learning

Bellman
Equation

Value
Functions

Exploration
vs. Exploitation

States, Actions, Transitions, Rewards,
Markov property, discounting

Writing the value of one state in terms of
successor states.
Using values to choose optimal actions.

Back to Our General Model

We have an agent interacting with the world

Back to Our General Model

We have an agent interacting with the world

Agent

Back to Our General Model

We have an agent interacting with the world

World

Agent

Back to Our General Model

We have an agent interacting with the world

World

Agent

Actions

Back to Our General Model

We have an agent interacting with the world

World

Agent

Actions

Observations

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world

World

Agent

Actions

Observations

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility

World

Agent

Actions

Observations

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility

World

Agent

Actions

Observations

($$$)

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility
– Note: data consists of actions & observations

World

Agent

Actions

Observations

($$$)

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility
– Note: data consists of actions & observations

• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)

Markov Decision Process (MDP)

Markov Decision Process (MDP)

The formal mathematical model:

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: , action to take at a particular state.

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: , action to take at a particular state.

Defining the Optimal Policy

Discounting Rewards

One issue: these are infinite series. Convergence?
• Solution

• Discount factor γ between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence

Example

A 10

B 20 C 20

G 100

Deterministic transitions; ; policy
shown with red arrows.

γ = 0.8

Values and Policies

•

Values and Policies

•

Values and Policies

•

All the states we
could go to

Values and Policies

•

All the states we
could go to

Transition probability

Values and Policies

•

All the states we
could go to

Transition probability Expected rewards

Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
• So, to get the optimal policy, compute

Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards

Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards

Credit L. Lazbenik

Bellman Equations

Let’s walk over one step for the value function:

Bellman Equations

Let’s walk over one step for the value function:

Bellman Equations

Let’s walk over one step for the value function:

Current state
reward

Bellman Equations

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Bellman Equations

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Credit L. Lazbenik

Bellman Equations

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Credit L. Lazbenik

Richard Bellman: Inventor of dynamic programming.

The Bellman equation

Image source: L. Lazbenik

Agent receives reward r(s)

Agent chooses action a

Environment returns
s′ ∼ P(⋅ |s, a)

Define state value as the expected sum of discounted rewards if the
agent follows an optimal policy starting in state s.

V*(s)

The Bellman equation

• What is the expected utility of taking action a in
state s?

Image source: L. Lazbenik

Agent receives reward r(s)

Agent chooses action a

Environment returns
s′ ∼ P(⋅ |s, a)

The Bellman equation

Image source: L. Lazbenik

Agent receives reward r(s)

Agent chooses action a

Environment returns
s′ ∼ P(⋅ |s, a)

The Bellman equation

• How do we choose the action?

Image source: L. Lazbenik

Agent receives reward r(s)

Agent chooses action a

Environment returns
s′ ∼ P(⋅ |s, a)

The Bellman equation

Image source: L. Lazbenik

Agent receives reward r(s)

Agent chooses action a

Environment returns
s′ ∼ P(⋅ |s, a)

The Bellman equation

• The same reasoning gives the Bellman equation for a
general policy:

Image source: L. Lazbenik

Agent receives reward r(s)

Agent chooses action a

Environment returns
s′ ∼ P(⋅ |s, a)

Example

A 10

B 20 C 20

G 100

Deterministic transitions; ; policy
shown with red arrows.

γ = 0.8

Value Iteration

Value Iteration

Q: how do we find V*(s)?

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)
• Also know V*(s) satisfies Bellman equation:

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)
• Also know V*(s) satisfies Bellman equation:

A: Use the property. Start with V0(s)=0. Then, update

Value Iteration Algorithm
Input: Transition function P, reward function r, precision
1. For all states s, set V(s) = 0.
2.
3. While :
4. Loop for each state s:
5.

6. maximum change in for any state s
7. End Loop
8. End While

δ > 0

Δ ← ∞
Δ > δ

V(s) ← r(s) + max
a

γ∑
s′

P(s′ |s, a)V(s′)

Δ ← V(s)

Value Iteration Algorithm
Input: Transition function P, reward function r, precision
1. For all states s, set V(s) = 0.
2.
3. While :
4. Loop for each state s:
5.

6. maximum change in for any state s
7. End Loop
8. End While

δ > 0

Δ ← ∞
Δ > δ

V(s) ← r(s) + max
a

γ∑
s′

P(s′ |s, a)V(s′)

Δ ← V(s)
Here, P and r are known so no need for
exploration or interaction with real world.

Value Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/
gridworld_dp.html

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?
• A. 0
• B. 1 / (1 -𝛾)
• C. 1 / (1 -𝛾2)
• D. 1

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?
• A. 0
• B. 1/(1-𝛾)
• C. 1/(1-𝛾2)
• D. 1

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?
• A. 0
• B. 1/(1-𝛾)
• C. 1/(1-𝛾2) (States: A,B,A,B,… rewards 1,0, 𝛾2,0, 𝛾4,0, …)
• D. 1

Break & Quiz

Q-Learning

Q-Learning

Q-Learning

• Reinforcement learning without knowledge of r or P

Q-Learning

• Reinforcement learning without knowledge of r or P
• Learn from data of the form: .{(st, at, rt, st+1)}

Q-Learning

• Reinforcement learning without knowledge of r or P
• Learn from data of the form: .{(st, at, rt, st+1)}
• Learns an action-value function Q*(s,a) that tells us

the expected value of taking a in state s.

Q-Learning

• Reinforcement learning without knowledge of r or P
• Learn from data of the form: .{(st, at, rt, st+1)}
• Learns an action-value function Q*(s,a) that tells us

the expected value of taking a in state s.

• Note: .V*(s) = max
a

Q*(s, a)

Q-Learning

• Reinforcement learning without knowledge of r or P
• Learn from data of the form: .{(st, at, rt, st+1)}
• Learns an action-value function Q*(s,a) that tells us

the expected value of taking a in state s.

• Note: .V*(s) = max
a

Q*(s, a)

• Optimal policy is formed as π*(s) = arg max
a

Q*(s, a)

Q-Learning

Q-Learning

Learning rate

Q-Learning

Learning rate

Equivalent update: Q(st, at) ← Q(st, at) + α(r(st) + γ max
a′

Q(st+1, a′) − Q(st, at))

Q-learning Algorithm
Input: step size , exploration probability
1. set Q(s,a) = 0 for all s, a.
2. For each episode:
3. Get initial state s.
4. While (s not a terminal state):
5. Perform a = -greedy(Q, s), receive r, s’
6.

7.
8. End While
9. End For

α ϵ

ϵ
Q(s, a) = (1 − α)Q(s, a) + α(r + γ max

a′
Q(s′ , a′))

s ← s′

Q-learning Algorithm
Input: step size , exploration probability
1. set Q(s,a) = 0 for all s, a.
2. For each episode:
3. Get initial state s.
4. While (s not a terminal state):
5. Perform a = -greedy(Q, s), receive r, s’
6.

7.
8. End While
9. End For

α ϵ

ϵ
Q(s, a) = (1 − α)Q(s, a) + α(r + γ max

a′
Q(s′ , a′))

s ← s′

Explore: take action to
see what happens.

Q-learning Algorithm
Input: step size , exploration probability
1. set Q(s,a) = 0 for all s, a.
2. For each episode:
3. Get initial state s.
4. While (s not a terminal state):
5. Perform a = -greedy(Q, s), receive r, s’
6.

7.
8. End While
9. End For

α ϵ

ϵ
Q(s, a) = (1 − α)Q(s, a) + α(r + γ max

a′
Q(s′ , a′))

s ← s′

Explore: take action to
see what happens.

Update action-value
based on result.

Q-learning Algorithm
Input: step size , exploration probability
1. set Q(s,a) = 0 for all s, a.
2. For each episode:
3. Get initial state s.
4. While (s not a terminal state):
5. Perform a = -greedy(Q, s), receive r, s’
6.

7.
8. End While
9. End For

α ϵ

ϵ
Q(s, a) = (1 − α)Q(s, a) + α(r + γ max

a′
Q(s′ , a′))

s ← s′

Explore: take action to
see what happens.

Update action-value
based on result.

Converges to Q*(s,a) in limit if all states and
actions visited infinitely often.

