CS 540 Introduction to Artificial Intelligence Search III: Advanced Search (aka Optimization)

University of Wisconsin-Madison
Spring 2023

Outline

Homeworks:

- Homework 10 due Thursday
- Course evaluation due Friday

Class roadmap:

Tuesday, May 2	Advanced Search
Thursday, May 4	Ethics and Review
Friday, May 12 $5: 05-7: 05 \mathrm{pm}$	Final Exam

Advanced Search Overview

Advanced Search Overview

Problem Setting

Advanced Search Overview

How is a search problem defined?

Advanced Search Overview

How is a search problem defined?
Problem Setting
How different from other search types?

Advanced Search Overview

How is a search problem defined?
Problem Setting How different from other search types?

Hill Climbing

Advanced Search Overview

How is a search problem defined?

Problem Setting

How different from other search types?

Hill Climbing

Genetic
Algorithms

Advanced Search Overview

How is a search problem defined?

Problem Setting

How different from other search types?

Hill Climbing

Genetic
Algorithms

What is difference between two?

Advanced Search Overview

How is a search problem defined?

Problem Setting

How different from other search types?

Hill Climbing

Neighbors
Local vs. global optima

Algorithms

What is difference between two?

Advanced Search Overview

How is a search problem defined?

Problem Setting

How different from other search types?

Hill Climbing

Neighbors
Local vs. global optima

Genetic
 Algorithms

Fitness
Population
Cross-over
Mutation

What is difference between two?

Outline

Outline

- Advanced Search \& Hill-climbing
- More difficult problems, basics, local optima, variations

Outline

- Advanced Search \& Hill-climbing
- More difficult problems, basics, local optima, variations
- Hill Climbing
- Basic algorithm, local optima

Outline

- Advanced Search \& Hill-climbing
- More difficult problems, basics, local optima, variations
- Hill Climbing
- Basic algorithm, local optima
- Genetic Algorithms
- Basics of evolution, fitness, natural selection

Search vs. Optimization

Before: wanted a path from start state to goal state

Search vs. Optimization

Before: wanted a path from start state to goal state

- Uninformed search, informed search

Search vs. Optimization

Before: wanted a path from start state to goal state

- Uninformed search, informed search

Search vs. Optimization

Before: wanted a path from start state to goal state

- Uninformed search, informed search

New setting: optimization

Search vs. Optimization

Before: wanted a path from start state to goal state

- Uninformed search, informed search

New setting: optimization

Search vs. Optimization

Before: wanted a path from start state to goal state

- Uninformed search, informed search

New setting: optimization

- States s have values $f(s)$

Search vs. Optimization

Before: wanted a path from start state to goal state

- Uninformed search, informed search

New setting: optimization

- States s have values $f(s)$

- Want: Find s with optimal value $f(s)$ (i.e, optimize over states)

Search vs. Optimization

Before: wanted a path from start state to goal state

- Uninformed search, informed search

New setting: optimization

- States s have values $f(s)$

- Want: Find s with optimal value $f(s)$ (i.e, optimize over states)
- Challenging settings: too many states for previous search approaches, but maybe not a differentiable function for gradient descent.

Examples: n Queens

A classic puzzle:

Examples: n Queens

A classic puzzle:

- Place 8 queens on 8×8 chessboard so that no two have same row, column, or diagonal.

Examples: n Queens

A classic puzzle:

- Place 8 queens on 8×8 chessboard so that no two have same row, column, or diagonal.
- Can generalize to $\mathrm{n} \times \mathrm{n}$ chessboard.

Examples: n Queens

A classic puzzle:

- Place 8 queens on 8×8 chessboard so that no two have same row, column, or diagonal.
- Can generalize to $\mathrm{n} \times \mathrm{n}$ chessboard.

Examples: n Queens

A classic puzzle:

- Place 8 queens on 8×8 chessboard so that no two have same row, column, or diagonal.
- Can generalize to $\mathrm{n} \times \mathrm{n}$ chessboard.
- What are states s ? Values $f(s)$?

Examples: n Queens

A classic puzzle:

- Place 8 queens on 8×8 chessboard so that no two have same row, column, or diagonal.
- Can generalize to $\mathrm{n} \times \mathrm{n}$ chessboard.
- What are states s ? Values $f(s)$?
- State: configuration of the board

Examples: n Queens

A classic puzzle:

- Place 8 queens on 8×8 chessboard so that no two have same row, column, or diagonal.
- Can generalize to $\mathrm{n} \times \mathrm{n}$ chessboard.
- What are states s ? Values $f(s)$?
- State: configuration of the board
- $f(s)$: \# of non-conflicting queens

Examples: TSP

Famous graph theory problem.

Examples: TSP

Famous graph theory problem.

- Get a graph $G=(V, E)$. Goal: a path that visits each node exactly once and returns to the initial node (a tour).

Examples: TSP

Famous graph theory problem.

- Get a graph $G=(V, E)$. Goal: a path that visits each node exactly once and returns to the initial node (a tour).

Examples: TSP

Famous graph theory problem.

- Get a graph $G=(V, E)$. Goal: a path that visits each node exactly once and returns to the initial node (a tour).
- State: a particular tour (i.e., ordered list of nodes)

Examples: TSP

Famous graph theory problem.

- Get a graph $G=(V, E)$. Goal: a path that visits each node exactly once and returns to the initial node (a tour).
- State: a particular tour (i.e., ordered list of nodes)
- $f(s)$: total weight of the tour

Examples: TSP

Famous graph theory problem.

- Get a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$. Goal: a path that visits each node exactly once and returns to the initial node (a tour).
- State: a particular tour (i.e., ordered list of nodes)
- $f(s)$: total weight of the tour (e.g., total miles traveled)

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)

- Recall our logic lecture. Conjunctive normal form

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)

- Recall our logic lecture. Conjunctive normal form
$(\mathrm{A} \vee \neg \mathrm{B} \vee \mathrm{C}) \wedge(\neg \mathrm{A} \vee \mathrm{C} \vee \mathrm{D}) \wedge(\mathrm{B} \vee \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{C} \vee \neg \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{A} \vee \neg \mathrm{C} \vee \mathrm{E})$

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)

- Recall our logic lecture. Conjunctive normal form
$(\mathrm{A} \vee \neg \mathrm{B} \vee \mathrm{C}) \wedge(\neg \mathrm{A} \vee \mathrm{C} \vee \mathrm{D}) \wedge(\mathrm{B} \vee \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{C} \vee \neg \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{A} \vee \neg \mathrm{C} \vee \mathrm{E})$
- Goal: find if satisfactory assignment exists.

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)

- Recall our logic lecture. Conjunctive normal form
$(\mathrm{A} \vee \neg \mathrm{B} \vee \mathrm{C}) \wedge(\neg \mathrm{A} \vee \mathrm{C} \vee \mathrm{D}) \wedge(\mathrm{B} \vee \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{C} \vee \neg \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{A} \vee \neg \mathrm{C} \vee \mathrm{E})$
- Goal: find if satisfactory assignment exists.
- State: assignment to variables

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)

- Recall our logic lecture. Conjunctive normal form
$(\mathrm{A} \vee \neg \mathrm{B} \vee \mathrm{C}) \wedge(\neg \mathrm{A} \vee \mathrm{C} \vee \mathrm{D}) \wedge(\mathrm{B} \vee \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{C} \vee \neg \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{A} \vee \neg \mathrm{C} \vee \mathrm{E})$
- Goal: find if satisfactory assignment exists.
- State: assignment to variables
- f(s): \# satisfied clauses

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)

- Recall our logic lecture. Conjunctive normal form
$(\mathrm{A} \vee \neg \mathrm{B} \vee \mathrm{C}) \wedge(\neg \mathrm{A} \vee \mathrm{C} \vee \mathrm{D}) \wedge(\mathrm{B} \vee \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{C} \vee \neg \mathrm{D} \vee \neg \mathrm{E}) \wedge(\neg \mathrm{A} \vee \neg \mathrm{C} \vee \mathrm{E})$
- Goal: find if satisfactory assignment exists.
- State: assignment to variables
- $f(s): \#$ satisfied clauses

$R(x, a, d) \wedge R(y, b, d) \wedge R(a, b, e) \wedge R(c, d, f) \wedge R(z, c, 0)$
$R(0, a, d) \wedge R(0, b, d) \wedge R(a, b, e) \wedge R(c, d, f) \wedge R(0, c, 0)$
$R(0, a, d) \wedge R(0, b, d) \wedge R(a, b, e) \wedge R(c, d, f) \wedge R(1, c, 0)$
$R(0, a, d) \wedge R(1, b, d) \wedge R(a, b, e) \wedge R(c, d, f) \wedge R(0, c, 0)$
$R(0, a, d) \wedge R(1, b, d) \wedge R(a, b, e) \wedge R(c, d, f) \wedge R(, c, 0)$
$R(1, a, d) \wedge R(0, b, d) \wedge R(a, b, e) \wedge R(c, d, f) \wedge R(0, c, 0)$
$R(1, a, d) \wedge R(0, b, d) \wedge R(a, b, e) \wedge R(c, d, f) \wedge R(1, c, 0)$
$R R(, a, d) \wedge R(1, b, d) \wedge R(a, b, e) \wedge R(c, d, f) \wedge R(0, c, 0)$
$R(1, a, d) \wedge R(1, b, d) \wedge R(a, b, e) \wedge R(c, d, f) \wedge R(1, c, 0)$

$R(-x, a, b) \wedge R(b, y, c) \wedge R(c, d,-z)$
$R(1, a, b) \wedge R(b, 0, c) \wedge R(c, d, 1)$
$R(1, a, b) \wedge R(b, 0, c) \wedge R(c, d, 0)$
$R(1, a, b) \wedge R(b, 1, c) \wedge R(c, d, 1)$
$R(1, a, b) \wedge R(b, 1, c) \wedge R(c, d, 0)$
$R(0, a, b) \wedge R(b, 0, c) \wedge R(c, d, 1)$
$R(0, a, b) \wedge R(b, 0, c) \wedge R(c, d, 0)$
$R(0, a, b) \wedge R(b, 1, c) \wedge R$
$R(0, a, b) \wedge R(b, 1, c) \wedge R(c, d, 1)$

Hill Climbing

One approach to such optimization problems

Hill Climbing

One approach to such optimization problems

- Basic idea: start at one state, move to a neighbor with a better $f(s)$ value, repeat until no neighbors have better $f(s)$ value.

Hill Climbing

One approach to such optimization problems

- Basic idea: start at one state, move to a neighbor with a better $f(s)$ value, repeat until no neighbors have better $f(s)$ value.

Hill Climbing

One approach to such optimization problems

- Basic idea: start at one state, move to a neighbor with a better $f(s)$ value, repeat until no neighbors have better $f(s)$ value.
- Q: how do we define neighbor?

Hill Climbing

One approach to such optimization problems

- Basic idea: start at one state, move to a neighbor with a better $f(s)$ value, repeat until no neighbors have better $f(s)$ value.
- Q: how do we define neighbor?
- Not as obvious as our successors in search

Hill Climbing

One approach to such optimization problems

- Basic idea: start at one state, move to a neighbor with a better $f(s)$ value, repeat until no neighbors have better $f(s)$ value.
- Q: how do we define neighbor?
- Not as obvious as our successors in search
- Problem-specific

Hill Climbing

One approach to such optimization problems

- Basic idea: start at one state, move to a neighbor with a better $f(s)$ value, repeat until no neighbors have better $f(s)$ value.
- Q: how do we define neighbor?
- Not as obvious as our successors in search
- Problem-specific
- As we'll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:

Defining Neighbors: n Queens

In n Queens, a simple possibility:

- Look at the most-conflicting column (ties? right-most one)

Defining Neighbors: n Queens

In n Queens, a simple possibility:

- Look at the most-conflicting column (ties? right-most one)
- Move queen in that column vertically to a different location

Defining Neighbors: n Queens

In n Queens, a simple possibility:

- Look at the most-conflicting column (ties? right-most one)
- Move queen in that column vertically to a different location

$$
\stackrel{S}{f(s)=6}
$$

$$
f=6
$$

Neighborhood of s

Defining Neighbors: TSP

For TSP, can do something similar:

Defining Neighbors: TSP

For TSP, can do something similar:

- Define neighbors by small changes

Defining Neighbors: TSP

For TSP, can do something similar:

- Define neighbors by small changes

Defining Neighbors: TSP

For TSP, can do something similar:

- Define neighbors by small changes
- Example: 2-change: A-E and B-F

Defining Neighbors: TSP

For TSP, can do something similar:

- Define neighbors by small changes
- Example: 2-change: A-E and B-F

$$
A-B-C-D-E-F-G-H-A
$$

Defining Neighbors: TSP

For TSP, can do something similar:

- Define neighbors by small changes
- Example: 2-change: A-E and B-F

Defining Neighbors: TSP

For TSP, can do something similar:

- Define neighbors by small changes
- Example: 2-change: A-E and B-F

Defining Neighbors: SAT

For Boolean satisfiability,

Defining Neighbors: SAT

For Boolean satisfiability,

- Define neighbors by flipping one assignment of one variable

Defining Neighbors: SAT

For Boolean satisfiability,

- Define neighbors by flipping one assignment of one variable Starting state: $(A=T, B=F, C=T, D=T, F=T)$

Defining Neighbors: SAT

For Boolean satisfiability,

- Define neighbors by flipping one assignment of one variable Starting state: ($A=T, B=F, C=T, D=T, F=T)$

$$
\begin{aligned}
& A \vee \neg B \vee C \\
& \neg A \vee C \vee D \\
& B \vee D \vee \neg E \\
& \neg C \vee \neg D \vee \neg E \\
& \neg A \vee \neg C \vee E
\end{aligned}
$$

Defining Neighbors: SAT

For Boolean satisfiability,

- Define neighbors by flipping one assignment of one variable Starting state: ($A=T, B=F, C=T, D=T, F=T)$

$$
\begin{array}{ll}
(A=F, B=F, C=T, D=T, E=T) & A \vee \neg B \vee C \\
(A=T, B=T, C=T, D=T, E=T) & \neg A \vee C \vee D \\
(A=T, B=F, C=F, D=T, E=T) & B \vee D \vee \neg E \\
(A=T, B=F, C=T, D=F, E=T) & \neg C \vee \neg D \vee \neg E \\
(A=T, B=F, C=T, D=T, E=F) & \neg A \vee \neg C \vee E
\end{array}
$$

Hill Climbing Neighbors

Q: What's a neighbor?

Hill Climbing Neighbors

Q: What's a neighbor?

- Vague definition: for a given problem structure, neighbors are states that can be produced by a small change

Hill Climbing Neighbors

Q: What's a neighbor?

- Vague definition: for a given problem structure, neighbors are states that can be produced by a small change

Hill Climbing Neighbors

Q: What's a neighbor?

- Vague definition: for a given problem structure, neighbors are states that can be produced by a small change
- Tradeoff!

Hill Climbing Neighbors

Q: What's a neighbor?

- Vague definition: for a given problem structure, neighbors are states that can be produced by a small change
- Tradeoff!
- Neighborhood too small? Will get struck.

Hill Climbing Neighbors

Q: What's a neighbor?

- Vague definition: for a given problem structure, neighbors are states that can be produced by a small change
- Tradeoff!
- Neighborhood too small? Will get struck.
- Neighborhood too big? Not very efficient

Hill Climbing Neighbors

Q: What's a neighbor?

- Vague definition: for a given problem structure, neighbors are states that can be produced by a small change
- Tradeoff!
- Neighborhood too small? Will get struck.
- Neighborhood too big? Not very efficient
- Q: how to pick a neighbor? Greedy

Hill Climbing Neighbors

Q: What's a neighbor?

- Vague definition: for a given problem structure, neighbors are states that can be produced by a small change
- Tradeoff!
- Neighborhood too small? Will get struck.
- Neighborhood too big? Not very efficient
- Q: how to pick a neighbor? Greedy

- Q: terminate? When no neighbor has better value

Hill Climbing Algorithm

Hill Climbing Algorithm

Pseudocode:

Hill Climbing Algorithm

Pseudocode:

1. Pick initial state s
2. Pick t in neighbors(s) with the best $f(t)$
3. if $f(t)$ is not better than $f(s)$ THEN stop, return s
4. $s \leftarrow t$. goto 2 .

Hill Climbing Algorithm

Pseudocode:

1. Pick initial state s
2. Pick t in neighbors(s) with the best $f(t)$
3. if $f(t)$ is not better than $f(s)$ THEN stop, return s
4. $s \leftarrow t$. goto 2 .

What could happen? Local optima!

Hill Climbing Algorithm

Pseudocode:

1. Pick initial state s
2. Pick t in neighbors(s) with the best $f(t)$
3. if $f(t)$ is not better than $f(s)$ THEN stop, return s
4. $s \leftarrow t$. goto 2 .

What could happen? Local optima!

Hill Climbing: Local Optima

Hill Climbing: Local Optima

Q: Why is it called hill climbing?

Hill Climbing: Local Optima

Q: Why is it called hill climbing?

L: What's actually going on.
R : What we get to see.

Hill Climbing: Local Optima

Q: Why is it called hill climbing?

L : What's actually going on.
R : What we get to see.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Escaping Local Optima

Simple idea 1: random restarts

Escaping Local Optima

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.

Escaping Local Optima

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do k times, return best of the k runs.

Escaping Local Optima

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do k times, return best of the k runs.

Simple idea 2: reduce greed

Escaping Local Optima

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do k times, return best of the k runs.

Simple idea 2: reduce greed

- "Stochastic" hill climbing: randomly select between neighbors.

Escaping Local Optima

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do k times, return best of the k runs.

Simple idea 2: reduce greed

- "Stochastic" hill climbing: randomly select between neighbors.
- Probability of selecting a neighbor should be proportional to the value of that neighbor.

Hill Climbing: Variations

Q: neighborhood too large?

Hill Climbing: Variations

Q: neighborhood too large?

- Generate random neighbors, one at a time. Take the better one.

Hill Climbing: Variations

Q: neighborhood too large?

- Generate random neighbors, one at a time. Take the better one.

Q: relax requirement to always go up?

Hill Climbing: Variations

Q: neighborhood too large?

- Generate random neighbors, one at a time. Take the better one.

Q: relax requirement to always go up?

- Often useful for harder problems

Hill Climbing: Variations

Q: neighborhood too large?

- Generate random neighbors, one at a time. Take the better one.

Q: relax requirement to always go up?

- Often useful for harder problems

Break \& Quiz

Q 1.1: Hill climbing and stochastic gradient descent are related by
(i) Both head towards optima
(ii) Both require computing a gradient
(iii) Both will find the global optimum for a convex problem (problem where all optima have the same value).

- A. (i)
- B. (i), (ii)
- C. (i), (iii)
- D. All of the above

Break \& Quiz

Q 1.1: Hill climbing and stochastic gradient descent are related by
(i) Both head towards optima
(ii) Both require computing a gradient
(iii) Both will find the global optimum for a convex problem (problem where all optima have the same value).

- A. (i)
- B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)
- C. (i), (iii)
- D. All of the above

Break \& Quiz

Q 2.2: Which of the following would be better to solve with hill climbing rather than A* search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
iii. Finding the fastest way through a maze

- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Break \& Quiz

Q 2.2: Which of the following would be better to solve with hill climbing rather than A* search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
iii. Finding the fastest way through a maze

- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Break \& Quiz

Q 2.2: Which of the following would be better to solve with hill climbing rather than A* search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
iii. Finding the fastest way through a maze

- A. (i) (No, (ii) better: huge number of states, don't care about path)
- B. (ii) (No, (i) complete graph might have too many edges for A*)
- C. (i) and (ii)
- D. (ii) and (iii) (No, (iii) is good for A*: few successors, want path)

Genetic Algorithms

Genetic Algorithms

Optimization approach based on nature

- Survival of the fittest!

Genetic Algorithms

Optimization approach based on nature

- Survival of the fittest!

Evolution Review

Encode genetic information in DNA (four bases)

Evolution Review

Encode genetic information in DNA (four bases)

- A/C/T/G: nucleobases acting as symbols

Evolution Review

Encode genetic information in DNA (four bases)

- A/C/T/G: nucleobases acting as symbols

Evolution Review

Encode genetic information in DNA (four bases)

- A/C/T/G: nucleobases acting as symbols
- Two types of changes

Evolution Review

Encode genetic information in DNA (four bases)

- A/C/T/G: nucleobases acting as symbols
- Two types of changes
- Crossover: exchange between parents' codes

Evolution Review

Encode genetic information in DNA (four bases)

- A/C/T/G: nucleobases acting as symbols
- Two types of changes
- Crossover: exchange between parents' codes
- Mutation: rarer random process

Evolution Review

Encode genetic information in DNA (four bases)

- A/C/T/G: nucleobases acting as symbols
- Two types of changes
- Crossover: exchange between parents' codes
- Mutation: rarer random process
- Happens at individual level

Natural Selection

Competition for resources

Natural Selection

Competition for resources

- Organisms with better fitness \rightarrow better probability of reproducing

Natural Selection

Competition for resources

- Organisms with better fitness \rightarrow better probability of reproducing
- Repeated process: fit become larger proportion of population

Natural Selection

Competition for resources

- Organisms with better fitness \rightarrow better probability of reproducing
- Repeated process: fit become larger proportion of population

Natural Selection

Competition for resources

- Organisms with better fitness \rightarrow better probability of reproducing
- Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

Natural Selection

Competition for resources

- Organisms with better fitness \rightarrow better probability of reproducing
- Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

- New terminology: state is 'individual'

Natural Selection

Competition for resources

- Organisms with better fitness \rightarrow better probability of reproducing
- Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

- New terminology: state is 'individual'
- Value $f(s)$ is now the 'fitness'

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals

- Call this the population

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals

- Call this the population

For our n Queens game example, an individual:

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals

- Call this the population

For our n Queens game example, an individual:

(3 275241 1)

Genetic Algorithms Setup II

Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

- Analogous to natural selection, cross-over, and mutation

Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

- Analogous to natural selection, cross-over, and mutation

Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

- Analogous to natural selection, cross-over, and mutation

Genetic Algorithms Pseudocode

Just one variant:

1. Let s_{1}, \ldots, s_{N} be the current population
2. Let $p_{i}=f\left(s_{i}\right) / \Sigma_{j} f\left(s_{j}\right)$ be the reproduction probability
3. for $k=1 ; k<N ; k+=2$

- parent1 = randomly pick according to p
- parent2 = randomly pick another
- randomly select a crossover point, swap strings of parents 1,2 to generate children $t[k], t[k+1]$

4. for $k=1 ; k<=N ; k++$

- Randomly mutate each position in $t[k]$ with a small probability (mutation rate)

5. The new generation replaces the old: $\{s\} \leftarrow\{t\}$. Repeat

Reproduction: Proportional Selection

Reproduction probability: $p_{i}=f\left(s_{i}\right) / \Sigma_{j} f\left(s_{j}\right)$

Reproduction: Proportional Selection

Reproduction probability: $p_{i}=f\left(s_{i}\right) / \Sigma_{j} f\left(s_{j}\right)$

Individual	Fitness	Prob.
A	5	10%
B	20	40%
C	11	22%
D	8	16%
E	6	12%

Reproduction: Proportional Selection

Reproduction probability: $p_{i}=f\left(s_{i}\right) / \Sigma_{j} f\left(s_{j}\right)$

- Example: $\Sigma_{j} f\left(s_{j}\right)=5+20+11+8+6=50$

Individual	Fitness	Prob.
A	5	10%
B	20	40%
C	11	22%
D	8	16%
E	6	12%

Reproduction: Proportional Selection

Reproduction probability: $p_{i}=f\left(s_{i}\right) / \Sigma_{j} f\left(s_{j}\right)$

- Example: $\Sigma_{j} f\left(s_{j}\right)=5+20+11+8+6=50$

Individual	Fitness	Prob.
A	5	10%
B	20	40%
C	11	22%
D	8	16%
E	6	12%

Reproduction: Proportional Selection

Reproduction probability: $p_{i}=f\left(s_{i}\right) / \Sigma_{j} f\left(s_{j}\right)$

- Example: $\Sigma_{j} f\left(s_{j}\right)=5+20+11+8+6=50$
- $p_{1}=5 / 50=10 \%$

Individual	Fitness	Prob.
A	5	10%
B	20	40%
C	11	22%
D	8	16%
E	6	12%

Example: Scheduling Courses

Let's run through an example:

Example: Scheduling Courses

Let's run through an example:

- 5 courses: A,B,C,D,E

Example: Scheduling Courses

Let's run through an example:

- 5 courses: A,B,C,D,E
- 3 time slots: $\underline{\text { Mon/Wed, }}$ Tue/Thu, Fri/Sat

Example: Scheduling Courses

Let's run through an example:

- 5 courses: A,B,C,D,E
- 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat
- Students wish to enroll in three courses

Example: Scheduling Courses

Let's run through an example:

- 5 courses: A,B,C,D,E
- 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat
- Students wish to enroll in three courses

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Let's run through an example:

- 5 courses: A,B,C,D,E
- 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat
- Students wish to enroll in three courses
- Goal: maximize student enrollment

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Let's run through an example:

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Let's run through an example:

- State: course assignment to time slot

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Let's run through an example:

- State: course assignment to time slot

M	M	F	T	M
A	B	C	D	E

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Let's run through an example:

- State: course assignment to time slot

M	M	F	T	M
A	B	C	D	E
	$=M M F T M$			

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Let's run through an example:

- State: course assignment to time slot

M	M	F	T	M
A	B	C	D	E
$=M M F T M$				

- Here:

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Let's run through an example:

- State: course assignment to time slot

M	M	F	T	M
A	B	C	D	E

- Here:
- Courses A, B, E scheduled Mon/Wed

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Let's run through an example:

- State: course assignment to time slot

M	M	F	T	M
A	B	C	D	E
$=M M F T M$				

- Here:
- Courses A, B, E scheduled Mon/Wed
- Course D scheduled Tue/Thu

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Let's run through an example:

- State: course assignment to time slot

M	M	F	T	M
A	B	C	D	E

- Here:
- Courses A, B, E scheduled Mon/Wed
- Course D scheduled Tue/Thu

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

- Course C scheduled Fri/Sat

Example: Scheduling Courses

Example: Scheduling Courses

Courses	Students	Can enroll?
A B C	2	No
A B D	7	No
A D E	3	No
B C D	4	Yes
B D E	10	No
C D E	5	Yes

Example: Scheduling Courses

Value of a state? Say MMFTM

Courses	Students	Can enroll?
A B C	2	No
A B D	7	No
A D E	3	No
B C D	4	Yes
B D E	10	No
C D E	5	Yes

- Here 4+5=9 students can enroll in desired courses

Example: Scheduling Courses

First step:

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

First step:

- Randomly initialize and evaluate states

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

First step:

- Randomly initialize and evaluate states

```
MMFTM = 9
TTFMM = 4
FMTTF = 19
MTTTF = 3
```

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

First step:

- Randomly initialize and evaluate states

```
MMFTM = 9
TTFMM = 4
FMTTF = 19
MTTTF = 3
```

- Calculate reproduction probabilities

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

First step:

- Randomly initialize and evaluate states

MMFTM $=9$	MMFTM $=26 \%$
TTFMM $=4$	TTFMM $=11 \%$
FMTTF $=19$	FMTTF $=54 \%$
MTTTF $=3$	MTTTF $=9 \%$

- Calculate reproduction probabilities

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Next steps:

Example: Scheduling Courses

Next steps:

- Select parents using reproduction probabilities

Example: Scheduling Courses

Next steps:

- Select parents using reproduction probabilities

Example: Scheduling Courses

Next steps:

- Select parents using reproduction probabilities
- Perform crossover

Example: Scheduling Courses

Next steps:

- Select parents using reproduction probabilities
- Perform crossover

FMTTF	EMF'M
MMFTM	MMTTF
MTTTF	MMTTF
FMTTF	FTTTF

Example: Scheduling Courses

Next steps:

- Select parents using reproduction probabilities
- Perform crossover
- Randomly mutate new children

FMTTF	FMFTM
MMFTM	MMTTF
MTTTF	MMTTF
FMTTF	FTTTF

Example: Scheduling Courses

Next steps:

- Select parents using reproduction probabilities
- Perform crossover
- Randomly mutate new children
MMFTM $=26 \%$
TTFMM $=11 \%$
MTTTF $=54 \%$

FMTTF	FMFTM	FMFTM	FMFTT
MMFTM	MMTTF	MMTTF	MMTTF
MTTTF	MMTTF	MMTTF	MMTFF
FMTTF	FTTTF	FTTTF	FTTTF

Example: Scheduling Courses

Continue:

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Continue:

- Now, get our function values for updated population

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Continue:

- Now, get our function values for updated population

$$
\begin{aligned}
& \mathrm{FMFTT}=11 \\
& \mathrm{MMTTF}=13 \\
& \mathrm{MMTFF}=4 \\
& \mathrm{FTTPF}=0
\end{aligned}
$$

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Continue:

- Now, get our function values for updated population
- Calculate reproduction probabilities

$$
\begin{aligned}
& \text { FMFTT }=11 \\
& \text { MMTTF }=13 \\
& \text { MMTFF }=4 \\
& \text { FTTTF }=0
\end{aligned}
$$

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Example: Scheduling Courses

Continue:

- Now, get our function values for updated population
- Calculate reproduction probabilities

$$
\begin{array}{ll}
\text { FMFTT }=11 & \text { FMFTT }=39 \% \\
\text { MMTTF }=13 & \text { MMTTF }=46 \% \\
\text { MMTFF }=4 & \text { MMTFF }=14 \% \\
\text { FTTTF }=0 & \text { FTTTF }=0 \%
\end{array}
$$

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Variations \& Concerns

Many possibilities:

Variations \& Concerns

Many possibilities:

- Parents survive to next generation

Variations \& Concerns

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of $f(s)$ for reproduction probabilities (reduce influence of extreme f values)

Variations \& Concerns

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of $f(s)$ for reproduction probabilities (reduce influence of extreme f values)

Some challenges

Variations \& Concerns

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of $f(s)$ for reproduction probabilities (reduce influence of extreme f values)

Some challenges

- Formulating a good state encoding

Variations \& Concerns

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of $f(s)$ for reproduction probabilities (reduce influence of extreme f values)

Some challenges

- Formulating a good state encoding
- Lack of diversity: converge too soon

Variations \& Concerns

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of $f(s)$ for reproduction probabilities (reduce influence of extreme f values)

Some challenges

- Formulating a good state encoding
- Lack of diversity: converge too soon
- Must pick a lot of parameters

Summary

- Challenging optimization problems
- First, try hill climbing. Simplest solution
- Genetic algorithms
- Biology-inspired optimization routine

