

CS 540 Introduction to Artificial Intelligence Search III: Advanced Search (aka Optimization) University of Wisconsin-Madison

Spring 2023

Homeworks:

- Homework 10 due Thursday
- Course evaluation due Friday

Class roadmap:

Tuesday, May 2	Advanced Search
Thursday, May 4	Ethics and Review
Friday, May 12 5:05 - 7:05pm	Final Exam

Problem Setting

Problem Setting

How is a search problem defined?

Problem Setting

How is a search problem defined? How different from other search types?

Problem Setting

How is a search problem defined? How different from other search types?

Hill Climbing

Problem Setting

How is a search problem defined? How different from other search types?

Hill Climbing

Genetic Algorithms

Problem Setting

How is a search problem defined? How different from other search types?

Hill Climbing

Genetic Algorithms

What is difference between two?

Problem Setting

How is a search problem defined? How different from other search types?

Hill Climbing

Genetic Algorithms

What is difference between two?

Neighbors Local vs. global optima

Problem Setting

How is a search problem defined? How different from other search types?

Hill Climbing

Neighbors Local vs. global optima Genetic Algorithms

What is difference between two?

Fitness
Population
Cross-over
Mutation

- Advanced Search & Hill-climbing
 - More difficult problems, basics, local optima, variations

- Advanced Search & Hill-climbing
 - More difficult problems, basics, local optima, variations
- Hill Climbing
 - Basic algorithm, local optima

- Advanced Search & Hill-climbing
 - More difficult problems, basics, local optima, variations
- Hill Climbing
 - Basic algorithm, local optima
- Genetic Algorithms
 - Basics of evolution, fitness, natural selection

Before: wanted a **path** from start state to goal state

Before: wanted a path from start state to goal state

Uninformed search, informed search

Before: wanted a path from start state to goal state

Uninformed search, informed search

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

States s have values f(s)

Before: wanted a path from start state to goal state

Uninformed search, informed search

New setting: optimization

- States s have values f(s)
- Want: Find s with optimal value f(s) (i.e, optimize over states)

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

- States s have values f(s)
- Want: Find s with optimal value f(s) (i.e, optimize over states)
- Challenging settings: too many states for previous search approaches, but maybe not a differentiable function for gradient descent.

A classic puzzle:

A classic puzzle:

• Place 8 queens on 8 x 8 chessboard so that no two have same row, column, or diagonal.

A classic puzzle:

- Place 8 queens on 8 x 8 chessboard so that no two have same row, column, or diagonal.
- Can generalize to n x n chessboard.

A classic puzzle:

Place 8 queens on 8 x 8 chessboard so that no two have same

row, column, or diagonal.

Can generalize to n x n chessboard.

A classic puzzle:

Place 8 queens on 8 x 8 chessboard so that no two have same

row, column, or diagonal.

Can generalize to n x n chessboard.

What are states s? Values f(s)?

A classic puzzle:

Place 8 queens on 8 x 8 chessboard so that no two have same

row, column, or diagonal.

Can generalize to n x n chessboard.

- What are states s? Values f(s)?
 - State: configuration of the board

A classic puzzle:

Place 8 queens on 8 x 8 chessboard so that no two have same

row, column, or diagonal.

Can generalize to n x n chessboard.

- What are states s? Values f(s)?
 - State: configuration of the board
 - f(s): # of non-conflicting queens

Famous graph theory problem.

• Get a graph G = (V,E). **Goal**: a path that visits each node exactly once and returns to the initial node (a **tour**).

Famous graph theory problem.

• Get a graph G = (V,E). **Goal**: a path that visits each node exactly once and returns to the initial node (a **tour**).

- Get a graph G = (V,E). **Goal**: a path that visits each node exactly once and returns to the initial node (a **tour**).
 - State: a particular tour (i.e., ordered list of nodes)

- Get a graph G = (V,E). **Goal**: a path that visits each node exactly once and returns to the initial node (a **tour**).
 - State: a particular tour (i.e., ordered list of nodes)
 - f(s): total weight of the tour

- Get a graph G = (V,E). Goal: a path that visits each node exactly once and returns to the initial node (a tour).
 - State: a particular tour (i.e., ordered list of nodes)
 - f(s): total weight of the tour(e.g., total miles traveled)

Boolean satisfiability (e.g., 3-SAT)

Boolean satisfiability (e.g., 3-SAT)

Boolean satisfiability (e.g., 3-SAT)

$$(A \lor \neg B \lor C) \land (\neg A \lor C \lor D) \land (B \lor D \lor \neg E) \land (\neg C \lor \neg D \lor \neg E) \land (\neg A \lor \neg C \lor E)$$

Boolean satisfiability (e.g., 3-SAT)

Recall our logic lecture. Conjunctive normal form

$$(A \lor \neg B \lor C) \land (\neg A \lor C \lor D) \land (B \lor D \lor \neg E) \land (\neg C \lor \neg D \lor \neg E) \land (\neg A \lor \neg C \lor E)$$

Goal: find if satisfactory assignment exists.

Boolean satisfiability (e.g., 3-SAT)

$$(A \lor \neg B \lor C) \land (\neg A \lor C \lor D) \land (B \lor D \lor \neg E) \land (\neg C \lor \neg D \lor \neg E) \land (\neg A \lor \neg C \lor E)$$

- Goal: find if satisfactory assignment exists.
- State: assignment to variables

Boolean satisfiability (e.g., 3-SAT)

$$(A \lor \neg B \lor C) \land (\neg A \lor C \lor D) \land (B \lor D \lor \neg E) \land (\neg C \lor \neg D \lor \neg E) \land (\neg A \lor \neg C \lor E)$$

- Goal: find if satisfactory assignment exists.
- State: assignment to variables
- f(s): # satisfied clauses

Boolean satisfiability (e.g., 3-SAT)

$$(A \lor \neg B \lor C) \land (\neg A \lor C \lor D) \land (B \lor D \lor \neg E) \land (\neg C \lor \neg D \lor \neg E) \land (\neg A \lor \neg C \lor E)$$

- Goal: find if satisfactory assignment exists.
- State: assignment to variables
- f(s): # satisfied clauses

R(x,a,d)	٨	R(y,b,d)	٨	R(a,b,e)	Λ	R(c,d,f)	٨	R(z,c,0)
R(0,a,d) R(1,a,d) R(1,a,d)	V V	R(1,b,d) R(0,b,d) R(0,b,d)	V V	K(a,b,e) R(a,b,e) R(a,b,e)	V V	R(c,d,f) R(c,d,f) R(c,d,f) R(c,d,f) R(c,d,f) R(c,d,f) R(c,d,f) R(c,d,f)	٨	R(1,c,0) R(0,c,0) R(1,c,0)

One approach to such optimization problems

One approach to such optimization problems

Basic idea: start at one state, move to a neighbor with a better f(s) value, repeat until no neighbors have better f(s) value.

One approach to such optimization problems

Basic idea: start at one state, move to a neighbor with a better f(s) value, repeat until no neighbors have better f(s) value.

One approach to such optimization problems

Basic idea: start at one state, move to a neighbor with a better f(s) value, repeat until no neighbors have better f(s) value.

• **Q**: how do we define **neighbor**?

One approach to such optimization problems

Basic idea: start at one state, move to a neighbor with a better f(s) value, repeat until no neighbors have better f(s) value.

- Q: how do we define neighbor?
 - Not as obvious as our successors in search

One approach to such optimization problems

• Basic idea: start at one state, move to a neighbor with a better f(s) value, repeat until no neighbors have better f(s) value.

- Q: how do we define neighbor?
 - Not as obvious as our successors in search
 - Problem-specific

One approach to such optimization problems

• Basic idea: start at one state, move to a neighbor with a better f(s) value, repeat until no neighbors have better f(s) value.

- Q: how do we define neighbor?
 - Not as obvious as our successors in search
 - Problem-specific
 - As we'll see, needs a careful choice

In n Queens, a simple possibility:

In n Queens, a simple possibility:

• Look at the most-conflicting column (ties? right-most one)

In n Queens, a simple possibility:

- Look at the most-conflicting column (ties? right-most one)
- Move queen in that column vertically to a different location

In n Queens, a simple possibility:

Look at the most-conflicting column (ties? right-most one)

Move queen in that column vertically to a different location

For TSP, can do something similar:

Define neighbors by small changes

For TSP, can do something similar:

Define neighbors by small changes

- Define neighbors by small changes
- Example: 2-change: A-E and B-F

- Define neighbors by small changes
- Example: 2-change: A-E and B-F

- Define neighbors by small changes
- Example: 2-change: A-E and B-F

- Define neighbors by small changes
- Example: 2-change: A-E and B-F

For Boolean satisfiability,

For Boolean satisfiability,

Define neighbors by flipping one assignment of one variable

For Boolean satisfiability,

Define neighbors by flipping one assignment of one variable
 Starting state: (A=T, B=F, C=T, D=T, F=T)

For Boolean satisfiability,

Define neighbors by flipping one assignment of one variable
 Starting state: (A=T, B=F, C=T, D=T, F=T)

For Boolean satisfiability,

Define neighbors by flipping one assignment of one variable
 Starting state: (A=T, B=F, C=T, D=T, F=T)

```
(A=F, B=F, C=T, D=T, E=T)
(A=T, B=T, C=T, D=T, E=T)
(A=T, B=F, C=F, D=T, E=T)
(A=T, B=F, C=T, D=F, E=T)
(A=T, B=F, C=T, D=F, E=T)
(A=T, B=F, C=T, D=T, E=F)

A v ¬B v C
¬A v C v D
B v D v ¬E
¬C v ¬ D v ¬E
¬A v ¬C v E
```

Q: What's a neighbor?

Q: What's a neighbor?

 Vague definition: for a given problem structure, neighbors are states that can be produced by a small change

Q: What's a neighbor?

 Vague definition: for a given problem structure, neighbors are states that can be produced by a small change

Q: What's a neighbor?

- Vague definition: for a given problem structure, neighbors are states that can be produced by a small change
- Tradeoff!

Q: What's a neighbor?

 Vague definition: for a given problem structure, neighbors are states that can be produced by a small change

Tradeoff!

Neighborhood too small? Will get struck.

Q: What's a neighbor?

 Vague definition: for a given problem structure, neighbors are states that can be produced by a small change

Tradeoff!

- Neighborhood too small? Will get struck.
- Neighborhood too big? Not very efficient

Hill Climbing Neighbors

Q: What's a neighbor?

 Vague definition: for a given problem structure, neighbors are states that can be produced by a small change

Tradeoff!

- Neighborhood too small? Will get struck.
- Neighborhood too big? Not very efficient

Q: how to pick a neighbor? Greedy

Hill Climbing Neighbors

Q: What's a neighbor?

 Vague definition: for a given problem structure, neighbors are states that can be produced by a small change

Tradeoff!

- Neighborhood too small? Will get struck.
- Neighborhood too big? Not very efficient

- Q: how to pick a neighbor? Greedy
- Q: terminate? When no neighbor has better value

Pseudocode:

Pseudocode:

- Pick initial state s
- 2. Pick t in **neighbors**(s) with the best f(t)
- 3. if f(t) is not better than f(s) THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

Pseudocode:

- 1. Pick initial state s
- 2. Pick t in **neighbors**(s) with the best f(t)
- 3. if f(t) is not better than f(s) THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

What could happen? Local optima!

Pseudocode:

- 1. Pick initial state s
- 2. Pick t in **neighbors**(s) with the best f(t)
- 3. if f(t) is not better than f(s) THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

What could happen? Local optima!

Q: Why is it called hill climbing?

Q: Why is it called hill climbing?

fog

L: What's actually going on.

R: What we get to see.

Q: Why is it called hill climbing?

L: What's actually going on.

R: What we get to see.

Note the local optima. How do we handle them?

Simple idea 1: random restarts

Simple idea 1: random restarts

• Stuck: pick a random new starting point, re-run.

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do k times, return best of the k runs.

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do *k* times, return best of the *k* runs.

Simple idea 2: reduce greed

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do k times, return best of the k runs.

Simple idea 2: reduce greed

"Stochastic" hill climbing: randomly select between neighbors.

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do k times, return best of the k runs.

Simple idea 2: reduce greed

- "Stochastic" hill climbing: randomly select between neighbors.
- Probability of selecting a neighbor should be proportional to the value of that neighbor.

Q: neighborhood too large?

Q: neighborhood too large?

 Generate random neighbors, one at a time. Take the better one.

Q: neighborhood too large?

 Generate random neighbors, one at a time. Take the better one.

Q: relax requirement to always go up?

Q: neighborhood too large?

 Generate random neighbors, one at a time. Take the better one.

Q: relax requirement to always go up?

Often useful for harder problems

Q: neighborhood too large?

 Generate random neighbors, one at a time. Take the better one.

Q: relax requirement to always go up?

Often useful for harder problems

- **Q 1.1**: Hill climbing and stochastic gradient descent are related by
- (i) Both head towards optima
- (ii) Both require computing a gradient
- (iii) Both will find the global optimum for a convex problem (problem where all optima have the same value).

- A. (i)
- B. (i), (ii)
- C. (i), (iii)
- D. All of the above

- **Q 1.1**: Hill climbing and stochastic gradient descent are related by
- (i) Both head towards optima
- (ii) Both require computing a gradient
- (iii) Both will find the global optimum for a convex problem (problem where all optima have the same value).

- A. (i)
- B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)
- C. (i), (iii)
- D. All of the above

Q 2.2: Which of the following would be better to solve with hill climbing rather than A* search?

- i. Finding the smallest set of vertices in a graph that involve all edges
- ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
- iii. Finding the fastest way through a maze

- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Q 2.2: Which of the following would be better to solve with hill climbing rather than A* search?

- i. Finding the smallest set of vertices in a graph that involve all edges
- ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
- iii. Finding the fastest way through a maze

- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Q 2.2: Which of the following would be better to solve with hill climbing rather than A* search?

- i. Finding the smallest set of vertices in a graph that involve all edges
- ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
- iii. Finding the fastest way through a maze
- A. (i) (No, (ii) better: huge number of states, don't care about path)
- B. (ii) (No, (i) complete graph might have too many edges for A*)
- C. (i) and (ii)
- D. (ii) and (iii) (No, (iii) is good for A*: few successors, want path)

Genetic Algorithms

Genetic Algorithms

Optimization approach based on nature

Survival of the fittest!

Genetic Algorithms

Optimization approach based on nature

• Survival of the fittest!

Encode genetic information in DNA (four bases)

Encode genetic information in DNA (four bases)

A/C/T/G: nucleobases acting as symbols

Encode genetic information in DNA (four bases)

• A/C/T/G: nucleobases acting as symbols

Encode genetic information in DNA (four bases)

• A/C/T/G: nucleobases acting as symbols

Two types of changes

Encode genetic information in DNA (four bases)

A/C/T/G: nucleobases acting as symbols

- Two types of changes
 - Crossover: exchange between parents' codes

Evolution Review

Encode genetic information in DNA (four bases)

A/C/T/G: nucleobases acting as symbols

- Two types of changes
 - Crossover: exchange between parents' codes
 - Mutation: rarer random process

Evolution Review

Encode genetic information in DNA (four bases)

A/C/T/G: nucleobases acting as symbols

- Two types of changes
 - Crossover: exchange between parents' codes
 - Mutation: rarer random process
 - Happens at individual level

Competition for resources

Competition for resources

 Organisms with better fitness → better probability of reproducing

Competition for resources

- Organisms with better fitness → better probability of reproducing
- Repeated process: fit become larger proportion of population

Competition for resources

- Organisms with better fitness → better probability of reproducing
- Repeated process: fit become larger proportion of population

Competition for resources

- Organisms with better fitness → better probability of reproducing
- Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

Competition for resources

- Organisms with better fitness → better probability of reproducing
- Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

— New terminology: state is 'individual'

Competition for resources

- Organisms with better fitness → better probability of reproducing
- Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

- New terminology: state is 'individual'
- Value f(s) is now the 'fitness'

Keep around a fixed number of states/individuals

Keep around a fixed number of states/individuals

Keep around a fixed number of states/individuals

• Call this the **population**

Keep around a fixed number of states/individuals

• Call this the **population**

For our n Queens game example, an individual:

Keep around a fixed number of states/individuals

Call this the population

For our n Queens game example, an individual:

(32752411)

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

Analogous to natural selection, cross-over, and mutation

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

Analogous to natural selection, cross-over, and mutation

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

Analogous to natural selection, cross-over, and mutation

Genetic Algorithms Pseudocode

Just one variant:

- 1. Let $s_1, ..., s_N$ be the current population
- 2. Let $p_i = f(s_i) / \sum_i f(s_i)$ be the reproduction probability
- 3. for k = 1; k < N; k + = 2
 - parent1 = randomly pick according to p
 - parent2 = randomly pick another
 - randomly select a crossover point, swap strings of parents 1, 2 to generate children t[k], t[k+1]
- 4. for k = 1; k <= N; k++
 - Randomly mutate each position in t[k] with a small probability (mutation rate)
- 5. The new generation replaces the old: $\{s\} \leftarrow \{t\}$. Repeat

Reproduction probability: $p_i = f(s_i) / \sum_i f(s_i)$

Reproduction probability: $p_i = f(s_i) / \Sigma_i f(s_i)$

Individual	Fitness	Prob.	
Α	5	10%	
В	20	40%	
С	11	22%	
D	8	16%	
E	6	12%	

Reproduction probability: $p_i = f(s_i) / \Sigma_i f(s_i)$

• **Example**: $\Sigma_i f(s_i) = 5+20+11+8+6=50$

Individual	Fitness	Prob.
Α	5	10%
В	20	40%
С	11	22%
D	8	16%
E	6	12%

Reproduction probability: $p_i = f(s_i) / \Sigma_i f(s_i)$

• Example: $\Sigma_i f(s_i) = 5+20+11+8+6=50$

Individual	Fitness	Prob.
Α	5	10%
В	20	40%
С	11	22%
D	8	16%
E	6	12%

Reproduction probability: $p_i = f(s_i) / \Sigma_i f(s_i)$

• **Example**: $\Sigma_i f(s_i) = 5+20+11+8+6=50$

•
$$p_1 = 5/50 = 10\%$$

Individual	Fitness	Prob.
Α	5	10%
В	20	40%
С	11	22%
D	8	16%
E	6	12%

Let's run through an example:

• 5 courses: A,B,C,D,E

- 5 courses: A,B,C,D,E
- 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat

- 5 courses: A,B,C,D,E
- 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat
- Students wish to enroll in three courses

- 5 courses: A,B,C,D,E
- 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat
- Students wish to enroll in three courses

Students
2
7
3
4
10
5

- 5 courses: A,B,C,D,E
- 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat
- Students wish to enroll in three courses
- Goal: maximize student enrollment

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Let's run through an example:

• State: course assignment to time slot

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Let's run through an example:

• State: course assignment to time slot

М	М	F	Т	М
Α	В	С	D	E

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Let's run through an example:

State: course assignment to time slot

М	М	F	Т	М
Α	В	С	D	E

= MMFTM

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Let's run through an example:

State: course assignment to time slot

М	М	F	Т	М
Α	В	С	D	E

Here:

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Let's run through an example:

State: course assignment to time slot

М	М	F	Т	М
Α	В	С	D	E

- Here:
 - Courses A, B, E scheduled Mon/Wed

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Let's run through an example:

• State: course assignment to time slot

М	М	F	Т	М
Α	В	С	D	E

- Here:
 - Courses A, B, E scheduled Mon/Wed
 - Course D scheduled Tue/Thu

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Let's run through an example:

• State: course assignment to time slot

М	М	F	Т	М
Α	В	С	D	E

- Here:
 - Courses A, B, E scheduled Mon/Wed
 - Course D scheduled Tue/Thu
 - Course C scheduled Fri/Sat

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Courses	Students	Can enroll?
АВС	2	No
ABD	7	No
ADE	3	No
BCD	4	Yes
BDE	10	No
CDE	5	Yes

Value of a state? Say MMFTM

Courses	Students	Can enroll?
АВС	2	No
ABD	7	No
ADE	3	No
BCD	4	Yes
BDE	10	No
CDE	5	Yes

Here 4+5=9 students can enroll in desired courses

First step:

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

First step:

Randomly initialize and evaluate states

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

First step:

Randomly initialize and evaluate states

MMFTM = 9

TTFMM = 4

FMTTF = 19

MTTTF = 3

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
B D E	10
CDE	5

First step:

Randomly initialize and evaluate states

MMFTM = 9

TTFMM = 4

FMTTF = 19

MTTTF = 3

Calculate reproduction probabilities

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5
A B D A D E B C D B D E	7 3 4 10

First step:

Randomly initialize and evaluate states

MMFTM = 9	MMFTM = 26%
TTFMM = 4	TTFMM = 11%
FMTTF = 19	FMTTF = 54 %
MTTTF = 3	MTTTF = 9%

Calculate reproduction probabilities

Students
2
7
3
4
10
5

Next steps:

Select parents using reproduction probabilities

Next steps:

Select parents using reproduction probabilities

- Select parents using reproduction probabilities
- Perform crossover

- Select parents using reproduction probabilities
- Perform crossover

- Select parents using reproduction probabilities
- Perform crossover
- Randomly mutate new children

- Select parents using reproduction probabilities
- Perform crossover
- Randomly mutate new children

Continue:

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Continue:

Now, get our function values for updated population

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Continue:

Now, get our function values for updated population

	N /Т Т.	т	¬ _	1	1
Γ.	ΓΛΤΓ	$\Gamma T'$. –	Τ	Τ

$$MMTTF = 13$$

$$MMTFF = 4$$

$$FTTTF = 0$$

Courses	Students
АВС	2
ABD	7
ADE	3
B C D	4
BDE	10
CDE	5

Continue:

- Now, get our function values for updated population
- Calculate reproduction probabilities

$$FMFTT = 11$$

$$MMTTF = 13$$

$$MMTFF = 4$$

$$FTTTF = 0$$

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
B D E	10
CDE	5

Continue:

- Now, get our function values for updated population
- Calculate reproduction probabilities

FMFTT = 11	FMFTT = 39%
MMTTF = 13	MMTTF = 46 %
MMTFF = 4	MMTFF = 14%
FTTTF = 0	FTTTF = 0%

	_
Courses	Students
АВС	2
ABD	7
ADE	3
B C D	4
B D E	10
CDE	5

Many possibilities:

Many possibilities:

Parents survive to next generation

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of f(s) for reproduction probabilities (reduce influence of extreme f values)

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of f(s) for reproduction probabilities (reduce influence of extreme f values)

Some challenges

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of f(s) for reproduction probabilities (reduce influence of extreme f values)

Some challenges

Formulating a good state encoding

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of f(s) for reproduction probabilities (reduce influence of extreme f values)

Some challenges

- Formulating a good state encoding
- Lack of diversity: converge too soon

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of f(s) for reproduction probabilities (reduce influence of extreme f values)

Some challenges

- Formulating a good state encoding
- Lack of diversity: converge too soon
- Must pick a lot of parameters

Summary

- Challenging optimization problems
 - First, try hill climbing. Simplest solution
- Genetic algorithms
 - Biology-inspired optimization routine