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Review: Bayesian Inference

• Conditional Probability & Bayes Rule: 

• Evidence E: what we can observe
• Hypothesis H: what we’d like to infer from evidence

– Need to plug in prior, likelihood, etc.

• Usually do not know these probabilities. How to estimate?



Samples and Estimation
• Usually, we don’t know the distribution P

– Instead, we see a bunch of samples

• Typical statistics problem: estimate 
distribution from samples
– Estimate probabilities P(H), P(E), P(E|H)
– Estimate the mean 
– Estimate parameters



– Estimate probability P(H), P(E), P(E|H)
– Estimate the mean 𝐸[𝑋]
– Estimate parameters 𝑃!(𝑋)

• Example: Bernoulli with parameter p 
(i.e., a weighted coin flip)
– 𝑃 𝑋 = 1 = 𝑝
– Mean 𝐸[𝑋] is p

Samples and Estimation



Examples: Sample Mean

• Bernoulli with parameter p
• See samples 
– Estimate mean with sample mean

– That is, counting heads



Break & Quiz
Q 2.1: You see samples of X given by 
[0,1,1,2,2,0,1,2]. Empirically estimate 𝔼[𝑋(]

A. 9/8
B. 15/8
C. 1.5
D. There aren’t enough samples to estimate 𝔼[𝑋(]
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Break & Quiz
Q 2.1: You see samples of X given by 
[0,1,1,2,2,0,1,2]. Empirically estimate 𝔼[𝑋(]
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𝐸 𝑋! ≈
1
𝑛
∑"𝑋"!

=
1
8
(0! + 1 + 1 + 4 + 4 + 0 + 1 + 4) = 15/8



Estimating Multinomial Parameters

• k-sized die (special case: k=2 coin)
• Face i has probability pi, for i=1…k
• In n rolls, we observe face i showing up ni times

• Estimate (p1,…, pk) from this data (n1,…, nk) 

0
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%

𝑛" = 𝑛



Maximum Likelihood Estimate (MLE)

• The MLE of multinomial parameters 

• Estimate using frequencies

("𝑝1, … , "𝑝2 )

!𝑝! =
𝑛!
𝑛



Break & Quiz
Q 2.2: You are empirically estimating P(X) for some random 
variable X that takes on 100 values. You see 50 samples. How 
many of your P(X=a) estimates might be 0?

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.
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Break & Quiz
Q 2.2: You are empirically estimating P(X) for some random 
variable X that takes on 100 values. You see 50 samples. How 
many of your P(X=a) estimates might be 0?

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.

If you don’t see a 
number at all in the 50 
samples then the 
estimated probability of 
that number is 0.

You can see up to 50 
different values in 50 
samples. On the other 
hand, all 50 samples 
might have the same 
value in which case 99 
values were never 
seen.

For each 𝑎, your estimate is P 𝑋 = 𝑎 = #"#$%&'" (#)*+, -#&.' /
01



Regularized Estimate
• Hyperparameter 

• Avoids zero when n is small 
• Biased, but has smaller variance
• Equivalent to a specific Maximum A Posterori (MAP) 

estimate, or smoothing

!𝑝! =
𝑛! + 𝜖
𝑛 + 𝑘𝜖

𝜖 > 0



Estimating 1D Gaussian Parameters
• Gaussian (aka Normal) distribution 

– True mean 𝜇, true variance 𝜎!

• Observe n data points from this distribution

• Estimate           from this data 
𝑥1, … , 𝑥3

𝑁(𝜇, 𝜎4)

𝜇, 𝜎4

Wikipedia: Normal distribution



Estimating 1D Gaussian Parameters

• Mean estimate
• Variance estimates

– Unbiased

– MLE 

.𝜇 =
𝑥1 +⋯+ 𝑥3

𝑛

𝑠4 =
∑5613 𝑥5 − .𝜇 4

𝑛 − 1

.𝜎4 =
∑5613 𝑥5 − .𝜇 4

𝑛



Estimation Theory

• Is the sample mean a good estimate of the true 
mean?
– Law of large numbers
– Central limit theorems

Wolfram Demo



Estimation Errors

• With finite samples, likely error in the estimate.
• Mean squared error

– MSE :𝜃 = 𝔼 [ :𝜃 − 𝜃
!
]

• Bias / Variance Decomposition

– MSE :𝜃 = 𝔼 :𝜃 − 𝐸 :𝜃 ! + 𝔼 :𝜃 − 𝜃 !

Variance Bias



Bias / VarianceBias / Variance

High Variance

Low Variance

Low Bias High Bias

Wikipedia: Bias-variance tradeoff



Correlation vs. Causation
• Conditional probabilities only define 

correlation (aka association)
• P(Y|X) “large” does not mean X causes Y
• Example: X=yellow finger, Y=lung cancer
• Common cause: smoking



https://www.nejm.or
g/doi/full/10.1056/N
EJMon1211064


