Review: Bayesian Inference

• Conditional Probability & Bayes Rule:

\[P(H|E) = \frac{P(E|H)P(H)}{P(E)} \]

• Evidence \(E \): what we can observe
• Hypothesis \(H \): what we’d like to infer from evidence
 – Need to plug in prior, likelihood, etc.
• Usually do not know these probabilities. How to estimate?
Samples and Estimation

• Usually, we don’t know the distribution P
 – Instead, we see a bunch of samples

• Typical statistics problem: **estimate distribution** from samples
 – Estimate probabilities $P(H), P(E), P(E|H)$
 – Estimate the mean $E[X]$
 – Estimate parameters $P_\theta(X)$
Samples and Estimation

- Estimate probability $P(H), P(E), P(E|H)$
- Estimate the mean $E[X]$
- Estimate parameters $P_\theta(X)$

• Example: Bernoulli with parameter p (i.e., a weighted coin flip)
 - $P(X = 1) = p$
 - Mean $E[X]$ is p
Examples: Sample Mean

- Bernoulli with parameter p
- See samples x_1, x_2, \ldots, x_n
 - Estimate mean with **sample mean**
 \[
 \hat{E}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i
 \]
 - That is, counting heads
Break & Quiz

Q 2.1: You see samples of X given by $[0,1,1,2,2,0,1,2]$. Empirically estimate $\mathbb{E}[X^2]$

A. 9/8
B. 15/8
C. 1.5
D. There aren’t enough samples to estimate $\mathbb{E}[X^2]$
Q 2.1: You see samples of X given by $[0,1,1,2,2,0,1,2]$. Empirically estimate $\mathbb{E}[X^2]$

A. 9/8
B. 15/8
C. 1.5
D. There aren’t enough samples to estimate $\mathbb{E}[X^2]$
Break & Quiz

Q 2.1: You see samples of X given by $[0,1,1,2,2,0,1,2]$. Empirically estimate $\mathbb{E}[X^2]$

A. $9/8$
B. $15/8$
C. 1.5
D. There aren’t enough samples to estimate $\mathbb{E}[X^2]$
Estimating Multinomial Parameters

- \(k \)-sized die (special case: \(k=2 \) coin)
- Face \(i \) has probability \(p_i \), for \(i=1\ldots k \)
- In \(n \) rolls, we observe face \(i \) showing up \(n_i \) times
 \[
 \sum_{i=1}^{k} n_i = n
 \]
- Estimate \((p_1,\ldots, p_k) \) from this data \((n_1,\ldots, n_k) \)
Maximum Likelihood Estimate (MLE)

• The MLE of multinomial parameters \((\hat{p}_1, \ldots, \hat{p}_k)\)

 \[
 \hat{p}_i = \frac{n_i}{n}
 \]

• Estimate using frequencies
Q 2.2: You are empirically estimating $P(X)$ for some random variable X that takes on 100 values. You see 50 samples. How many of your $P(X=a)$ estimates might be 0?

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.
Q 2.2: You are empirically estimating \(P(X) \) for some random variable \(X \) that takes on 100 values. You see 50 samples. How many of your \(P(X=a) \) estimates might be 0?

For each \(a \), your estimate is \(P(X = a) = \frac{\text{#samples taking value } a}{50} \)

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.
Q 2.2: You are empirically estimating $P(X)$ for some random variable X that takes on 100 values. You see 50 samples. How many of your $P(X=a)$ estimates might be 0?

For each a, your estimate is $P(X = a) = \frac{\text{#samples taking value } a}{50}$

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.
Q 2.2: You are empirically estimating $P(X)$ for some random variable X that takes on 100 values. You see 50 samples. How many of your $P(X=a)$ estimates might be 0?

For each a, your estimate is $P(X = a) = \frac{\text{#samples taking value } a}{50}$

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.

If you don’t see a number at all in the 50 samples then the estimated probability of that number is 0.

You can see up to 50 different values in 50 samples. On the other hand, all 50 samples might have the same value in which case 99 values were never seen.
Regularized Estimate

- Hyperparameter $\epsilon > 0$

$$\hat{p}_i = \frac{n_i + \epsilon}{n + k\epsilon}$$

- Avoids zero when n is small
- Biased, but has smaller variance
- Equivalent to a specific Maximum A Posteriori (MAP) estimate, or smoothing
Estimating 1D Gaussian Parameters

- Gaussian (aka Normal) distribution $N(\mu, \sigma^2)$
 - True mean μ, true variance σ^2
- Observe n data points from this distribution x_1, \ldots, x_n
- Estimate μ, σ^2 from this data
Estimating 1D Gaussian Parameters

- Mean estimate \(\hat{\mu} = \frac{x_1 + \ldots + x_n}{n} \)

- Variance estimates
 - Unbiased \(s^2 = \frac{\sum_{i=1}^{n}(x_i - \hat{\mu})^2}{n - 1} \)
 - MLE \(\hat{\sigma}^2 = \frac{\sum_{i=1}^{n}(x_i - \hat{\mu})^2}{n} \)
Estimation Theory

• Is the sample mean a good estimate of the true mean?
 – Law of large numbers
 – Central limit theorems
Estimation Errors

• With finite samples, likely error in the estimate.
• Mean squared error
 \[\text{MSE}[\hat{\theta}] = \mathbb{E} \left[(\hat{\theta} - \theta)^2 \right] \]
• Bias / Variance Decomposition
 \[\text{MSE}[\hat{\theta}] = \mathbb{E} \left[(\hat{\theta} - E[\hat{\theta}])^2 \right] + (E[\hat{\theta}] - \theta)^2 \]

 \text{Variance} \quad \text{Bias}
Bias / Variance

Low Bias

Low Variance

High Variance

High Bias

Wikipedia: Bias-variance tradeoff
Correlation vs. Causation

- Conditional probabilities only define correlation (aka association)
- $P(Y|X)$ “large” does not mean X causes Y
- Example: $X=$yellow finger, $Y=$lung cancer
- Common cause: smoking
The scatter plot shows the relationship between chocolate consumption (kg/yr/capita) and the number of Nobel Laureates per 10 million population. The Pearson correlation coefficient (r) is 0.791, with a p-value (P) of less than 0.0001, indicating a strong positive correlation between the two variables.