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Linear Algebra: What is it good for?

• Study of Linear functions: simple, tractable
• In AI/ML: building blocks for all models
– e.g., linear regression; part of neural networks 
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Outline

• Basics: vectors, matrices, operations

• Dimensionality reduction

• Principal Components Analysis (PCA)
Lior Pachter
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Basics: Vectors

• Many interpretations 
– List of values (represents information)
– Point in a space

• Dimension: number of values: 𝑥 ∈ ℝ!

• AI/ML: often use very high dimensions: 
– Ex: images!
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Basics: Matrices

• Many interpretations
– Table of values; list of vectors
– Represent linear transformations
– Apply to a vector, get another vector

• Dimensions: #rows × #columns, 𝐴 ∈ ℝ!×#
– Indexing!
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Basics: Transposition

• Transposes: flip rows and columns
– Vector: standard is a column. Transpose: row vector
– Matrix: go from 𝑚×𝑛 to 𝑛×𝑚
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Matrix & Vector Operations

• Vectors
– Addition: component-wise

• Commutative: 𝑥 + 𝑦 = 𝑦 + 𝑥
• Associative: 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧)

– Scalar Multiplication
• Uniform stretch / scaling
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Matrix & Vector Operations

• Vector products
– Inner product (e.g., dot product)

– Outer product
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• 𝑥 and 𝑦 are orthogonal if 𝑥, 𝑦 =0

• Vector norms: “length”

Matrix & Vector Operations
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Matrix & Vector Operations

• Matrices:
– Addition: Component-wise
– Commutative, Associative

– Scalar Multiplication
– “Stretching” the linear transformation 
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Matrix & Vector Operations

• Matrix-Vector multiplication
– Linear transformation; plug in vector, get another vector
– Each entry in 𝐴𝑥 is the inner product of a row of 𝐴 with 𝑥
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𝑥 ∈ ℝ. , 𝐴 ∈ ℝ/×.

𝐴𝑥 =

𝐴%:, 𝑥
𝐴&:, 𝑥
⋮

𝐴/:, 𝑥

=

𝐴%%𝑥% + 𝐴%&𝑥& +⋯+ 𝐴%.𝑥.
𝐴&%𝑥% + 𝐴&&𝑥& +⋯+ 𝐴&.𝑥.

⋮
𝐴/%𝑥% + 𝐴/&𝑥& +⋯+ 𝐴/.𝑥.



Matrix & Vector Operations

Ex: feedforward neural networks. Input x. 
• Output of layer k is 

Output of layer k-1: vector

Weight matrix for layer k: 
Note: linear transformation!

Output of layer k: vector

nonlinearity

Wikipedia
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Matrix & Vector Operations

• Matrix multiplication 
– 𝐴 ∈ ℝ"×$, 𝐵 ∈ ℝ$×%, then 𝐴𝐵 ∈ ℝ"×%

– “Composition” of linear transformations
– Not commutative in general!

𝐴𝐵 ≠ 𝐵𝐴

– Lots of interpretations

Wikipedia
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Identity Matrix

– Like “1”
– Multiplying by it gets back 

the same matrix or vector

– Rows & columns are the 
“standard basis vectors” 𝑒2
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𝑒& 𝑒' 𝑒$



Break & Quiz

• Q 1.1: What is                               ? 

• A. [-1 1 1]T
• B. [2 1 1]T
• C. [1 3 1]T
• D. [1.5 2 1]T

15



Break & Quiz

• Q 1.1: What is                               ? 

• A. [-1 1 1]T
• B. [2 1 1]T
• C. [1 3 1]T
• D. [1.5 2 1]T

16



Break & Quiz

• Q 1.1: What is                               ? 

• A. [-1 1 1]T
• B. [2 1 1]T
• C. [1 3 1]T
• D. [1.5 2 1]T
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Check dimensions: answer must be 
3 x 1 matrix (i.e., column vector).

1 2
3 1
1 1

× 0
1 =

0 ∗ 1 + 1 ∗ 2
0 ∗ 3 + 1 ∗ 1
0 ∗ 1 + 1 ∗ 1

=
2
1
1



Break & Quiz
• Q 1.2: Given matrices
What are the dimensions of 

• A. n x p
• B. d x p
• C. d x n
• D. Undefined
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Break & Quiz
• Q 1.2: Given matrices
What are the dimensions of 

• A. n x p
• B. d x p
• C. d x n
• D. Undefined
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To rule out (D), check that for 
each pair of adjacent matrices 
XY, the # of columns of X = # of 
rows of Y

Then, B has d rows so solution 
must have d rows. C^T has p 
columns so solution has p 
columns. 



Break & Quiz

• Q 1.3: A and B are matrices, neither of which is the 
identity. Is AB = BA?

• A. Never
• B. Always
• C. Sometimes
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Break & Quiz

• Q 1.3: A and B are matrices, neither of which is the 
identity. Is AB = BA?

• A. Never
• B. Always
• C. Sometimes
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Matrix multiplication is 
not necessarily 
commutative.



Matrix Inverse

• If there is a 𝐵 such that 𝐴𝐵 = 𝐵𝐴 = 𝐼
– Then 𝐴 is invertible/nonsingular, 𝐵 is its inverse
– Some matrices are not invertible!

• Notation: 𝐴3%
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Eigenvalues & Eigenvectors

• For a square matrix 𝐴, solutions to 𝐴𝑣 = 𝜆𝑣
– 𝑣 is a (nonzero) vector: eigenvector
– 𝜆 is a scalar: eigenvalue

• Intuition 
– Multiplying by 𝐴 can stretch/rotate vectors
– Eigenvectors 𝑣: only stretched (by 𝜆)

Wikipedia
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Dimensionality Reduction

• Vectors store features. Lots of features!
• Document classification: thousands of words per doc
• Netflix surveys: 480189 users x 17770 movies
• MEG Brain Imaging: 120 locations x 500 time points x 20 objects

26



Dimensionality Reduction

Reduce dimensions
• Why? 

– Lots of features redundant 
– Storage & computation costs

• Goal: take 𝑥 ∈ ℝ4 → 𝑥 ∈ ℝ5 ,  for  𝑟 ≪ 𝑑
– But, minimize information loss

CreativeBloq
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Dimensionality Reduction

Examples: 3D to 2D

Andrew Ng
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Break & Quiz
Q 2.1: What is the inverse of 

A:

B:

C: Undefined / A is not invertible
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Break & Quiz
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𝐴𝐴!" = 0 2
3 0

𝑎 𝑏
𝑐 𝑑 = 0 ∗ 𝑎 + 𝑐 ∗ 2 0 ∗ 𝑏 + 2 ∗ 𝑑

3 ∗ 𝑎 + 𝑐 ∗ 0 3 ∗ 𝑏 + 0 ∗ 𝑑 = 1 0
0 1

2𝑐 = 1
3𝑎 = 0
2𝑑 = 0
3𝑏 = 1

𝑎 𝑏
𝑐 𝑑 = 0 1/3

1/2 0

Q 2.1: What is the inverse of 

A:

B:

C: Undefined / A is not invertible



Break & Quiz
Q 2.2: What are the eigenvalues of 

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1
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Break & Quiz
Q 2.2: What are the eigenvalues of 

A. -1, 2, 4
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Solution #1: You may recall from a linear algebra 
course that the eigenvalues of a diagonal matrix (in 
which only diagonal entries are non-zero) are just the 
entries along the diagonal. Hence D is the correct 
answer.



Break & Quiz
Q 2.2: What are the eigenvalues of 

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1
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Solution #2: Use the definition of 
eigenvectors and values: 𝐴𝑣 = 𝜆𝑣

2 0 0
0 5 0
0 0 1

𝑣"
𝑣#
𝑣$
=

2𝑣" + 0𝑣# + 0𝑣$
0𝑣" + 5𝑣# + 0𝑣$
0𝑣" + 0𝑣# + 1𝑣$

=
2𝑣"
5𝑣#
𝑣$

=
𝜆𝑣"
𝜆𝑣#
𝜆𝑣$

Since A is a 3x3 matrix, A has 3 eigenvalues 
and so there are 3 combinations of values for 
𝜆 and v that will satisfy the above equation. 
The simple form of the equations suggests 
starting by checking each of the standard 
basis vectors* as v and then solving for 𝜆. 
Doing so gives D as the correct answer.

*Each standard basis vector 𝑒! ∈ ℝ" is the vector in which all components are zero except component 𝑖 is 1.



Break & Quiz
Q 2.3: Suppose we are given a dataset with n=10000 
samples with 100-dimensional binary feature vectors. 
Our storage device has a capacity of 50000 bits. What’s 
the lower compression ratio we can use?
A. 20X
B. 100X
C. 5X
D. 1X
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Break & Quiz
Q 2.3: Suppose we are given a dataset with n=10000 
samples with 100-dimensional binary feature vectors. 
Our storage device has a capacity of 50000 bits. What’s 
the lower compression ratio we can use?
A. 20X
B. 100X
C. 5X
D. 1X
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50,000 bits / 10,000 samples 
means compressed version must 
have 5 bits / sample.

Dataset has 100 bits / sample.

Must compress 20x smaller to fit on 
device.



Principal Components Analysis (PCA)

• A type of dimensionality 
reduction approach

• For when data is 
approximately lower 
dimensional
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2D
↓
1D

3D
↓
2D



Principal Components Analysis (PCA)

• Find axes 𝑢!, 𝑢", … , 𝑢# ∈ ℝ$
of a subspace
– Will project to this subspace

• Want to preserve data
– minimize projection error

• These vectors are the 
principal components
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𝑢%

𝑢%
𝑢&



Projection: An Example
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𝑥%, 𝑥&, … , 𝑥. ∈ ℝ&



Projection: An Example
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A random line that goes 
through the origin

𝑥%, 𝑥&, … , 𝑥. ∈ ℝ&



Projection: An Example
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PCA projects data onto 
this line

𝑥%, 𝑥&, … , 𝑥. ∈ ℝ&



Projection: An Example
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Goal: finding a line that 
minimizes the sum of 
squared distances to 𝑥&’s

𝑥%, 𝑥&, … , 𝑥. ∈ ℝ&



Projection: An Example
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The sum of squared distances gets 
smaller as the line fits better 

The optimal line is called Principal 
Component 1

𝑥%, 𝑥&, … , 𝑥. ∈ ℝ&



PCA Procedure

• Inputs: data 𝑥!, 𝑥", … , 𝑥% ∈ ℝ$

– Center data so that "
#
∑$%"# 𝑥$ = 0

• Output:
principal components 𝑢!, … , 𝑢# ∈ ℝ$
– Orthogonal
– Can show: they are top-𝑚 eigenvectors of 
𝑆 = "

#&"
∑$%"# 𝑥$𝑥$' (covariance matrix)

– Each 𝑥$ projected to 𝑥$
()* = ∑+%", (𝑢+'𝑥$)𝑢+
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𝑥(

𝑥(
)*+



Many Variations

• PCA, Kernel PCA, ICA, CCA
– Extract structure from high dimensional dataset

• Uses:
– Visualization
– Efficiency
– Noise removal
– Downstream machine learning use
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Application: Image Compression

• Start with image; divide into 12x12 patches

– That is, 144-D vector

– Original image:
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Application: Image Compression

• 6 principal components (as an image)
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Application: Image Compression

• Project to 6D

Compressed Original
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Application: Exploratory Data Analysis
• [Novembre et al. ’08]: Take top two singular vectors of 

people x SNP matrix (POPRES) 

50“Genes Mirror Geography in Europe” 



Readings
• Vast literature on linear algebra.
• Local class: Math 341
• More on PCA (and other matrix methods in ML): CS 532 

• Suggested reading: 
– Lecture notes on PCA by Roughgarden and Valiant

https://web.stanford.edu/class/cs168/l/l7.pdf
– 760 notes by Zhu https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf
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https://web.stanford.edu/class/cs168/l/l7.pdf
https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf

