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Linear Algebra: What is it good for?

* Study of Linear functions: simple, tractable
* |n Al/ML: building blocks for all models

— e.g., linear regression; part of neural networks
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Outline

* Basics: vectors, matrices, operations

* Dimensionality reduction

* Principal Components Analysis (PCA)

Lior Pachter




Basics: Vectors

* Many interpretations

— List of values (represents information)

— Point in a space
* Dimension: number of values: x € R

* Al/ML: often use very high dimensions:

— Ex: images!
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Basics: Matrices

: . A A
* Many interpretations 11 12
: _ Ay, Ay,

— Table of values; list of vectors A= A P
— Represent linear transformations A31 A33
41 43

— Apply to a vector, get another vector

Dimensions: #rows X #columns, 4 € R™M*"

— Indexing!




Basics: Transposition

* Transposes: flip rows and columns

— Vector: standard is a column. Transpose: row vector

— Matrix: go from mXn to nXm

$T:[QZ1 X9 333}

A — A Ap A13] AT = | A
Asp Age Ao




Matrix & Vector Operations

* Vectors
— Addition: component-wise 21+ Y1 |
e Commutative:x+y=y+x T+Y= T2+ Y2
* Associative: (x +y)+z=x+ (y + 2) T3 T Y3
— Scalar Multiplication c11 |
* Uniform stretch / scaling cxr = | cxo
_6373_




Matrix & Vector Operations

* Vector products
— Inner product (e.g., dot product)

_yl_
X,y >:= mTy = [wl ) :133} Yo | = T1Y1 + T2Y2 + T3Y3
Y3
— Outer product
EN _Ilyl L1Y2 mlys_
nyT — |22 [?Jl Y2 ys] = |T2Y1 X2Y2 T2Y3
| L3 | L3Y1  X3Y2  I3Y3




Matrix & Vector Operations

* x and y are orthogonal if (x, y)=0
X

* Vector norms: “length”

n
ol = | > 23
\ 1=1



Matrix & Vector Operations

* Matrices:
— Addition: Component-wise A+ B=

A1+ Bi1 Aig+ B
A21 —+ B21 A22 + BQQ
A1 + B31 Aszz + Bsa

— Commutative, Associative

cAi11 cAis
— Scalar Multiplication cA= |cAy; cAgg

— “Stretching” the linear transformation cAz1  cAs




Matrix & Vector Operations

* Matrix-Vector multiplication
— Linear transformation; plug in vector, get another vector
— Each entry in Ax is the inner product of a row of A with x

x € R*" A € R™*"

(A1, x)] [ Arrxg HApx + o+ Appxy ]
Ay — (A,.,x) Ay1x1 + Agoxy + -+ Appxy

-<Am;; x) -Amlxl + Amzxz paliiie o Amnxn-



Matrix & Vector Operations

Ex: feedforward neural networks. Input x.
* Output of layer k is

nonlinearity \_

fOw) = U(W[Zf““})(at))) E/

Output of layer k-1: vector

Output of layer k: vector Weight matrix for layer k:
Note: linear transformation!

Wikipedia



Matrix & Vector Operations

* Matrix multiplication

— A € R™" B € R"P, then AB € R™*P T :3 b:
— “Composition” of linear transformations b, [bs
— Not commutative in general! B g B =
AB #+ BA a2, O
Al
— Lots of interpretations : : TT=T=©

Wikipedia
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Identity Matrix

— Like “1”
— Multiplying by it gets back
the same matrix or vector

— Rows & columns are the
“standard basis vectors” ¢;

J —

o =

4_:0
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Q1.1: Whatis

o0 wp

-111]"
211]"
131]

[1.521]

Break & Quiz
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Q1.1: Whatis

A [-111]
B.[211]
C.[131]
D.[1.521]"

Break & Quiz

1 2
3 1
I 1
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Break & Quiz

Q1.1: Whatis

— Y =
— = D

A. ['1 1 1]T Check dimensions: answer must be
3 x 1 matrix (i.e., column vector).
B.[211]

C.[131] HE R RSt
D.[1.521]"

17



Break & Quiz

* Q1.2: Given matrices A € R"™*™ B ¢ Rde’ (' ¢ Rpx™
What are the dimensions of BAC!

A.nxp
B.dxp
C.dxn
D. Undefined



Break & Quiz

* Q1.2: Given matrices A € R"™*™ B ¢ Rde, (' ¢ Rpx™
What are the dimensions of BAC!

A.nxp
B.dxp
C.dxn
D. Undefined



Break & Quiz

* Q1.2: Given matrices A € R"™*™ B ¢ Rde, (' ¢ Rpx™
What are the dimensions of BAC!

To rule out (D), check that for
each pair of adjacent matrices

XY, the # of columns of X = # of
° A.nXp rows of Y

e B.dxp

Then, B has d rows so solution
e C.dxn must have d rows. CAT has p
columns so solution has p

e D. Undefined columns.



Break & Quiz

Q 1.3: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
B. Always
C. Sometimes



Break & Quiz

Q 1.3: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
B. Always
C. Sometimes
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Break & Quiz

Q 1.3: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
Matrix multiplication is
B. AlWayS not neces§arlly
commutative.

C. Sometimes

23



Matrix Inverse

e |fthereisa B suchthat AB = BA =1

— Then A is invertible/nonsingular, B is its inverse
— Some matrices are not invertible!

- Notation: A~1




Eigenvalues & Eigenvectors

 For a square matrix 4, solutions to Av = Av

— v is a (honzero) vector: eigenvector y
— A is a scalar: eigenvalue Ay
Intuition Y

— Multiplying by A can stretch/rotate vectors
— Eigenvectors v: only stretched (by A)

AX = AX

Wikipedia

AX



Dimensionality Reduction

e \ectors store features. Lots of features!

® Document classification: thousands of words per doc
® Netflix surveys: 480189 users x 17770 movies
® MEG Brain Imaging: 120 locations x 500 time points x 20 objects

movie 1 | movie 2 | movie 3

Tom 5 ? ?
George ? ? 3
Susan 4 3 1
Beth 4 3 ?




Dimensionality Reduction

Reduce dimensions

e Why?
— Lots of features redundant
— Storage & computation costs

e Goal:takex E R? » x € R, for r « d
— But, minimize information loss

bo|ganneas)

27



Dimensionality Reduction

3D to 2D

Examples
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Break & Quiz
Q 2.1: What is the inverse of A = g (2)

C: Undefined / A is not invertible



Break & Quiz

0 o
Q 2.1: What isthe inverse of A = g 0
_ _3 O a *a+c* * *
N TR EREE o (F REre s s oK
_ 0o 1 2c=1
A 1:[ 3] ‘=
B: b 1t
3b=1
C: Undefined / A is not invertible ¢ b1 [0 13
[c d_[l/Z 0]



Break & Quiz

Q 2.2: What are the eigenvalues of 4

_001_
oo O

_200_




Break & Quiz

Q 2.2: What are the eigenvalues of 4

_001_
oo O

_200_

32



Break & Quiz

Q 2.2: What are the eigenvalues of A= |0

@)
-

_1 2 4 Solution #1: You may recall from a linear algeb_ra_

) &) course that the eigenvalues of a diagonal matrix (in
which only diagonal entries are non-zero) are just the

0.5, O 2, 1 O entries along the diagonal. Hence D is the correct

O’ 2’ 5 answer.
. 2,51

o0 ®»

33



Break & Quiz

Q 2.2: What are the eigenvalues of A= |0

Solution #2: Use the definition of O O
eigenvectors and values: Av = Av -

1,2, 4 [(2) : 8]3; le] Ev]
, :

0 0 11vs3
5' O ’ 1 O Since A is a 3x3 matrix, A has 3 eigenvalues
5 and so there are 3 combinations of values for

@)

2v, + 0v, + Ovg
Ov; + 5v, + Ovg | =
Ov, + Ov, + 1v,

A and v that will satisfy the above equation.
The simple form of the equations suggests
starting by checking each of the standard
basis vectors* as v and then solving for A.
Doing so gives D as the correct answer.

A.

B. 0.
C. 0,2
D. 2,5,

*Each standard basis vector e; € R" is the vector in which all components are zero except component i is 1.

34



Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000
samples with 100-dimensional binary feature vectors.
Our storage device has a capacity of 50000 bits. What's
the lower compression ratio we can use?

A. 20X
B. 100X
C. 5X

D. 1X
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Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000
samples with 100-dimensional binary feature vectors.
Our storage device has a capacity of 50000 bits. What's
the lower compression ratio we can use?

A. 20X
50,000 bits / 10,000 samples

B. 100X means compressed version must
have 5 bits / sample.

C. 5X

D. 1X

Dataset has 100 bits / sample.

Must compress 20x smaller to fit on
device.



Principal Components Analysis (PCA)
A

* Atype of dimensionality
reduction approach

* For when data is
approximately lower
dimensional

2D

1D

3D

2D



Principal Components Analysis (PCA)
A

U,

* Find axes uq{, Uy, ..., U, € R?
of a subspace

— Will project to this subspace

* Want to preserve data
— minimize projection error

* These vectors are the
principal components




Projection: An Example

2
X1, X, e, Xn €ER

40



Projection: An Example

2
X1, X, e, Xn €ER

A random line that goes

[
through the origin T ®

41



Projection: An Example

2
X1, X, e, Xn €ER

e

\

0\'\;23
Osy
PCA projects data onto
this line

42



Projection: An Example

2
X1, X, e, Xn €ER

e

‘\.

'\'\gg
Goal: finding a line that ‘\gg
minimizes the sum of

squared distances to x;’s




Projection: An Example

2
X1, X, e, Xn €ER
2 3?\.
3
The line is called Principal

Component 1

The sum of squared distances gets
smaller as the line fits better

44



PCA P

* Inputs: data xq, x5, ..., Xy,

— Center data so that %

* QOutput:

principal components u4, ...,

— Orthogonal

— Can show: they are top-m
1

rocedure

u,, € R%

eigenvectors of

S=—Y" xx] (covarlance matrix)

n-—1

— Each x; projected to xl.

= ml(u xl)u]

45



Many Variations

 PCA, Kernel PCA, ICA, CCA

— Extract structure from high dimensional dataset

e Uses:
— Visualization

Individuals - PCA

— Efficiency v
— Noise removal R

— Downstream machine learning use



Application: Image Compression

e Start with image; divide into 12x12 patches

— That is, 144-D vector

— Original image:




Application: Image Compression

* 6 principal components (as an image)

A

2 4 6 8 10 12

] |

2 4 6 8 10 12

2

4

6

8 L]
10
12

2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12
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Application: Image Compression

* Projectto 6D

Compressed Original

49



Application: Exploratory Data Analysis

- [Novembre et al. ’08]: Take top two singular vectors of
people x SNP matrix (POPRES)

“Genes Mirror Geography in Europe”

50



Readings

Vast literature on linear algebra.
Local class: Math 341
More on PCA (and other matrix methods in ML): CS 532

Suggested reading:
— Lecture notes on PCA by Roughgarden and Valiant

https://web.stanford.edu/class/cs168/1/17.pdf
— 760 notes by Zhu https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf

51


https://web.stanford.edu/class/cs168/l/l7.pdf
https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf

