

CS 540 Introduction to Artificial Intelligence Linear Algebra \& PCA

University of Wisconsin-Madison
Fall 2023

Linear Algebra: What is it good for?

- Study of Linear functions: simple, tractable
- In AI/ML: building blocks for all models
- e.g., linear regression; part of neural networks

Hieu Tran

Stanford CS231n

Outline

- Basics: vectors, matrices, operations
- Dimensionality reduction
- Principal Components Analysis (PCA)

Lior Pachter

Basics: Vectors

- Many interpretations

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \in \mathbb{R}^{5}
$$

- List of values (represents information)
- Point in a space
- Dimension: number of values: $x \in \mathbb{R}^{d}$
- $\mathrm{Al} / \mathrm{ML}$: often use very high dimensions:
- Ex: images!

Basics: Matrices

- Many interpretations
- Apply to a vector, get another vector

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{33} & A_{33} \\
A_{41} & A_{43} & A_{43}
\end{array}\right]
$$

- Dimensions: \#rows \times \#columns, $A \in \mathbb{R}^{m \times n}$
- Indexing!

Basics: Transposition

- Transposes: flip rows and columns
- Vector: standard is a column. Transpose: row vector
- Matrix: go from $m \times n$ to $n \times m$

$$
\begin{array}{r}
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] x^{T}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right] \\
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right] \quad A^{T}=\left[\begin{array}{ll}
A_{11} & A_{21} \\
A_{12} & A_{22} \\
A_{13} & A_{23}
\end{array}\right]
\end{array}
$$

Matrix \& Vector Operations

- Vectors
- Addition: component-wise
- Commutative: $x+y=y+x$
- Associative: $(x+y)+z=x+(y+z)$

$$
x+y=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]
$$

- Scalar Multiplication
- Uniform stretch / scaling

$$
c x=\left[\begin{array}{l}
c x_{1} \\
c x_{2} \\
c x_{3}
\end{array}\right]
$$

Matrix \& Vector Operations

- Vector products
- Inner product (e.g., dot product)

$$
<x, y>:=x^{T} y=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

- Outer product

$$
x y^{T}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} \\
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3}
\end{array}\right]
$$

Matrix \& Vector Operations

- x and y are orthogonal if $\langle x, y\rangle=0$
- Vector norms: "length"

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Matrix \& Vector Operations

- Matrices:
- Addition: Component-wise
- Commutative, Associative

$$
A+B=\left[\begin{array}{ll}
A_{11}+B_{11} & A_{12}+B_{12} \\
A_{21}+B_{21} & A_{22}+B_{22} \\
A_{31}+B_{31} & A_{32}+B_{32}
\end{array}\right]
$$

- Scalar Multiplication
- "Stretching" the linear transformation

$$
c A=\left[\begin{array}{ll}
c A_{11} & c A_{12} \\
c A_{21} & c A_{22} \\
c A_{31} & c A_{32}
\end{array}\right]
$$

Matrix \& Vector Operations

- Matrix-Vector multiplication
- Linear transformation; plug in vector, get another vector
- Each entry in $A x$ is the inner product of a row of A with x

$$
\begin{gathered}
x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n} \\
A x=\left[\begin{array}{c}
\left\langle A_{1:}, x\right\rangle \\
\left\langle A_{2:}, x\right\rangle \\
\vdots \\
\left\langle A_{m:}, x\right\rangle
\end{array}\right]=\left[\begin{array}{c}
A_{11} x_{1}+A_{12} x_{2}+\cdots+A_{1 n} x_{n} \\
A_{21} x_{1}+A_{22} x_{2}+\cdots+A_{2 n} x_{n} \\
\vdots \\
A_{m 1} x_{1}+A_{m 2} x_{2}+\cdots+A_{m n} x_{n}
\end{array}\right]
\end{gathered}
$$

Matrix \& Vector Operations

Ex: feedforward neural networks. Input x.

- Output of layer k is

Output of layer k : vector
Weight matrix for layer k :

Matrix \& Vector Operations

- Matrix multiplication
$-A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, then $A B \in \mathbb{R}^{m \times p}$
- "Composition" of linear transformations
- Not commutative in general!

$$
A B \neq B A
$$

- Lots of interpretations

Identity Matrix

- Like " 1 "
- Multiplying by it gets back the same matrix or vector
- Rows \& columns are the "standard basis vectors" e_{i}

$$
I=\left[\begin{array}{ccccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

Break \& Quiz

- Q 1.1: What is $\left[\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{l}0 \\ 1\end{array}\right]$?
- A. $\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]^{\top}$
- B. $\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]^{\top}$
- C. $\left[\begin{array}{lll}1 & 3 & 1\end{array}\right]^{\top}$
- D. $[1.521]^{\top}$

Break \& Quiz

- Q 1.1: What is $\left[\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{l}0 \\ 1\end{array}\right]$?
- A. $\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]^{\top}$
- B. [2 1 1] ${ }^{\top}$
- C. [1 31 1 ${ }^{\top}$
- D. $[1.521]^{\top}$

Break \& Quiz

- Q 1.1: What is $\left[\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{l}0 \\ 1\end{array}\right]$?
- A. $\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]^{\top}$
- B. $\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}$
- C. $\left[\begin{array}{lll}1 & 3 & 1\end{array}\right]^{\top}$
- D. [1.5 2 1] ${ }^{\top}$

Break \& Quiz

- Q 1.2: Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{d \times m}, C \in \mathbb{R}^{p \times n}$ What are the dimensions of $B A C^{T}$
- A. $n \times p$
- B. $d x p$
- C. $d x n$
- D. Undefined

Break \& Quiz

- Q 1.2: Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{d \times m}, C \in \mathbb{R}^{p \times n}$ What are the dimensions of $B A C^{T}$
- A. $n \times p$
- B. $d x p$
- C. $d x n$
- D. Undefined

Break \& Quiz

- Q 1.2: Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{d \times m}, C \in \mathbb{R}^{p \times n}$ What are the dimensions of $B A C^{T}$
- A. $n \times p$
- B. $d x p$
- C. $d x n$
- D. Undefined

To rule out (D), check that for each pair of adjacent matrices XY, the \# of columns of $X=\#$ of rows of Y

Then, B has d rows so solution must have d rows. $\mathrm{C}^{\wedge} \mathrm{T}$ has p columns so solution has p columns.

Break \& Quiz

- Q 1.3: A and B are matrices, neither of which is the identity. Is $A B=B A$?
- A. Never
- B. Always
- C. Sometimes

Break \& Quiz

- Q 1.3: A and B are matrices, neither of which is the identity. Is $A B=B A$?
- A. Never
- B. Always
- C. Sometimes

Break \& Quiz

- Q 1.3: A and B are matrices, neither of which is the identity. Is $A B=B A$?
- A. Never
- B. Always
- C. Sometimes

Matrix multiplication is not necessarily
commutative.

Matrix Inverse

- If there is a B such that $A B=B A=I$
- Then A is invertible/nonsingular, B is its inverse
- Some matrices are not invertible!
- Notation: A^{-1}

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right]=I
$$

Eigenvalues \& Eigenvectors

- For a square matrix A, solutions to $A v=\lambda v$
$-v$ is a (nonzero) vector: eigenvector
$-\lambda$ is a scalar: eigenvalue
- Intuition
- Multiplying by A can stretch/rotate vectors
- Eigenvectors v : only stretched (by λ)

Dimensionality Reduction

- Vectors store features. Lots of features!
- Document classification: thousands of words per doc
- Netflix surveys: 480189 users x 17770 movies
- MEG Brain Imaging: 120 locations x 500 time points x 20 objects

	movie 1	movie 2	movie 3
Tom	5	$?$	$?$
George	$?$	$?$	3
Susan	4	3	1
Beth	4	3	$?$

Dimensionality Reduction

Reduce dimensions

- Why?
- Lots of features redundant
- Storage \& computation costs

- Goal: take $x \in \mathbb{R}^{d} \rightarrow x \in \mathbb{R}^{r}$, for $r \ll d$
- But, minimize information loss

Dimensionality Reduction

Examples: 3D to 2D

Andrew Ng

Break \& Quiz

Q 2.1: What is the inverse of $A=\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]$

$$
\begin{array}{ll}
\mathrm{A}: & A^{-1}=\left[\begin{array}{cc}
-3 & 0 \\
0 & -2
\end{array}\right] \\
\mathrm{B}: & A^{-1}=\left[\begin{array}{cc}
0 & \frac{1}{3} \\
\frac{1}{2} & 0
\end{array}\right]
\end{array}
$$

C: Undefined / A is not invertible

Break \& Quiz

Q 2.1: What is the inverse of $A=\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]$
A: $\quad A^{-1}=\left[\begin{array}{cc}-3 & 0 \\ 0 & -2\end{array}\right] \quad A A^{-1}=\left[\begin{array}{ccc}0 & 2 & 2 \\ 3 & 0\end{array}\right]\left[\begin{array}{ll}a & b \\ c\end{array}\right]=\left[\begin{array}{cc}0 * a+c * 2 & 0 * b+2 * d \\ 3 * a+c * 0 & 3 * b+0 * d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B: $\quad A^{-1}=\left[\begin{array}{ll}0 & \frac{1}{3} \\ \frac{1}{2} & 0\end{array}\right]$

$$
\begin{aligned}
& 2 c=1 \\
& 3 a=0 \\
& 2 d=0 \\
& 3 b=1
\end{aligned}
$$

C: Undefined / A is not invertible

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 / 3 \\
1 / 2 & 0
\end{array}\right]
$$

Break \& Quiz

Q 2.2: What are the eigenvalues of $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$
A. $-1,2,4$
B. $0.5,0.2,1.0$
C. $0,2,5$
D. $2,5,1$

Break \& Quiz

Q 2.2: What are the eigenvalues of $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$
A. $-1,2,4$
B. $0.5,0.2,1.0$
C. $0,2,5$
D. $2,5,1$

Break \& Quiz

Q 2.2: What are the eigenvalues of $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$

A. $-1,2,4$
B. $0.5,0.2,1.0$
C. $0,2,5$
D. $2,5,1$

Solution \#1: You may recall from a linear algebra course that the eigenvalues of a diagonal matrix (in which only diagonal entries are non-zero) are just the entries along the diagonal. Hence D is the correct answer.

Break \& Quiz

Q 2.2: What are the eigenvalues of $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 1
\end{array}\right] \begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3}
\end{aligned}=\left[\begin{array}{l}
2 v_{1}+0 v_{2}+0 v_{3} \\
0 v_{1}+5 v_{2}+0 v_{3} \\
0 v_{1}+0 v_{2}+1 v_{3}
\end{array}\right]=\left[\begin{array}{c}
2 v_{1} \\
5 v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
\lambda v_{1} \\
\lambda v_{2} \\
\lambda v_{3}
\end{array}\right]
$$

Since A is a 3×3 matrix, A has 3 eigenvalues and so there are 3 combinations of values for λ and v that will satisfy the above equation.
The simple form of the equations suggests starting by checking each of the standard basis vectors* as v and then solving for λ. Doing so gives D as the correct answer.

Break \& Quiz

Q 2.3: Suppose we are given a dataset with $n=10000$ samples with 100 -dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?
A. 20X
B. 100 X
C. 5 X
D. 1 X

Break \& Quiz

Q 2.3: Suppose we are given a dataset with $n=10000$ samples with 100 -dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?
A. 20X
B. 100 X
C. $5 x$
D. 1 X

Break \& Quiz

Q 2.3: Suppose we are given a dataset with $n=10000$ samples with 100 -dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?
A. 20X
B. 100 X
C. 5 X

50,000 bits / 10,000 samples
means compressed version must
have 5 bits / sample.
Dataset has 100 bits / sample.
Must compress 20x smaller to fit on device.

Principal Components Analysis (PCA)

- A type of dimensionality reduction approach

- For when data is approximately lower dimensional

Principal Components Analysis (PCA)

- Find axes $u_{1}, u_{2}, \ldots, u_{m} \in \mathbb{R}^{d}$ of a subspace
- Will project to this subspace

- Want to preserve data
- minimize projection error
- These vectors are the principal components

Projection: An Example

$$
x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{2}
$$

Projection: An Example

Projection: An Example

$x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{2}$

PCA projects data onto this line

Projection: An Example

$x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{2}$

Goal: finding a line that minimizes the sum of squared distances to $x_{i}{ }^{\prime}$'s

Projection: An Example

$$
x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{2}
$$

The sum of squared distances gets smaller as the line fits better

The optimal line is called Principal Component 1

PCA Procedure

- Inputs: data $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$
- Center data so that $\frac{1}{n} \sum_{i=1}^{n} x_{i}=0$
- Output: principal components $u_{1}, \ldots, u_{m} \in \mathbb{R}^{d}$
- Orthogonal
- Can show: they are top- m eigenvectors of $S=\frac{1}{n-1} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \quad$ (covariance matrix)
- Each x_{i} projected to $x_{i}^{\text {pca }}=\sum_{j=1}^{m}\left(u_{j}^{\top} x_{i}\right) u_{j}$

Many Variations

- PCA, Kernel PCA, ICA, CCA
- Extract structure from high dimensional dataset
- Uses:
- Visualization
- Efficiency
- Noise removal
- Downstream machine learning use

Application: Image Compression

- Start with image; divide into 12×12 patches
- That is, 144-D vector
- Original image:

Application: Image Compression

- 6 principal components (as an image)

Application: Image Compression

- Project to 6D

Compressed

Original

Application: Exploratory Data Analysis

- [Novembre et al. '08]: Take top two singular vectors of people x SNP matrix (POPRES)

"Genes Mirror Geography in Europe"

Readings

- Vast literature on linear algebra.
- Local class: Math 341
- More on PCA (and other matrix methods in ML): CS 532
- Suggested reading:
- Lecture notes on PCA by Roughgarden and Valiant https://web.stanford.edu/class/cs168/I/17.pdf
- 760 notes by Zhu https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf

