

CS 540 Introduction to Artificial Intelligence Logic University of Wisconsin-Madison

Fall 2023

Logic & Al

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
 - "Symbolic AI"
 - The Logic Theorist 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Knowledge rep., databases, etc.

Symbolic vs Connectionist

Rival approach: connectionist

- Probabilistic models
- Neural networks

years

• Extremely popular last 20

Connectionist Apple

.63

.73

.24

M. Minsky

Symbolic vs Connectionist

Which is better?

- Future: combination; best-of-bothworlds.
 - "Neurosymbolic Al"
 - Example: Markov Logic Networks

Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (atomic sentences)
 - Connectives:

∧ and
 ∨ or
 ⇒ implies
 ⇔ is equivalent
 ¬ not

[conjunction] [disjunction] [implication] [biconditional] [negation]

– Literal: P or negation $\neg P$

Propositional Logic Basics

Examples:

- $(P \lor Q) \Longrightarrow S$
 - "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
 - "If it is raining, then it is cold"
- ¬R
 - "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Sentences: **well-formed** or not well-formed:
 - $P \Rightarrow Q \Rightarrow S$ not well-formed (not associative!)

Sentences & Semantics

• Sentences: built up from symbols with connectives

- Interpretation: assigning True / False to symbols (a row in truth table)

- Semantics: interpretations for which sentence evaluates to True

- Model: (of a set of sentences) interpretation for which all sentences are True

Evaluating a Sentence

• Example:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

• Note:

- If P is false, P⇒Q is true regardless of Q ("5 is even implies 6 is odd" is True!)
- Causality not needed: ("5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

• Ex:

Ρ	Q	R	P	Q∧R	¬P∨Q∧R	¬P∨Q∧R⇒Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

• Satisfiable

There exists some interpretation where the sentence is true.

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

(i)
$$\neg(\neg p \rightarrow \neg q) \land r$$

(ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$

• A. Both

- B. Neither
- C. Just (i)
- D. Just (ii)

Plug interpretation into each sentence.

For (i): $(\neg p \rightarrow \neg q)$ will be false so $\neg(\neg p \rightarrow \neg q)$ will be true and r is true by assignment.

For (ii): $(\neg p \lor \neg q)$ is true and $(p \lor \neg r)$ is false which makes the implication false.

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A V ($\neg A \rightarrow B$)
- b. A V B
- c. A V (A \rightarrow B)
- d. $A \rightarrow B$

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee (\neg A \rightarrow B)
- b. A V B (equivalent!)
- c. A V (A \rightarrow B)
- d. A \rightarrow B

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee (\neg A \rightarrow B)
- b. A V B (equivalent!)
- c. $A \lor (A \rightarrow B)$
- d. A \rightarrow B

Answer a. is the exact translation of the English sentence into a logic sentence. You can see that answer b. is also correct by writing out the truth table for all answers and seeing that a and b have the same truth tables.

Or you can use the fact that $\neg A \rightarrow B = A \lor B$ and that $A \lor A \lor B = A \lor B$ to prove equivalence.

Knowledge Bases

- Knowledge Base (KB): A set of sentences $\{A_1, A_2, \dots A_n\}.$
 - Like a long sentence, connect with conjunction:

- KB is $A_1 \wedge A_2 \wedge \cdots \wedge A_n$.

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences

Entailment

Entailment: a sentence B logically follows from A

- Write $A \models B$
- A ⊨ B iff in every interpretation where A is true, B is also true
 All interpretations

Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table
 - "Model checking"
- Downside: 2ⁿ interpretations for n symbols

Methods of Inference: 2. Using Rules

- *Modus Ponens*: $(A \Rightarrow B, A) \models B$
- And-elimination
- Other rules on the next page
 - Commutativity, associativity, de Morgan's laws, distribution for conjunction/disjunction

Logical equivalences

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

You can use these equivalences to modify sentences.

First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

• Facts, Objects, Relations, Functions

First Order Logic Syntax

- Term: an object in the world
 - Constant: Alice, 2, Madison, Green, ...
 - Variables: x, y, a, b, c, ...
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A ground term is a term without variables.
 - Constants or functions of constants.

FOL Syntax

- Atom: smallest T/F expression
 - Predicate(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is)Teacher(of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - term₁ = term₂
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object.

FOL Syntax

- **Sentence**: T/F expression
 - Atom
 - Complex sentence using connectives: $\land \lor \neg \Rightarrow \Leftrightarrow$
 - Less(x,22) ∧ Less(y,33)
 - Complex sentence using quantifiers ∀, ∃
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

FOL Quantifiers

- Universal quantifier: ∀
- Sentence is true **for all** values of x in the domain of variable x.
- Main connective typically is \Rightarrow
 - Forms if-then rules
 - "all humans are mammals"
 - $\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)$
 - Means if x is a human, then x is a mammal

FOL Quantifiers

- Existential quantifier: **3**
- Sentence is true for some value of x in the domain of variable x.
- Main connective typically is A
 - -"some humans are male"

$\exists x human(x) \land male(x)$

-Means there is an x who is a human and is a male

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Must have one entry for every possible assignment of values to variables. That number is (C).