

CS 540 Introduction to Artificial Intelligence Natural Language Processing (before LLMs)

University of Wisconsin-Madison Fall 2023

What is NLP?

Combining computing with human language. Want to:

- Answer questions
- Summarize or extract information
- Translate between languages
- Generate dialogue/language
- Write stories automatically

Why is it hard?

Many reasons:

- Ambiguity: "Mary saw the duck with the telescope in the park". Several meanings.
- Understanding of the world
- "Bob and Joe are fathers".
- "Bob and Joe are brothers".

Approaches to NLP

A brief history

- Symbolic NLP: 50's to 90's
- Statistical/Probabilistic: 90's to present
- Neural nets: 2010's to present
- Large Language Model (LLM): GPT etc.

Lots of progress!
Lots more to work to do

```
Dit yan come to me secouse you are not?
if tomt kncy
tist docs thst suggest to yan?
#that i an unintelligent
Hou logy huse you been unintelligeat?
ssince I was born
laince
Sarent ywe supposed to ehrer ne up,
3ro In talking stoat ne
thy not?
3ark
Mark not sare I understem you fally.
```



```
Muhe is elucluate
Sta see elakorate de mat?
```


Outline

- Introduction to language models
- n-grams, training, evaluation, generation
- Word representations
- One-hot, word embeddings, transformer-based

Language Models

- Basic idea: use probabilistic models to assign a probability to a sentence W

$$
P(W)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

Training The Model

Recall the chain rule of probability:

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \ldots P\left(w_{n} \mid w_{n-1} \ldots w_{1}\right)
$$

- How do we estimate these probabilities?
- I.e., "training" in machine learning.
- From data (text corpus)
- Can't estimate reliably for long histories.

Training: Make Assumptions

- Markov assumption with shorter history:

$$
P\left(w_{i} \mid w_{i-1} w_{i-2} \ldots w_{1}\right)=P\left(w_{i} \mid w_{i-1} w_{i-2} \ldots w_{i-k}\right)
$$

- Present doesn't depend on whole past
- Just recent past, i.e., context.
- What's $\boldsymbol{k}=\mathbf{0}$?

k=0: Unigram Model

- Full independence assumption:
- (Present doesn't depend on the past)
$P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{1}\right) P\left(w_{2}\right) \ldots P\left(w_{n}\right)$

The English letter frequency wheel

Unigram word model

k=1: Bigram Model

- Markov Assumption:
- (Present depends on immediate past)

$$
P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{2}\right) \ldots P\left(w_{n} \mid w_{n-1}\right)
$$

$p(. \mid q)$: the "after q" wheel
$p(. \mid j)$: the "after j " wheel

k=n-1: \mathbf{n}-gram Model

Can do trigrams, 4-grams, and so on

- More expressive as n goes up
- Harder to estimate

Training: just count? I.e, for bigram:

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

n-gram Training

Issues:

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

- 1. Multiply tiny numbers?
- Solution: use logs; add instead of multiply
- 2. n-grams with zero probability?
- Solution: smoothing
$P(w \mid$ denied the $)$

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)+1}{\operatorname{count}\left(w_{i-1}\right)+V}
$$

Dan Klein

Break \& Quiz

Q 1.1: Which of the below are bigrams from the sentence "It is cold outside today".

- A. It is
- B. cold today
- C. is cold
- D. A \& C

Break \& Quiz

Q 1.1: Which of the below are bigrams from the sentence "It is cold outside today".

- A. It is
- B. cold today
- C. is cold
- D. A \& C

Break \& Quiz

Q 1.2: Smoothing is increasingly useful for n-grams when

- A. n gets larger
- B. n gets smaller
- C. always the same
- D. n larger than 10

Break \& Quiz

Q 1.2: Smoothing is increasingly useful for n-grams when

- A. n gets larger
- B. n gets smaller
- C. always the same
- D. n larger than 10

Evaluating Language Models

How do we know we've done a good job?

- Observation
- Train/test on separate data \& measure metrics
- Metrics:
- 1. Extrinsic evaluation
- 2. Perplexity

Extrinsic Evaluation

How do we know we've done a good job?

- Pick a task and use the model to do the task
- For two models, $\mathrm{M}_{1}, \mathrm{M}_{2}$, compare the accuracy for each task
- Ex: Q/A system: how many questions right. Translation: how many words translated correctly
- Downside: slow; may change relatively

Intrinsic Evaluation: Perplexity

Perplexity is a measure of uncertainty

$$
\operatorname{PP}(W)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{-\frac{1}{n}}
$$

Compute average $\operatorname{PP}(\mathrm{W})$ for all W from a dataset Lower is better! Examples:

- WSJ corpus; 40 million words for training:
- Unigram: 962, Bigram 170, Trigram 109

Simple "generative AI" from letter bigram (Markov Chain)

Writing = sampling

- Say we start with q
- Sample from $P(\cdot \mid q)$: spin the "after q " wheel \bigcirc, we get u
- Sample from $P(\cdot \mid u)$: spin the "after u " wheel, say we get e
- Sample from $P(\cdot \mid e)$: spin the "after e " wheel, say we get r

[^0]
Sampling Shakespeare unigram LM

- To him swallowed confess hear both. Which. of save on trail for are ay device and rote life have
- Every enter now severally so, let
- Hill he late speaks; or! a more to leg less first you enter
- Will rash been and by I the me loves gentle me not slavish page, the and hour; ill let
- Are where exeunt and sighs have rise excellency book of .. sleep knave we. hear; vile like

Sampling Shakespeare bigram LM

- What means, sir. I confess she? then all sorts, he is trim, captain.
- Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
- What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?
- Enter Menenius, if it so many good direction found'st thou art a strong upon command of fear not a liberal Largess given away, Falstaff! Exeunt

Sampling Shakespeare trigram LM

- Sweet prince, Falstaff shall die. Harry of Monmoulh's grave.
- This shall forbid it should be branded, if renown made it emply.
- What ist that cried?
- Indeed the duke; and had a very good friend.

Further NLP Tasks

Language modeling is not the only task:

- Part-of-speech tagging, parsing, etc.
- Question-answering, translation, summarization, classification (e.g., sentiment analysis), generation, etc.

Break \& Quiz

Q 2.1: What is the perplexity for a sequence of n digits 0 9 ? All occur independently with equal probability.

- A. 10
- B. 1/10
- C. 10^{n}
- D. 0

$$
\operatorname{PP}(W)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{-\frac{1}{n}}
$$

Break \& Quiz

Q 2.1: What is the perplexity for a sequence of n digits 0 9 ? All occur independently with equal probability.

- A. 10
- B. $1 / 10$
- C. 10^{n}
- D. 0

$$
\operatorname{PP}(W)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{-\frac{1}{n}}
$$

Representing Words

Remember value of random variables (RVs)

- Easier to work with than objects like 'dog'

Traditional representation: one-hot vectors

$$
\operatorname{dog}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

- Dimension: \# of words in vocabulary
- Relationships between words?

Smarter Representations

Distributional semantics: account for relationships

- Reps should be close/similar to other words that appear in a similar context
Dense vectors:

$$
\begin{aligned}
\operatorname{dog} & =\left[\begin{array}{llllll}
0.13 & 0.87 & -0.23 & 0.46 & 0.87 & -0.31
\end{array}\right]^{T} \\
\operatorname{cat} & =\left[\begin{array}{llllll}
0.07 & 1.03 & -0.43 & -0.21 & 1.11 & -0.34
\end{array}\right]^{T}
\end{aligned}
$$

AKA word embeddings

Word Embeddings

Saurabh Pal - Implementing Word2Vec in Tensorflow

Beyond "Shallow" Embeddings

- Transformers: special model architectures based on attention
- Sophisticated types of neural networks
- Pretrained models
- Based on transformers: BERT
- Include context!
- Fine-tune for desired task

Vaswani et al.

Reading

- Natural Language and Statistics, Notes by Zhu. https://pages.cs.wisc.edu/~jerryzhu/cs540/ha ndouts/NLP.pdf

[^0]: - ...

