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Artificial Intelligence

Machine learning

Deep learning with Artificial neural networks

Computer vision Sept 28 Finish NLP; Machine Learning: Introduction
: Oct 3 Machine Learning: Unsupervised Learning I
Robotics
Oct 5 Machine Learning: Unsupervised Learning II
Oct 10 Machine Learning: Linear Regression

Oct 12 Machine Learning: K-Nearest Neighbors & Naive Bayes



Outline

Machine Learning Overview

— Supervised learning, unsupervised learning, reinforcement
learning

Unsupervised Learning: Clustering

— Hierarchical Clustering
* Divisive, agglomerative, linkage strategies

— Centroid-based, K-Means



What is machine learning?

e Arthur Samuel (1959): the field of study that gives the computer the
ability to learn without being explicitly programmed.

 Tom Mitchell (1997): A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T as measured by P, improves with experience E.




Without Machine Learning With Machine Learning

VERY SPECIFIC
INSTRUCTIONS

https://tung-dn.github.io/programming.html



Taxonomy of ML

Supervised
Learning

Reinforcement
Learning

Unsupervised
Learning




Supervised Learning

Supervised learning:
e Learn from labelled data.

* Dataset: (Xl,?Jl)y (X27y2>7 coey (Xn;yn)

[N

Features / Covariates / Input Labels / Outputs

* Goal: find function f: X — Y to predict label on new data

e Labels can be discrete (“classification”) or real-valued
(“regression”).



Example 1: Predict whether a user likes a song or not
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Unsupervised Learning

No labels; generally won’t be making predictions

 Dataset: X1,X9,...,X,
* Goal: find patterns/structures that help better understand data

— E.g., dimension reduction, clustering, ...
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Unsupervised Learning

Supervised Learning Unsupervised Learning
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Clustering

®* Given: dataset contains no label X1, X2,..., Xy

® Output: divides the data into clusters such that there are

intra-cluster similarity and inter-cluster dissimilarity
A

Intensity



Unsupervised Learning (UL)

* Clustering is just one type of unsupervised learning

— PCA is another unsupervised algorithm
— So is language modelling.

e Estimating probability distributions also UL (GANs)
* Clustering is popular & useful!

‘
StyleGAN2 (Kerras et al ’20)



Reinforcement Learning




Reinforcement Learning

® Given: an agent that can take actions and a reward
function specifying how good an action is.

* Goal: learn to choose actions that maximize future
reward total.

Google Deepmind



Reinforcement Learning Key Problems

1. Problem: actions may have delayed effects.

— Requires credit-assignment

2. Problem: maximal reward action is unknown
— Exploration-exploitation trade-off

“..the problem [exploration-exploitation]
was proposed [by British scientist] to be
dropped over Germany so that German
scientists could also waste their time on it.”
- Peter Whittle




Today: Clustering

e Several types of clustering

(Partiional e archical ) [ Bayesian A
- Center-based

: - Agglomerative - Decision-based
- Graph-theoretic . :
- Divisive - Nonparametric
- Spectral
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Hierarchical Clustering

Basic idea: build a “hierarchy”

 Want: arrangements from specific to
general

* One advantage: no need for k, number =~ 7
of clusters. 3

* Input: points. Output: a hierarchy
— A binary tree

Credit: Wikipedia



Agglomerative vs Divisive

Two ways to go:

« Agglomerative: bottom up.

— Start: each point a cluster. Progressively
merge clusters

* Divisive: top down

— Start: all points in one cluster. Progressively
split clusters

Credit: r2d3.us



Hierarchical Agglomerative Clustering
(HAC)

Input: data points x4, ..., x,, € R™, cluster distance
function d(A4, B)

1. Initialize n clusters, one data point each
2. While (number of clusters > 1)

3.  find the closest clusters ¢y, ¢, =
argming, g d(4, B) over all cluster pairs A, B

4. merge cq,Cy into a new cluster, remove ¢4, C,




Agglomerative Clustering Example
Agglomerative. Start: every point is its own cluster



Agglomerative Clustering Example
Get pair of clusters that are closest and merge

e



Agglomerative Clustering Example
Repeat: Get pair of clusters that are closest and merge
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Agglomerative Clustering Example
Repeat: Get pair of clusters that are closest and merge
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Cluster Distance Function

Merge: use closest clusters. Define closest?

* Single-linkage
d(A,B)= min d(z1,9)

CEleA,CEQEB
 Complete-linkage
d(A,B) = max d(r1,x2)

T EA,QIQ €B
* Average-linkage
1

d(A,B) — Z d(il?l,flfg)

CAIBl L, A= s



Single-linkage Example

We’ll merge using single-linkage
* 1-dimensional vectors.
* |Initial: all points are clusters

1 2 4 5 7.25



Single-linkage Example
We’ll merge using single-linkage

d(Cy, {4)) = d(2,4) = 2
d({4},{5}) = d(4,5) =1

1 2 4 5 7.25



Single-linkage Example

Continue...
d(Cy,Cz) = d(2,4) =2
d(Cy,{7.25}) = d(5,7.25) = 2.25

NN

1 2 4 5 7.25



Single-linkage Example

Continue...

1 2 4 5 7.25



Single-linkage Example

1 2 4 5 7.25



Complete-linkage Example

We'll merge using complete-linkage
* 1-dimensional vectors.
* |Initial: all points are clusters

1 2 4 5 7.25



Complete-linkage Example

Beginning is the same...

d(C1,Cy) = d(1,5) = 4
d(Cy, {7.25}) = d(4,7.25) = 3.25

1 2 4 5 7.25



Complete-linkage Example

Now we diverge:

1 2 4 5 7.25



Complete-linkage Example

1 2 4 5 7.25



When to Stop?

No simple answer:

e Use the binary tree (a
dendrogram)

e Cut at different levels (get
different heights/depths)




Break & Quiz

Q 1.1: Let’s do hierarchical clustering for two clusters with
average linkage on the dataset below. What are the clusters?

« A.{1},{2,4,5,7.25}
 B.{1,2},{4,5, 7.25}
 C.{1,2,4}, 15, 7.25}
 D.{1,2,4,5},{7.25}

o—©@ @ @ @
1 2 4 5 7.25



Break & Quiz

Q 1.1: Let’s do hierarchical clustering for two clusters with
average linkage on the dataset below. What are the clusters?

« A {1} {2,4,5,7.25}
. B.{1,2},{4,5,7.25}
e C.{1,2,4}, {5, 7.25}
 D.{1,2,4,5},{7.25}

o—©@ @ @ @
1 2 4 5 7.25



Break & Quiz

Q 1.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

e A2

* B.logn
C.n/2
* D.n-1



Break & Quiz

Q 1.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

e A2

* B.logn
C.n/2
D. n-1



Center-based Clustering

* k-means is an example of a partitional, center-based
clustering algorithm.

e Specify a desired number of clusters, k; run k-means
to find k clusters.



Center-based Clustering

e Steps: 1. Randomly pick k cluster centers
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Center-based Clustering

e 2. Find closest center for each point
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Center-based Clustering

e 3. Update cluster centers by computing centroids

© o
O



Center-based Clustering

* Repeat Steps 2 & 3 until convergence
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K-means algorithm

Input: x4, X5, ..., Xp, k
Step 1: select k cluster centers ¢4, C5, ..., Ci

Step 2: for each point x;, assign it to the closest center in
Euclidean distance:

y(x;) = argmin; ||x; — ¢
Step 3: update all cluster centers as the centroids:
Zxy(x)=j ¥
Loiy(x)=j 1
Repeat Step 2 and 3 until cluster centers no longer change

Cj=



Break & Quiz

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with initial
clusters

(1 = {(272)7 (47 4)7 (676)}7 Cy = {<074)7 (47())}703 — {(575>7 (979>}

Cluster centroids are updated to?

« A.C:(4,4),C,:(2,2),C5:(7,7)
* B.C;:(6,6),C,: (4,4), C5:(9,9)
 C.C;:(2,2),C:(0,0), C5: (5,5)
« D.C;:(2,6),C,:(0,4), C5: (5,9)



Break & Quiz
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Break & Quiz

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with initial
clusters

(1 = {(272)7 (47 4)7 (676>}7 Gy = {<074>7 (47())}703 — {<575>7 (979)}

Cluster centroids are updated to?

A. C;: (44), C;: (2,2), Cs: (7,7) The average of points in C1 is (4,4).
B. C,: (6,6), C,: (4,4), Cs: (9,9) The average of points in C2 is (2,2).
C.C;: (2,2), C,:(0,0), C5: (5,5) The average of points in C3 is (7,7).
D. C;: (2,6), C,: (0,4), C5: (5,9)



Break & Quiz

Q 2.2: We are running 3-means again. We have 3 centers, C;
(0,1), C,, (2,1), C5 (-1,2). Which cluster assignment is
possible for the points (1,1) and (-1,1), respectively? Ties
are broken arbitrarily:

(l) Cll Cl (”) CZ/ C3 (“I) Cli C3

A. Only (i)

B. Only (ii) and (iii)
C. Only (i) and (iii)
D. All of them
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Break & Quiz

Q 2.2: We are running 3-means again. We have 3 centers, C;
(0,1), C,, (2,1), C5 (-1,2). Which cluster assignment is
possible for the points (1,1) and (-1,1), respectively? Ties
are broken arbitrarily:

(i) C,, C4 (ii) C,, Cs (iii) Cy, Cs
For the point (1,1): square-Euclidean-distance to C1 is
A. Only (i) 1,to C2is1,t0 C3is 5
B. Only (ii) and (iii) So it can be assigned to C1 or C2
C. Only (i) and (iii) For the point (-1,1): square-Euclidean-distance to C1 is

1,t0 C2is9,to C3is 1
D. All of them So it can be assigned to C1 or C3



Break & Quiz

Q 2.3: If we run K-means clustering twice with random
starting cluster centers, are we guaranteed to get same
clustering results? Does K-means always converge?

A. Yes, Yes
B. No, Yes
C. Yes, No
D. No, No
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Break & Quiz

Q 2.3: If we run K-means clustering twice with random
starting cluster centers, are we guaranteed to get same
clustering results? Does K-means always converge?

The clustering from k-means will depend on the initialization. Different
initialization can lead to different outcomes.

* A. Yes, Yes

K-means will always converge on a finite set of data points:
* B. NO, Yes 1. There are finite number of possible partitions of the points
e C.Y N 2. The assignment and update steps of each iteration will only
. 1€5, NO decrease the sum of the distances from points to their
e D. NO, No corresponding centers.

3. If it run forever without convergence, it will revisit the same
partition, which is contradictory to item 2.



