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• Class roadmap:



Outline

• Machine Learning Overview
– Supervised learning, unsupervised learning, reinforcement 

learning

• Unsupervised Learning: Clustering
– Hierarchical Clustering

• Divisive, agglomerative, linkage strategies

– Centroid-based, K-Means



What is machine learning?
• Arthur Samuel (1959): the field of study that gives the computer the 

ability to learn without being explicitly programmed. 
• Tom Mitchell (1997): A computer program is said to learn from experience 

E with respect to some class of tasks T and performance measure P, if its 
performance at tasks in T as measured by P, improves with experience E. 



https://tung-dn.github.io/programming.html
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Supervised Learning

Supervised learning:
• Learn from labelled data.
• Dataset:

• Goal: find function                    to predict label on new data 
• Labels can be discrete (“classification”) or real-valued 

(“regression”).

Features / Covariates / Input Labels / Outputs
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Unsupervised Learning

• No labels; generally won’t be making predictions
• Dataset:
• Goal: find patterns/structures that help better understand data

– E.g., dimension reduction, clustering, …

Mulvey and  Gingold
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Clustering
• Given: dataset contains no label
• Output: divides the data into clusters such that there are 

intra-cluster similarity and inter-cluster dissimilarity 

𝑥!, 𝑥", . . . , 𝑥#
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Unsupervised Learning (UL)
• Clustering is just one type of unsupervised learning
– PCA is another unsupervised algorithm
– So is language modelling.

• Estimating probability distributions also UL (GANs)
• Clustering is popular & useful!

StyleGAN2 (Kerras et al ’20)



Reinforcement Learning



Reinforcement Learning
• Given: an agent that can take actions and a reward 

function specifying how good an action is. 
• Goal: learn to choose actions that maximize future 

reward total.

Google Deepmind



Reinforcement Learning Key Problems
1. Problem: actions may have delayed effects.
– Requires credit-assignment

2. Problem: maximal reward action is unknown
– Exploration-exploitation trade-off

Multi-armed Bandit

“..the problem [exploration-exploitation] 
was proposed [by British scientist] to be 
dropped over Germany so that German 
scientists could also waste their time on it.”
- Peter Whittle



Today: Clustering

• Several types of clustering
Partitional

- Center-based
- Graph-theoretic
- Spectral

Hierarchical
- Agglomerative
- Divisive

Bayesian
- Decision-based
- Nonparametric



Hierarchical Clustering

Basic idea: build a “hierarchy”
• Want: arrangements from specific to 

general 
• One advantage: no need for k, number 

of clusters.
• Input: points. Output: a hierarchy

– A binary tree

Credit: Wikipedia



Agglomerative vs Divisive

Two ways to go:
• Agglomerative: bottom up. 

– Start: each point a cluster. Progressively 
merge clusters 

• Divisive: top down
– Start: all points in one cluster. Progressively 

split clusters

Credit: r2d3.us



Hierarchical Agglomerative Clustering 
(HAC)

Input: data points 𝑥!, … , 𝑥" ∈ 𝑅#, cluster distance 
function 𝑑(𝐴, 𝐵)
1. Initialize 𝑛 clusters, one data point each
2. While (number of clusters > 1)
3. find the closest clusters 𝑐!, 𝑐$ =

argmin%,' 𝑑(𝐴, 𝐵) over all cluster pairs 𝐴, 𝐵
4. merge 𝑐!, 𝑐$ into a new cluster, remove 𝑐!, 𝑐$



Agglomerative Clustering Example

Agglomerative. Start: every point is its own cluster



Agglomerative Clustering Example

Get pair of clusters that are closest and merge



Agglomerative Clustering Example

Repeat: Get pair of clusters that are closest and merge



Agglomerative Clustering Example

Repeat: Get pair of clusters that are closest and merge



Cluster Distance Function

Merge: use closest clusters. Define closest?
• Single-linkage

• Complete-linkage

• Average-linkage



We’ll merge using single-linkage
• 1-dimensional vectors.
• Initial: all points are clusters

Single-linkage Example

1 2 4 5 7.25



We’ll merge using single-linkage

Single-linkage Example
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Continue…

Single-linkage Example
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Continue…

Single-linkage Example
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Single-linkage Example

1 2 4 5 7.25
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We’ll merge using complete-linkage
• 1-dimensional vectors.
• Initial: all points are clusters

Complete-linkage Example

1 2 4 5 7.25



Beginning is the same…

Complete-linkage Example

1 2 4 5 7.25

C1 C2



Now we diverge:

Complete-linkage Example

1 2 4 5 7.25

C1 C2
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Complete-linkage Example

1 2 4 5 7.25
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When to Stop?

No simple answer:

• Use the binary tree (a 
dendrogram)

• Cut at different levels (get 
different heights/depths)

http://opentreeoflife.org/



Break & Quiz
Q 1.1: Let’s do hierarchical clustering for two clusters with 
average linkage on the dataset below. What are the clusters?

• A. {1}, {2,4,5,7.25}
• B. {1,2}, {4, 5, 7.25}
• C. {1,2,4}, {5, 7.25}
• D. {1,2,4,5}, {7.25}

1 2 4 5 7.25



Break & Quiz
Q 1.1: Let’s do hierarchical clustering for two clusters with 
average linkage on the dataset below. What are the clusters?

• A. {1}, {2,4,5,7.25}
• B. {1,2}, {4, 5, 7.25}
• C. {1,2,4}, {5, 7.25}
• D. {1,2,4,5}, {7.25}

1 2 4 5 7.25



Break & Quiz
Q 1.2: If we do hierarchical clustering on n points, the 
maximum depth of the resulting tree is

• A. 2
• B. log n
• C. n/2
• D. n-1
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Center-based Clustering

• k-means is an example of a partitional, center-based 
clustering algorithm.

• Specify a desired number of clusters, k; run k-means 
to find k clusters.



Center-based Clustering

• Steps: 1. Randomly pick k cluster centers



Center-based Clustering

• 2. Find closest center for each point



Center-based Clustering

• 3. Update cluster centers by computing centroids



Center-based Clustering

• Repeat Steps 2 & 3 until convergence



K-means algorithm
• Input: 𝑥!, 𝑥", … , 𝑥#, 𝑘
• Step 1: select 𝑘 cluster centers 𝑐!, 𝑐", … , 𝑐$
• Step 2: for each point 𝑥%, assign it to the closest center in 

Euclidean distance: 
𝑦 𝑥% = argmin& ||𝑥% − 𝑐&||

• Step 3: update all cluster centers as the centroids: 

𝑐& =
∑':) ' *& 𝑥
∑':) ' *& 1

• Repeat Step 2 and 3 until cluster centers no longer change



Break & Quiz
Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with initial 
clusters

Cluster centroids are updated to?

• A. C1: (4,4), C2: (2,2), C3: (7,7)
• B. C1: (6,6), C2: (4,4), C3: (9,9)
• C. C1: (2,2), C2: (0,0), C3: (5,5)
• D. C1: (2,6), C2: (0,4), C3: (5,9)
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Break & Quiz
Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with initial 
clusters

Cluster centroids are updated to?

• A. C1: (4,4), C2: (2,2), C3: (7,7)
• B. C1: (6,6), C2: (4,4), C3: (9,9)
• C. C1: (2,2), C2: (0,0), C3: (5,5)
• D. C1: (2,6), C2: (0,4), C3: (5,9)

The average of points in C1 is (4,4).
The average of points in C2 is (2,2).
The average of points in C3 is (7,7).



Break & Quiz
Q 2.2: We are running 3-means again. We have 3 centers, C1
(0,1), C2, (2,1), C3 (-1,2). Which cluster assignment is 
possible for the points (1,1) and (-1,1), respectively? Ties 
are broken arbitrarily: 

(i) C1, C1 (ii) C2, C3 (iii) C1, C3

• A. Only (i) 
• B. Only (ii) and (iii)
• C. Only (i) and (iii)
• D. All of them



Break & Quiz
Q 2.2: We are running 3-means again. We have 3 centers, C1
(0,1), C2, (2,1), C3 (-1,2). Which cluster assignment is 
possible for the points (1,1) and (-1,1), respectively? Ties 
are broken arbitrarily: 

(i) C1, C1 (ii) C2, C3 (iii) C1, C3

• A. Only (i) 
• B. Only (ii) and (iii)
• C. Only (i) and (iii)
• D. All of them



Break & Quiz
Q 2.2: We are running 3-means again. We have 3 centers, C1
(0,1), C2, (2,1), C3 (-1,2). Which cluster assignment is 
possible for the points (1,1) and (-1,1), respectively? Ties 
are broken arbitrarily: 

(i) C1, C1 (ii) C2, C3 (iii) C1, C3

• A. Only (i) 
• B. Only (ii) and (iii)
• C. Only (i) and (iii)
• D. All of them



Break & Quiz
Q 2.2: We are running 3-means again. We have 3 centers, C1
(0,1), C2, (2,1), C3 (-1,2). Which cluster assignment is 
possible for the points (1,1) and (-1,1), respectively? Ties 
are broken arbitrarily: 

(i) C1, C1 (ii) C2, C3 (iii) C1, C3

• A. Only (i) 
• B. Only (ii) and (iii)
• C. Only (i) and (iii)
• D. All of them

For the point (1,1):  square-Euclidean-distance to C1 is 
1, to C2 is 1, to C3 is 5
So it can be assigned to C1 or C2

For the point (-1,1):  square-Euclidean-distance to C1 is 
1, to C2 is 9, to C3 is 1
So it can be assigned to C1 or C3



Break & Quiz
Q 2.3: If we run K-means clustering twice with random 
starting cluster centers, are we guaranteed to get same 
clustering results? Does K-means always converge?

• A. Yes, Yes
• B. No, Yes
• C. Yes, No
• D. No, No
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Break & Quiz
Q 2.3: If we run K-means clustering twice with random 
starting cluster centers, are we guaranteed to get same 
clustering results? Does K-means always converge?

• A. Yes, Yes
• B. No, Yes
• C. Yes, No
• D. No, No

The clustering from k-means will depend on the initialization. Different 
initialization can lead to different outcomes.

K-means will always converge on a finite set of data points: 
1. There are finite number of possible partitions of the points
2. The assignment and update steps of each iteration will only 

decrease the sum of the distances from points to their 
corresponding centers. 

3. If it run forever without convergence, it will revisit the same 
partition, which is contradictory to item 2. 


